Spatial and Temporal Changes in the Fish Fauna of a Low-Inflow Estuary following a Mass Mortality Event and Natural and Artificial Bar Breaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sampling Regime
2.3. Statistical Analyses
2.3.1. Downstream Areas of the Estuary
Univariate Analyses
Multivariate Analyses of Faunal Composition
2.3.2. Entire Estuary in Winter and Spring
3. Results
3.1. Overall Description of the Fish Fauna
3.2. Downstream Areas of the Estuary
3.2.1. Bar Status and Environmental Conditions
3.2.2. Faunal Richness, Abundance and Diversity
3.2.3. Faunal Composition
3.3. Entire Estuary in Winter and Spring
3.3.1. Environmental Conditions
3.3.2. Faunal Richness, Abundance and Diversity
3.3.3. Faunal Composition
4. Discussion
4.1. Overall Fauna
4.2. Spatial Differences
4.2.1. Downstream Areas of the Estuary
4.2.2. Entire Estuary in Winter and Spring
4.3. Temporal Differences
4.4. Fish Kills and Bar Breaches
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
(a) Water Temperature | (b) Salinity | ||||||||
---|---|---|---|---|---|---|---|---|---|
Term | df | MS | %MS | pF | p | MS | %MS | pF | p |
Year | 1 | 9.83 | 2.77 | 19.37 | 0.001 | 99.71 | 1.51 | 34.62 | 0.001 |
Season | 3 | 287.11 | 81.00 | 565.87 | 0.001 | 4764.00 | 72.38 | 1654.30 | 0.001 |
Region | 1 | 24.83 | 7.00 | 48.94 | 0.001 | 430.74 | 6.54 | 149.57 | 0.001 |
Depth | 1 | 0.02 | 0.01 | 0.04 | 0.830 | 3.16 | 0.05 | 1.10 | 0.292 |
Year × season | 3 | 12.93 | 3.65 | 25.49 | 0.001 | 810.08 | 12.31 | 281.30 | 0.001 |
Year × region | 1 | 9.61 | 2.71 | 18.95 | 0.001 | 100.75 | 1.53 | 34.99 | 0.001 |
Year × depth | 1 | 0.06 | 0.02 | 0.11 | 0.759 | 2.01 | 0.03 | 0.70 | 0.393 |
Season × region | 3 | 7.03 | 1.98 | 13.86 | 0.001 | 303.44 | 4.61 | 105.37 | 0.001 |
Season × depth | 3 | 0.05 | 0.02 | 0.11 | 0.949 | 3.00 | 0.05 | 1.04 | 0.399 |
Region × depth | 1 | 0.15 | 0.04 | 0.29 | 0.574 | 1.59 | 0.02 | 0.55 | 0.459 |
Year × season × region | 3 | 1.80 | 0.51 | 3.55 | 0.024 | 54.31 | 0.83 | 18.86 | 0.001 |
Year × season × depth | 3 | 0.06 | 0.02 | 0.13 | 0.957 | 2.16 | 0.03 | 0.75 | 0.541 |
Year × region × depth | 1 | 0.02 | 0.00 | 0.03 | 0.853 | 2.51 | 0.04 | 0.87 | 0.326 |
Season × region × depth | 3 | 0.15 | 0.04 | 0.29 | 0.826 | 0.74 | 0.01 | 0.26 | 0.851 |
Year × season × region × depth | 3 | 0.28 | 0.08 | 0.56 | 0.656 | 0.67 | 0.01 | 0.23 | 0.869 |
Residual | 86 | 0.51 | 0.14 | 2.88 | 0.04 | ||||
(c) Dissolved Oxygen | |||||||||
Term | df | MS | %MS | pF | p | ||||
Year | 1 | 33.83 | 36.53 | 27.99 | 0.001 | ||||
Season | 3 | 5.68 | 6.13 | 4.70 | 0.005 | ||||
Region | 1 | 32.04 | 34.60 | 26.52 | 0.001 | ||||
Depth | 1 | 6.05 | 6.54 | 5.01 | 0.027 | ||||
Year × season | 3 | 1.26 | 1.37 | 1.05 | 0.380 | ||||
Year × region | 1 | 6.02 | 6.50 | 4.98 | 0.035 | ||||
Year × depth | 1 | 0.56 | 0.60 | 0.46 | 0.526 | ||||
Season × region | 3 | 2.39 | 2.58 | 1.98 | 0.140 | ||||
Season × depth | 3 | 0.59 | 0.64 | 0.49 | 0.701 | ||||
Region × depth | 1 | −0.64 | −0.69 | 0.00 | 1.000 | ||||
