Feasibility of Biomarker-Based Taxonomic Classification: A Case Study of the Marine Red Alga Laurencia snackeyi (Weber Bosse) M. Masuda
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Laurencia snackeyi and Its Sesquiterpenes
3.2. Chemotaxonomic Value of Halogenated Snyderane-Type Sesquiterpenes in Laurencia snackeyi
Cmpd | Yield as in Milligram Per Gram of Crude Extract (mg/g) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Malaysia | Japan | Vietnam | ||||||||
2023 [25] | 2017 [29] | 2014 [26] | 2013 [42] | 2011 [28] | 1997 [16] | 2020 [18] | 2005 [43] | 2001 [27] | 1997 [16] | |
1 | <200 | 52.17 | 63.33 | 74.03 | 25.70 | 14.33 | 10.32 | 22.48 | ||
2 | <200 | 53.61 | 42.03 | 25.70 | 16.44 | 9.52 | 22.92 | |||
3 | 1.14 | |||||||||
4 | 34.78 | 17.74 | 52.05 | 19.31 | 0.85 | |||||
5 | 5.42 | 68.00 | ||||||||
6 | ||||||||||
7 | 20.06 | |||||||||
8 | <100 | 36.52 | 31.67 | 38.04 | 30.17 | |||||
9 | 1.00 | |||||||||
10 | 0.57 |
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Singh, R.; Geetanjali. Chemotaxonomy of Medicinal Plants: Possibilities and Limitations. In Natural Products and Drug Discovery; Mandal, S.C., Mandal, V., Konishi, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 119–136. [Google Scholar]
- Umoh, O.T. Chemotaxonomy: The Role of Phytochemicals in Chemotaxonomic Delineation of Taxa. Asian Plant Res. J. 2020, 5, 43–52. [Google Scholar] [CrossRef]
- Hao, D.C.; Gu, X.-J.; Xiao, P.G. Chemotaxonomy: A phylogeny-based approach. In Medicinal Plants; Hao, D.C., Gu, X.-J., Xiao, P.G., Eds.; Woodhead Publishing: Sawston, UK, 2015; pp. 1–48. [Google Scholar]
- Hegnauer, R. Chemotaxonomic observations. VI. Phytochemistry & systems; a forward & backward glance at the development of chemotaxonomy. Pharm. Acta Helv. 1958, 33, 287–305. [Google Scholar] [PubMed]
- Schleifer, K.H.; Stackebrandt, E. Molecular Systematics of Prokaryotes. Annu. Rev. Microbiol. 1983, 37, 143–187. [Google Scholar] [CrossRef] [PubMed]
- Prakash, O.; Verma, M.; Sharma, P.; Kumar, M.; Kumari, K.; Singh, A.; Kumari, H.; Jit, S.; Gupta, S.K.; Khanna, M.; et al. Polyphasic approach of bacterial classification—An overview of recent advances. Indian J. Microbiol. 2007, 47, 98–108. [Google Scholar] [CrossRef]
- Padilla, D.K.; Savedo, M.M. Chapter Two—A Systematic Review of Phenotypic Plasticity in Marine Invertebrate and Plant Systems. In Advances in Marine Biology; Lesser, M., Ed.; Academic Press: Cambridge, MA, USA, 2013; Volume 65, pp. 67–94. [Google Scholar]
- Byrne, M.; Foo, S.A.; Ross, P.M.; Putnam, H.M. Limitations of cross- and multigenerational plasticity for marine invertebrates faced with global climate change. Glob. Chang. Biol. 2020, 26, 80–102. [Google Scholar] [CrossRef] [PubMed]
- Prada, C.; Schizas, N.V.; Yoshioka, P.M. Phenotypic plasticity or speciation? A case from a clonal marine organism. BMC Evol. Biol. 2008, 8, 47. [Google Scholar] [CrossRef] [PubMed]
- Broitman, B.R.; Lagos, N.A.; Opitz, T.; Figueroa, D.; Maldonado, K.; Ricote, N.; Lardies, M.A. Phenotypic plasticity is not a cline: Thermal physiology of an intertidal barnacle over 20° of latitude. J. Anim. Ecol. 2021, 90, 1961–1972. [Google Scholar] [CrossRef]
- Dang, X.; Lim, Y.-K.; Li, Y.; Roberts, S.B.; Li, L.; Thiyagarajan, V. Epigenetic-associated phenotypic plasticity of the ocean acidification-acclimated edible oyster in the mariculture environment. Mol. Ecol. 2023, 32, 412–427. [Google Scholar] [CrossRef]