Year × season × region | 3 | 1.65 | 1.79 | 1.37 | 0.253 | ||||
Year × season × depth | 3 | 0.30 | 0.32 | 0.24 | 0.854 | ||||
Year × region × depth | 1 | 0.15 | 0.16 | 0.12 | 0.742 | ||||
Season × region × depth | 3 | 1.09 | 1.18 | 0.90 | 0.446 | ||||
Year × season × region × depth | 3 | 0.42 | 0.45 | 0.35 | 0.790 | ||||
Residual | 86 | 1.21 | 1.31 |
(a) Number of Species | (b) Total Catch Rate | ||||||||
---|---|---|---|---|---|---|---|---|---|
Term | df | MS | %MS | pF | p | MS | %MS | pF | p |
Year | 1 | 1.89 | 3.25 | 0.56 | 0.441 | 17.16 | 20.82 | 2.49 | 0.137 |
Season | 3 | 9.14 | 15.69 | 2.73 | 0.056 | 9.83 | 11.92 | 1.42 | 0.236 |
Region | 1 | 2.64 | 4.53 | 0.79 | 0.388 | 5.80 | 7.04 | 0.84 | 0.357 |
Year × season | 3 | 21.56 | 37.01 | 6.44 | 0.004 | 32.44 | 39.35 | 4.70 | 0.002 |
Year × region | 1 | 5.64 | 9.68 | 1.68 | 0.220 | 0.10 | 0.12 | 0.01 | 0.914 |
Season × region | 3 | 2.97 | 5.11 | 0.89 | 0.470 | 4.39 | 5.32 | 0.64 | 0.586 |
Year × season × region | 3 | 11.06 | 18.98 | 3.30 | 0.025 | 5.83 | 7.08 | 0.85 | 0.454 |
Residual | 48 | 3.35 | 5.75 | 6.90 | 8.37 | ||||
(c) Simpson’s Diversity | (d) Mugil cephalus | ||||||||
Term | df | MS | %MS | pF | p | MS | %MS | pF | p |
Year | 1 | 17.16 | 20.82 | 2.49 | 0.137 | 5.54 | 16.88 | 1.06 | 0.304 |
Season | 3 | 9.83 | 11.92 | 1.42 | 0.236 | 5.14 | 15.67 | 0.98 | 0.386 |
Region | 1 | 5.80 | 7.04 | 0.84 | 0.357 | 1.94 | 5.92 | 0.37 | 0.549 |
Year × season | 3 | 32.44 | 39.35 | 4.70 | 0.002 | 3.98 | 12.14 | 0.76 | 0.521 |
Year × region | 1 | 0.10 | 0.12 | 0.01 | 0.914 | 0.01 | 0.03 | 0.00 | 0.961 |
Season × region | 3 | 4.39 | 5.32 | 0.64 | 0.586 | 5.61 | 17.10 | 1.07 | 0.377 |
Year × season × region | 3 | 5.83 | 7.08 | 0.85 | 0.454 | 5.33 | 16.24 | 1.02 | 0.366 |
Residual | 48 | 6.90 | 8.37 | 5.25 | 16.00 | ||||
(e) Aldrichetta forsteri | (f) Acanthopagrus butcheri | ||||||||
Term | df | MS | %MS | pF | p | MS | %MS | pF | p |
Year | 1 | 27.10 | 51.66 | 8.36 | 0.006 | 3.192 | 17.61 | 1.25 | 0.259 |
Season | 3 | 3.02 | 5.76 | 0.93 | 0.420 | 4.042 | 22.30 | 1.59 | 0.203 |
Region | 1 | 2.68 | 5.11 | 0.83 | 0.366 | 0.286 | 1.58 | 0.11 | 0.747 |
Year × season | 3 | 8.47 | 16.14 | 2.61 | 0.064 | 2.188 | 12.07 | 0.86 | 0.464 |
Year × region | 1 | 0.19 | 0.36 | 0.06 | 0.806 | 0.036 | 0.20 | 0.01 | 0.904 |
Season × region | 3 | 1.37 | 2.62 | 0.42 | 0.731 | 3.289 | 18.14 | 1.29 | 0.323 |
Year × season × region | 3 | 6.38 | 12.17 | 1.97 | 0.143 | 2.552 | 14.08 | 1.00 | 0.421 |
Residual | 48 | 3.24 | 6.18 | 2.544 | 14.03 | ||||
(g) Faunal Composition | |||||||||
Term | df | MS | %MS | pF | p | ||||
Year | 1 | 4075 | 19.10 | 3.13 | 0.003 | ||||
Season | 3 | 3913 | 18.35 | 3.01 | 0.001 | ||||
Region | 1 | 4062 | 19.05 | 3.12 | 0.002 | ||||
Year × season | 3 | 4266 | 20.00 | 3.28 | 0.001 | ||||
Year × region | 1 | 551 | 2.58 | 0.42 | 0.898 | ||||
Season × region | 3 | 1155 | 5.42 | 0.89 | 0.645 | ||||
Year × season × region | 3 | 2005 | 9.40 | 1.54 | 0.045 | ||||
Residual | 48 | 1302 | 6.10 |
(a) Water Temperature | (b) Salinity | ||||||||
---|---|---|---|---|---|---|---|---|---|
Term | df | MS | %MS | pF | p | MS | %MS | pF | p |
Season | 1 | 543.47 | 99.30 | 1227.80 | 0.001 | 25.41 | 2.69 | 40.65 | 0.001 |
Region | 3 | 1.71 | 0.31 | 3.86 | 0.012 | 700.89 | 74.20 | 1121.20 | 0.001 |
Depth | 1 | 0.00 | 0.00 | 0.00 | 0.960 | 0.13 | 0.01 | 0.20 | 0.671 |
Season × region | 3 | 1.65 | 0.30 | 3.72 | 0.012 | 217.42 | 23.02 | 347.80 | 0.001 |
Season × depth | 1 | 0.00 | 0.00 | 0.00 | 0.986 | 0.02 | 0.00 | 0.03 | 0.873 |
Region × depth | 3 | 0.00 | 0.00 | 0.00 | 1.000 | 0.01 | 0.00 | 0.02 | 0.998 |
Season × region × depth | 3 | 0.04 | 0.01 | 0.08 | 0.971 | 0.05 | 0.01 | 0.08 | 0.967 |
Residual | 48 | 0.44 | 0.08 | 0.63 | 0.07 | ||||
(c) Dissolved Oxygen | |||||||||
Term | df | MS | %MS | pF | p | ||||
Season | 1 | 0.96 | 2.24 | 0.23 | 0.638 | ||||
Region | 3 | 30.27 | 70.47 | 7.30 | 0.001 | ||||
Depth | 1 | 2.36 | 5.49 | 0.57 | 0.491 | ||||
Season × region | 3 | 1.54 | 3.59 | 0.37 | 0.785 | ||||
Season × depth | 1 | 1.80 | 4.18 | 0.43 | 0.524 | ||||
Region × depth | 3 | 0.74 | 1.73 | 0.18 | 0.923 | ||||
Season × region × depth | 3 | 1.14 | 2.66 | 0.28 | 0.845 | ||||
Residual | 47 | 4.15 | 9.65 |
(a) Number of Species | (b) Catch Rate | ||||||||
---|---|---|---|---|---|---|---|---|---|
Term | df | MS | %MS | pF | p | MS | %MS | pF | p |
Season | 1 | 18.00 | 15.82 | 17.63 | 0.001 | 92.41 | 58.34 | 15.20 | 0.001 |
Region | 3 | 94.21 | 82.78 | 92.29 | 0.001 | 59.23 | 37.39 | 9.74 | 0.001 |
Season × region | 3 | 0.58 | 0.51 | 0.57 | 0.643 | 0.69 | 0.44 | 0.11 | 0.947 |
Residual | 24 | 1.02 | 0.90 | 6.08 | 3.84 | ||||
(c) Simpson’s Diversity | (d) Faunal Composition | ||||||||
Term | df | MS | %MS | pF | p | MS | %MS | pF | p |
Season | 1 | 0.03 | 3.02 | 1.61 | 0.205 | 13,373 | 39.68 | 11.22 | 0.001 |
Region | 3 | 1.06 | 93.16 | 49.68 | 0.001 | 12,935 | 38.38 | 10.85 | 0.001 |
Season × region | 3 | 0.02 | 1.95 | 1.04 | 0.437 | 6198 | 18.39 | 5.20 | 0.001 |
Residual | 24 | 0.02 | 1.88 | 1192 | 3.54 |
References
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neil, R.V.; Paruelo, J.; et al. The value of the world’s ecosystems services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Beck, M.W.; Heck, K.L., Jr.; Able, K.W.; Childers, D.L.; Eggleston, D.B.; Gillanders, B.M.; Halpern, B.; Hays, C.G.; Hoshino, K.; Minello, T.J.; et al. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. BioScience 2001, 51, 633–641. [Google Scholar] [CrossRef]
- Jackson, J.B.C.; Kirby, M.X.; Berger, W.H.; Bjorndal, K.A.; Botsford, L.W.; Bourque, B.J.; Bradbury, R.H.; Cooke, R.; Jon, E.; Estes, J.A.; et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 2001, 293, 629–638. [Google Scholar] [CrossRef]
- Tweedley, J.R.; Warwick, R.M.; Potter, I.C. The contrasting ecology of temperate macrotidal and microtidal estuaries. Oceanogr. Mar. Biol. Annu. Rev. 2016, 54, 73–172. [Google Scholar] [CrossRef]
- Kennish, M.J. Estuaries: Anthropogenic Impacts. In Encyclopedia of Coastal Science; Finkl, C.W., Makowski, C., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–9. [Google Scholar]