- Morales, E.A.; Trainor, F.R. Algal Phenotypic Plasticity: Its Importance in Developing New Concepts The Case for Scenedesmus. Algae 1997, 12, 147–157. [Google Scholar]
- Page, T.M.; Diaz-Pulido, G. Plasticity of adult coralline algae to prolonged increased temperature and pCO2 exposure but reduced survival in their first generation. PLoS ONE 2020, 15, e0235125. [Google Scholar] [CrossRef]
- Rowley, S.J.; Pochon, X.; Watling, L. Environmental influences on the Indo-Pacific octocoral Isis hippuris Linnaeus 1758 (Alcyonacea: Isididae): Genetic fixation or phenotypic plasticity? PeerJ 2015, 3, e1128. [Google Scholar] [CrossRef]
- Hentschel, U.; Piel, J.; Degnan, S.M.; Taylor, M.W. Genomic insights into the marine sponge microbiome. Nat. Rev. Microbiol. 2012, 10, 641–654. [Google Scholar] [CrossRef] [PubMed]
- Masuda, M.; Takahashi, Y.; Okamoto, K.; Matsuo, Y.; Suzuki, M. Morphology and halogenated secondary metabolites of Laurencia snackeyi (Weber–van Bosse) stat. nov. (Ceramiales, Rhodophyta). Eur. J. Phycol. 1997, 32, 293–301. [Google Scholar] [CrossRef]
- Horton, T.; Kroh, A.; Ahyong, S.; Bailly, N.; Bieler, R.; Boyko, C.B.; Brandão, S.N.; Gofas, S.; Hooper, J.N.A.; Hernandez, F.; et al. World Register of Marine Species (WoRMS). 2022. Available online: https://www.marinespecies.org/ (accessed on 9 November 2023).
- Ishii, T.; Hisada, W.; Abe, T.; Kikuchi, N.; Suzuki, M. A New Record of the Marine Red Alga Laurencia snackeyi from Japan and its Chemotaxonomic Significance. Rec. Nat. Prod. 2020, 14, 150–153. [Google Scholar] [CrossRef]
- Silva, P.C.; Menez, E.G.; Moe, R.L. Catalog of the Benthic Marine Algae of the Philippines; Smithsonian Institution Press: Washington, DC, USA, 1987; Volume 27. [Google Scholar]
- Silva, P.C.; Basson, P.W.; Moe, R.L. Catalogue of the Benthic Marine Algae of the Indian Ocean; University of California Press: Berkeley, CA, USA, 1996. [Google Scholar]
- Phillips, J.A.; McGregor, G.B. Rhodomelaceae. In Census of the Queensland Flora 2021; Brown, G.K., Ed.; Queensland Department of Environment and Science: Brisbane, Australia, 2021. [Google Scholar]
- Palaniveloo, K.; Vairappan, C.S. Chemical relationship between red algae genus Laurencia and sea hare (Aplysia dactylomela Rang) in the North Borneo Island. J. Appl. Phycol. 2014, 26, 1199–1205. [Google Scholar] [CrossRef]
- Harizani, M.; Ioannou, E.; Roussis, V. The Laurencia Paradox: An Endless Source of Chemodiversity. In Progress in the Chemistry of Organic Natural Products 102; Kinghorn, A.D., Falk, H., Gibbons, S., Kobayashi, J.I., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 91–252. [Google Scholar]
- Cassano, V.; Metti, Y.; Millar, A.J.K.; Gil-Rodríguez, M.C.; Sentíes, A.; Díaz-Larrea, J.; Oliveira, M.C.; Fujii, M.T. Redefining the taxonomic status of Laurencia dendroidea (Ceramiales, Rhodophyta) from Brazil and the Canary Islands. Eur. J. Phycol. 2012, 47, 67–81. [Google Scholar] [CrossRef]
- Palaniveloo, K.; Ong, K.H.; Satriawan, H.; Abdul Razak, S.; Suciati, S.; Hung, H.-Y.; Hirayama, S.; Rizman-Idid, M.; Tan, J.K.; Yong, Y.S.; et al. In vitro and in silico cholinesterase inhibitory potential of metabolites from Laurencia snackeyi (Weber-van Bosse) M. Masuda. 3 Biotech 2023, 13, 337. [Google Scholar] [CrossRef]
- Wijesinghe, W.A.J.P.; Kang, M.-C.; Lee, W.-W.; Lee, H.-S.; Kamada, T.; Vairappan, C.S.; Jeon, Y.-J. 5β-Hydroxypalisadin B isolated from red alga Laurencia snackeyi attenuates inflammatory response in lipopolysaccharide-stimulated RAW 264.7 macrophages. Algae 2014, 29, 333–341. [Google Scholar] [CrossRef]