- Kennish, M.J. Environmental threats and environmental future of estuaries. Environ. Conserv. 2002, 29, 78–107. [Google Scholar] [CrossRef]
- Monbet, Y. Control of phytoplankton biomass in estuaries: A comparative analysis of microtidal and macrotidal estuaries. Estuaries 1992, 15, 563–571. [Google Scholar] [CrossRef]
- Uncles, R.J.; Stephens, J.A.; Smith, R.E. The dependence of estuarine turbidity on tidal intrusion length, tidal range and residence time. Cont. Shelf Res. 2002, 22, 1835–1856. [Google Scholar] [CrossRef]
- Hallett, C.S.; Hobday, A.J.; Tweedley, J.R.; Thompson, P.A.; McMahon, K.; Valesini, F.J. Observed and predicted impacts of climate change on the estuaries of south-western Australia, a Mediterranean climate region. Reg. Environ. Change 2018, 18, 1357–1373. [Google Scholar] [CrossRef]
- Ranasinghe, R.; Pattiaratchi, C. The seasonal closure of tidal inlets: Wilson Inlet—A case study. Coast. Eng. 1999, 37, 37–56. [Google Scholar] [CrossRef]
- Hoeksema, S.D.; Chuwen, B.M.; Tweedley, J.R.; Potter, I.C. Factors influencing marked variations in the frequency and timing of bar breaching and salinity and oxygen regimes among normally-closed estuaries. Estuar. Coast. Shelf Sci. 2018, 208, 205–218. [Google Scholar] [CrossRef]
- Whitfield, A.K.; Adams, J.B.; Bate, G.C.; Bezuidenhout, K.; Bornman, T.G.; Cowley, P.D.; Froneman, P.W.; Gama, P.T.; James, N.C.; Mackenzie, B.; et al. A multidisciplinary study of a small, temporarily open/closed South African estuary, with particular emphasis on the influence of mouth state on the ecology of the system. Afr. J. Mar. Sci. 2008, 30, 453–473. [Google Scholar] [CrossRef]
- McSweeney, S.L.; Kennedy, D.M.; Rutherfurd, I.D.; Stout, J.C. Intermittently Closed/Open Lakes and Lagoons: Their global distribution and boundary conditions. Geomorphology 2017, 292, 142–152. [Google Scholar] [CrossRef]
- Potter, I.C.; Hyndes, G.A. Characteristics of the ichthyofaunas of southwestern Australian estuaries, including comparisons with holarctic estuaries and estuaries elsewhere in temperate Australia: A review. Aust. J. Ecol. 1999, 24, 395–421. [Google Scholar] [CrossRef]
- Nel, M.; Adams, J.B.; Human, L.R.D.; Nunes, M.; Van Niekerk, L.; Lemley, D.A. Ineffective artificial mouth-breaching practices and altered hydrology confound eutrophic symptoms in a temporarily closed estuary. Mar. Freshw. Res. 2023, 74, 1519–1535. [Google Scholar] [CrossRef]
- Warwick, R.M.; Tweedley, J.R.; Potter, I.C. Microtidal estuaries warrant special management measures that recognise their critical vulnerability to pollution and climate change. Mar. Pollut. Bull. 2018, 135, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, A.; Wiecek, D.; Hughes, M.; Hanslow, D.; Wainwright, D.; Scanes, P. Form and Function of NSW Intermittently Closed and Open Lakes and Lagoons: Implications for Entrance Management; Department of Planning, Industry and Environment: Parramatta, Australia, 2021; p. 71.
- Whitfield, A.; Taylor, R.; Fox, C.; Cyrus, D. Fishes and salinities in the St Lucia estuarine system—A review. Rev. Fish Biol. Fish. 2006, 16, 1–20. [Google Scholar] [CrossRef]
- Hoeksema, S.D.; Chuwen, B.M.; Tweedley, J.R.; Potter, I.C. Ichthyofaunas of nearshore, shallow waters of normally-closed estuaries are highly depauperate and influenced markedly by salinity and oxygen concentration. Estuar. Coast. Shelf Sci. 2023, 291, 108410. [Google Scholar] [CrossRef]
- Krispyn, K.N.; Loneragan, N.R.; Whitfield, A.K.; Tweedley, J.R. Salted mullet: Protracted occurrence of Mugil cephalus under extreme hypersaline conditions. Estuar. Coast. Shelf Sci. 2021, 261, 107533. [Google Scholar] [CrossRef]
- Chuwen, B.M.; Hoeksema, S.D.; Potter, I.C. Factors influencing the characteristics of the fish faunas in offshore, deeper waters of permanently-open, seasonally-open and normally-closed estuaries. Estuar. Coast. Shelf Sci. 2009, 81, 279–295. [Google Scholar] [CrossRef]
- Potter, I.C.; Bird, D.J.; Claridge, P.N.; Clarke, K.R.; Hyndes, G.A.; Newton, L.C. Fish fauna of the Severn Estuary. Are there long-term changes in abundance and species composition and are the recruitment patterns of the main marine species correlated? J. Exp. Mar. Biol. Ecol. 2001, 258, 15–37. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, A.K.; Able, K.W.; Blaber, S.J.M.; Elliott, M.; Franco, A.; Harrison, T.D.; Potter, I.C.; Tweedley, J.R. Fish assemblages and functional groups. In Fish and Fisheries in Estuaries; Wiley: Hoboken, NJ, USA, 2022; pp. 16–59. [Google Scholar]
- James, N.C.; Cowley, P.D.; Whitfield, A.K.; Lamberth, S.J. Fish communities in temporarily open/closed estuaries from the warm- and cool-temperate regions of South Africa: A review. Rev. Fish Biol. Fish. 2007, 17, 565–580. [Google Scholar] [CrossRef]
- Conde, D.; Solari, S.; de Álava, D.; Rodríguez-Gallego, L.; Verrastro, N.; Chreties, C.; Lagos, X.; Piñeiro, G.; Teixeira, L.; Seijo, L.; et al. Ecological and social basis for the development of a sand barrier breaching model in Laguna de Rocha, Uruguay. Estuar. Coast. Shelf Sci. 2019, 219, 300–316. [Google Scholar] [CrossRef]
- Mayjor, M.; Reichelt-Brushett, A.J.; Malcolm, H.A.; Page, A. Water quality fluctuations in small intermittently closed and open lakes and lagoons (ICOLLs) after natural and artificial openings. Estuar. Coast. Shelf Sci. 2023, 281, 108208. [Google Scholar] [CrossRef]
- Clark, R.; O’Connor, K. A systematic survey of bar-built estuaries along the California coast. Estuar. Coast. Shelf Sci. 2019, 226, 106285. [Google Scholar] [CrossRef]
- Lane, J.A.; Hardcastle, K.A.; Tregonning, R.J.; Holtfreter, S. Management of the Vasse-Wonnerup Wetland System in Relation to Sudden, Mass Fish Deaths; Vasse Estuary Technical Working Group: Busselton, Australia, 1997; p. 55.