- Kuniyoshi, M.; Marma, M.S.; Higa, T.; Bernardinelli, G.; Jefford, C.W. New Bromoterpenes from the Red Alga Laurencia luzonensis. J. Nat. Prod. 2001, 64, 696–700. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.L.; Matsunaga, S.; Vairappan, C.S. Halogenated chamigranes of red alga Laurencia snackeyi (Weber-van Bosse) Masuda from Sulu-Sulawesi Sea. Biochem. Syst. Ecol. 2011, 39, 213–215. [Google Scholar] [CrossRef]
- Kamada, T.; Vairappan, C.S. Non-halogenated new sesquiterpenes from Bornean Laurencia snackeyi. Nat. Prod. Res. 2017, 31, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.D.; König, G.M.; Sticher, O. New Sesquiterpenes and C15 Acetogenins from the Marine Red Alga Laurencia implicata. J. Nat. Prod. 1991, 54, 1025–1033. [Google Scholar] [CrossRef]
- Su, H.; Shi, D.-Y.; Li, J.; Guo, S.-J.; Li, L.-L.; Yuan, Z.-H.; Zhu, X.-B. Sesquiterpenes from Laurencia similis. Molecules 2009, 14, 1889–1897. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Yuan, Z.-H.; Li, J.; Guo, S.-J.; Deng, L.-P.; Han, L.-J.; Zhu, X.-B.; Shi, D.-Y. Sesquiterpenes from the Marine Red Alga Laurencia saitoi. Helv. Chim. Acta 2009, 92, 1291–1297. [Google Scholar] [CrossRef]
- Su, J.-Y.; Zhong, Y.-L.; Zeng, L.-M.; Wu, H.-M.; Ma, K. Terpenoids from Laurencia karlae. Phytochemistry 1995, 40, 195–197. [Google Scholar] [CrossRef]
- Paul, V.J.; Fenical, W. Palisadins A,B and related monocyclofarnesol-derived sesquiterpenoids from the red marine alga Laurencia cf. palisada. Tetrahedron Lett. 1980, 21, 2787–2790. [Google Scholar] [CrossRef]
- de Nys, R.; Wright, A.D.; König, G.M.; Sticher, O.; Alino, P.M. Five New Sesquiterpenes from the Red Alga Laurencia flexilis. J. Nat. Prod. 1993, 56, 877–883. [Google Scholar] [CrossRef]
- Cikoš, A.-M.; Jurin, M.; Čož-Rakovac, R.; Gašo-Sokač, D.; Jokić, S.; Jerković, I. Update on sesquiterpenes from red macroalgae of the Laurencia genus and their biological activities (2015–2020). Algal Res. 2021, 56, 102330. [Google Scholar] [CrossRef]
- Trung, D.V.; Truc, N.T.T.; Duy, C.N.H.; Nhan, L.T.T.; Phung, N.K.P.; Duong, N.T.T. Halogenated sesquiterpenes from the red alga Laurencia intermedia Yamada. Vietnam J. Chem. 2019, 57, 723–727. [Google Scholar] [CrossRef]
- Guiry, M.D.; Guiry, G.M. AlgaeBase. Available online: https://www.algaebase.org (accessed on 1 March 2024).
- Yong, Y.S.; Chong, E.T.J.; Chen, H.C.; Lee, P.C.; Ling, Y.S. A Comparative Study of Pentafluorophenyl and Octadecylsilane Columns in High-throughput Profiling of Biological Fluids. J. Chin. Chem. Soc. 2017, 64, 699–710. [Google Scholar] [CrossRef]
- Emerenciano, V.P.; Militão, J.S.L.T.; Campos, C.C.; Romoff, P.; Kaplan, M.A.C.; Zambon, M.; Brant, A.J.C. Flavonoids as chemotaxonomic markers for Asteraceae. Biochem. Syst. Ecol. 2001, 29, 947–957. [Google Scholar] [CrossRef] [PubMed]
- Yin, T.; Yan, Y.; Yang, X.; Li, W. Flavonoids from tribe Delphineae (Ranunculaceae): Phytochemical review and chemotaxonomic value. Biochem. Syst. Ecol. 2021, 97, 104300. [Google Scholar] [CrossRef]
- Vairappan, C.S.; Kamada, T.; Lee, W.-W.; Jeon, Y.-J. Anti-inflammatory activity of halogenated secondary metabolites of Laurencia snackeyi (Weber-van Bosse) Masuda in LPS-stimulated RAW 264.7 macrophages. J. Appl. Phycol. 2013, 25, 1805–1813. [Google Scholar] [CrossRef]
- Kuniyoshi, M.; Wahome, P.G.; Miono, T.; Hashimoto, T.; Yokoyama, M.; Shrestha, K.L.; Higa, T. Terpenoids from Laurencia luzonensis. J. Nat. Prod. 2005, 68, 1314–1317. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, M.J.; Soengas, R.; Martins, C.B.; Correia, M.J.; Ferreira, J.D.; Santos, L.M.A.; Ortiz, F.L. Chemotaxonomic Profiling Through NMR1. J. Phycol. 2020, 56, 521–539. [Google Scholar] [CrossRef] [PubMed]