- Haines, P.E.; Tomlinson, R.B.; Thom, B.G. Morphometric assessment of intermittently open/closed coastal lagoons in New South Wales, Australia. Estuar. Coast. Shelf Sci. 2006, 67, 321–332. [Google Scholar] [CrossRef]
- Becker, A.; Laurenson, L.J.B.; Bishop, K. Artificial mouth opening fosters anoxic conditions that kill small estuarine fish. Estuar. Coast. Shelf Sci. 2009, 82, 566–572. [Google Scholar] [CrossRef]
- Edwards, C.; McSweeney, S.; Downes, B.J. The influence of geomorphology and environmental conditions on stratification in Intermittently Open/Closed Estuaries. Estuar. Coast. Shelf Sci. 2023, 287, 108341. [Google Scholar] [CrossRef]
- Mpinga, M.S.; Kisten, Y.; Bornman, E.; Perissinotto, R.; Strydom, N.A. Ichthyofaunal Community of the Anthropogenically Altered Seekoei Estuary in Warm Temperate, South Africa. Estuaries Coasts 2023, 46, 2159–2174. [Google Scholar] [CrossRef]
- Province of Kwazulu-Natal. Protocol for Requests to Breach Estuary Mouths in Kwazulu-Natal: Mouth Maintenance Management Plans; Department of Economic Development, Tourism and Environmental Affairs: Pietermaritzburg, South Africa, 2020; p. 20.
- Largier, J.; O’Connor, K.; Clark, R. Considerations for Management of the Mouth state of California’s Bar-Built Estuaries; University of California, Davis: Bodega Bay, CA, USA, 2019; p. 57. [Google Scholar]
- Wooldridge, T.H.; Adams, J.B.; Schael, D.M. Seekoei Estuary Mouth Management Plan; Nelson Mandela University: Port Elizabeth, South Africa, 2018; p. 22. [Google Scholar]
- Commonwealth of Australia. Australian Catchment, River and Estuary Assessment 2002; National Land and Water Resources Audit: Canberra, Australia, 2002. [Google Scholar]
- Brearley, A. Ernest Hodgkin’s Swanland, 1st ed.; University of Western Australia Press: Crawley, Australia, 2005; p. 550. [Google Scholar]
- Marillier, B. Reconnecting Rivers Flowing to the Vasse Estuary; Perth, Australia, 2018; p. 154. Available online: https://www.wa.gov.au/government/publications/reconnecting-rivers-flowing-the-vasse-estuary (accessed on 14 April 2024).
- McAlpine, K.W.; Spice, J.F.; Humphries, R. The environmental condition of the Vasse-Wonnerup wetland system and a discussion of management options. West. Aust. Environ. Prot. Auth. Tech. Ser. 1989, 31, 1–35. [Google Scholar]
- Department of Water. Vasse Wonnerup Wetlands and Geographe Bay Water Quality Improvement Plan; 2010; p. 203. Available online: https://www.wa.gov.au/government/publications/vasse-wonnerup-wetlands-and-geographe-bay-water-quality-improvement-plan (accessed on 14 April 2024).
- Hart, B.T. Independent Review of the Current and Future Management of Water Assests in the Geographe Catchment, WA; Water Science: Echuca, Australia, 2014; p. 59. [Google Scholar]
- Department of Water and Environmental Regulation. Oxygenating the Vasse Estuary Exit Channel: The Results of a Two Year Trial 2015–2017; Department of Water and Environmental Regulation: Perth, Australia, 2018; p. 42.
- Beatty, S.J.; Tweedley, J.R.; Cottingham, A.; Ryan, T.; Williams, J.; Lynch, K.; Morgan, D.L. Entrapment of an estuarine fish associated with a coastal surge barrier can increase the risk of mass mortalities. Ecol. Eng. 2018, 122, 229–240. [Google Scholar] [CrossRef]
- Bureau of Meteorology. Western Australia Observations. Available online: http://www.bom.gov.au/wa/observations/index.shtml (accessed on 14 April 2024).
- Lane, J.A.K.; Clarke, A.G.; Winchcombe, Y.C. Depth, Salinity and Temperature Profiling of Vasse-Wonnerup Wetlands in 1998–2000; Western Australian Department of Environment and Conservation: Busselton, Australia, 2011; p. 73.
- Tweedley, J.R.; Cottingham, A.; Beatty, S.J. Vasse-Wonnerup Integrated Monitoring Review of 2017–20: Fish Component; Report for the Department of Water and Environmental Regulation; Murdoch University: Perth, Australia, 2021; p. 55. [Google Scholar]
- Tweedley, J.R.; Keleher, J.; Cottingham, A.; Beatty, S.J.; Lymbery, A.J. The Fish Fauna of the Vasse-Wonnerup and the Impact of a Substantial Fish Kill Event; Murdoch University: Perth, Australia, 2014; p. 113. [Google Scholar]
- Potter, I.C.; Tweedley, J.R.; Elliott, M.; Whitfield, A.K. The ways in which fish use estuaries: A refinement and expansion of the guild approach. Fish Fish. 2015, 16, 230–239. [Google Scholar] [CrossRef]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Aust. Ecol. 2001, 26, 32–46. [Google Scholar]
- Anderson, M.J.; Gorley, R.N.; Clarke, K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods; PRIMER-E: Plymouth, UK, 2008. [Google Scholar]
- Somerfield, P.J.; Clarke, K.R.; Warwick, R.M. Simpson Index. In Encyclopaedia of Ecology Vol 4; Jørgensen, S.E., Fath, B.D., Eds.; Elsevier: Oxford, UK, 2008; pp. 3252–3255. [Google Scholar]
- Clarke, K.R.; Gorley, R.N. PRIMER v7: User Manual/Tutorial; PRIMER-E: Plymouth, UK, 2015; p. 296. [Google Scholar]
- Clarke, K.R.; Chapman, M.G.; Somerfield, P.J.; Needham, H.R. Dispersion-based weighting of species counts in assemblage analyses. Mar. Ecol. Prog. Ser. 2006, 320, 11–27. [Google Scholar] [CrossRef]
- Clarke, K.R.; Gorley, R.N.; Somerfield, P.J.; Warwick, R.M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 3rd ed.; PRIMER-E Ltd.: Plymouth, UK, 2014. [Google Scholar]
- Lek, E.; Fairclough, D.V.; Platell, M.E.; Clarke, K.R.; Tweedley, J.R.; Potter, I.C. To what extent are the dietary compositions of three abundant, co-occurring labrid species different and related to latitude, habitat, body size and season? J. Fish Biol. 2011, 78, 1913–1943. [Google Scholar] [CrossRef] [PubMed]
- Clarke, K.R.; Tweedley, J.R.; Valesini, F.J. Simple shade plots aid better long-term choices of data pre-treatment in multivariate assemblage studies. J. Mar. Biol. Assoc. U. K. 2014, 94, 1–16. [Google Scholar] [CrossRef]
- Clarke, K.R.; Somerfield, P.J.; Gorley, R.N. Testing of null hypotheses in exploratory community analyses: Similarity profiles and biota-environment linkage. J. Exp. Mar. Biol. Ecol. 2008, 366, 56–69. [Google Scholar] [CrossRef]
- Tweedley, J.R.; Krispyn, K.N.; Bowe, B.; Cottingham, A. Swan Canning Estuary Condition Assessment Based on Fish Communities—2023; Final report to the Department of Biodiversity, Conservation and Attractions; Murdoch University: Perth, Australia, 2023; p. 63. [Google Scholar]
- Loneragan, N.R.; Potter, I.C.; Lenanton, R.C.J.; Caputi, N. Influence of environmental variables on the fish fauna of the deeper waters of a large Australian estuary. Mar. Biol. 1987, 94, 631–641. [Google Scholar] [CrossRef]
- Tweedley, J.R.; Krispyn, K.N.; Bowe, B.E.; Weibel, A.; Roots, B.; Cottingham, A. Bindjareb Djilba (Peel-Harvey Estuary) Condition Assessment Based on Fish Communities—2023; Final report to the Peel Harvey Catchment Council; Murdoch University: Perth, Australia, 2024; p. 62. [Google Scholar]
- Potter, I.C.; Chalmer, P.N.; Tiivel, D.J.; Steckis, R.A.; Platell, M.E.; Lenanton, R.C.J. The fish fauna and finfish fishery of the Leschenault Estuary in south-western Australia. J. R. Soc. West. Aust. 2000, 83, 489–501. [Google Scholar]