- Daejung, K.; Jiyoung, K.; Jung Nam, C.; Kwang-Hyeon, L. Chemotaxonomy of Trichoderma spp. Using Mass Spectrometry-Based Metabolite Profiling. J. Microbiol. Biotechnol. 2011, 21, 5–13. [Google Scholar] [CrossRef]
- Sofrenić, I.; Anđelković, B.; Gođevac, D.; Ivanović, S.; Simić, K.; Ljujić, J.; Tešević, V.; Milosavljević, S. Metabolomics as a Potential Chemotaxonomical Tool: Application on the Selected Euphorbia Species Growing Wild in Serbia. Plants 2023, 12, 262. [Google Scholar] [CrossRef]
- Alves, G.; Wang, G.; Ogurtsov, A.Y.; Drake, S.K.; Gucek, M.; Sacks, D.B.; Yu, Y.-K. Rapid Classification and Identification of Multiple Microorganisms with Accurate Statistical Significance via High-Resolution Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2018, 29, 1721–1737. [Google Scholar] [CrossRef] [PubMed]
- Jang, K.-S.; Kim, Y.H. Rapid and robust MALDI-TOF MS techniques for microbial identification: A brief overview of their diverse applications. J. Microbiol. 2018, 56, 209–216. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Ding, H.; Song, M.; Yin, J.; Yu, H.; Li, Z.; Han, L.; Zhang, Z. Authentication of Zingiber Species Based on Analysis of Metabolite Profiles. Front. Plant Sci. 2021, 12, 705446. [Google Scholar] [CrossRef]
- Płachno, B.J.; Strzemski, M.; Dresler, S.; Adamec, L.; Wojas-Krawczyk, K.; Sowa, I.; Danielewicz, A.; Miranda, V.F.O. A Chemometry of Aldrovanda vesiculosa L. (Waterwheel, Droseraceae) Populations. Molecules 2021, 26, 72. [Google Scholar] [CrossRef] [PubMed]
Cmpd * | Co-Occurrence in Other Laurencia Species | Co-Occurrence in Non-Laurencia Species |
---|---|---|
1 | L. implicata [30] L. similis [31] L. saitoi [32] L. karlae [33] | Palisada robusta [34] Ohelopapa flexilis [35] |
2 | L. intermedia Yamada 1931 [37] L. implicata [30] L. similis [31] L. saitoi [32] L. karlae [33] | Palisada robusta [34] Ohelopapa flexilis [35] |
4 | L. intermedia [37] L. implicata [30] L. similis [31] L. saitoi [32] L. karlae [33] | Palisada robusta [34] |
5 | n.r. | Ohelopapa flexilis [35] |
7 | L. karlae [33] | Palisada robusta [34] Ohelopapa flexilis [35] |
8 | L. similis [31] L. saitoi [32] L. karlae [33] | Palisada robusta [34] Ohelopapa flexilis [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ng, B.F.; Ng, W.L.; Lum, W.M.; Yeap, S.K.; Yong, Y.S. Feasibility of Biomarker-Based Taxonomic Classification: A Case Study of the Marine Red Alga Laurencia snackeyi (Weber Bosse) M. Masuda. Phycology 2024, 4, 363-369. https://doi.org/10.3390/phycology4030019
Ng BF, Ng WL, Lum WM, Yeap SK, Yong YS. Feasibility of Biomarker-Based Taxonomic Classification: A Case Study of the Marine Red Alga Laurencia snackeyi (Weber Bosse) M. Masuda. Phycology. 2024; 4(3):363-369. https://doi.org/10.3390/phycology4030019
Chicago/Turabian StyleNg, Boon Ful, Wei Lun Ng, Wai Mun Lum, Swee Keong Yeap, and Yoong Soon Yong. 2024. "Feasibility of Biomarker-Based Taxonomic Classification: A Case Study of the Marine Red Alga Laurencia snackeyi (Weber Bosse) M. Masuda" Phycology 4, no. 3: 363-369. https://doi.org/10.3390/phycology4030019
APA StyleNg, B. F., Ng, W. L., Lum, W. M., Yeap, S. K., & Yong, Y. S. (2024). Feasibility of Biomarker-Based Taxonomic Classification: A Case Study of the Marine Red Alga Laurencia snackeyi (Weber Bosse) M. Masuda. Phycology, 4(3), 363-369. https://doi.org/10.3390/phycology4030019