- Tweedley, J.R.; Cottingham, A.; Krispyn, K.N.; Beatty, S.J. Influence of Bar Opening on the Fish Fauna of Toby Inlet; Report for the City of Busselton and Coastwest, Western Australia; Murdoch University: Perth, Australia, 2018; p. 36. [Google Scholar]
- Tweedley, J.R.; Sama, A.; Poh, B.; Loneragan, N.R. Snapshot survey of the fish and benthic macroinvertebrate fauna of Hill Inlet, Western Australia. West. Aust. Nat. 2023, 33, 120–135. [Google Scholar]
- Sanderson, P.G.; Eliot, I.; Hegge, B.; Maxwell, S. Regional variation of coastal morphology in southwestern Australia: A synthesis. Geomorphology 2000, 34, 73–88. [Google Scholar] [CrossRef]
- McMahon, K.; Young, E.; Montgomery, S.; Cosgrove, J.; Wilshaw, J.; Walker, D.I. Status of a shallow seagrass system, Geographe Bay, south-western Australia. J. R. Soc. West. Aust. 1997, 80, 255–262. [Google Scholar]
- Kemp, W.M.; Sampou, P.A.; Garber, J.; Tuttle, J.; Boynton, W.R. Seasonal depletion of oxygen from bottom waters of Chesapeake Bay: Roles of benthic and planktonic respiration and physical exchange processes. Mar. Ecol. Prog. Ser. 1992, 85, 137–152. [Google Scholar] [CrossRef]
- Bornman, E.; Cowley, P.D.; Adams, J.B.; Strydom, N.A. Daytime intra-estuary movements and harmful algal bloom avoidance by Mugil cephalus (family Mugilidae). Estuar. Coast. Shelf Sci. 2021, 260, 107492. [Google Scholar] [CrossRef]
- Haddy, J.A.; Pankhurst, N.W. The effects of salinity on reproductive development, plasma steroid levels, fertilisation and egg survival in black bream Acanthopagrus butcheri. Aquaculture 2000, 188, 115–131. [Google Scholar] [CrossRef]
- Platell, M.E.; Orr, P.A.; Potter, I.C. Inter- and intraspecific partitioning of food resources by six large and abundant fish species in a seasonally open estuary. J. Fish Biol. 2006, 69, 243–262. [Google Scholar] [CrossRef]
- Whitfield, A.K.; Panfili, J.; Durand, J.D. A global review of the cosmopolitan flathead mullet Mugil cephalus Linnaeus 1758 (Teleostei: Mugilidae), with emphasis on the biology, genetics, ecology and fisheries aspects of this apparent species complex. Rev. Fish Biol. Fish. 2012, 22, 641–681. [Google Scholar] [CrossRef]
- Hyndes, G.A.; Platell, M.E.; Potter, I.C. Relationships between diet and body size, mouth morphology, habitat and movements of six sillaginid species in coastal waters: Implications for resource partitioning. Mar. Biol. 1997, 128, 585–598. [Google Scholar] [CrossRef]
- Tweedley, J.R.; Cottingham, A.; Beatty, S.J. Benthic Macroinvertebrate Monitoring in the Vasse-Wonnerup Wetlands: March 2017; Report for the Department of Water and Environmental Regulation, Western Australia; Murdoch University: Perth, Australia, 2019; p. 47. [Google Scholar]
- Wise, B.; Potter, I.; Wallace, J. Growth, movements and diet of the terapontid Amniataba caudivittata in an Australian estuary. J. Fish Biol. 1994, 45, 917–931. [Google Scholar] [CrossRef]
- Linke, T.E.; Platell, M.E.; Potter, I.C. Factors influencing the partitioning of food resources among six fish species in a large embayment with juxtaposing bare sand and seagrass habitats. J. Exp. Mar. Biol. Ecol. 2001, 266, 193–217. [Google Scholar] [CrossRef]
- Paice, R.L.; Chambers, J.M. Macrophytes and Macroalga in the Vasse-Wonnerup Wetland System 2017–2021; Government of Western Australia: Perth, Australia, 2022; p. 59.
- Elscot, S.V. Monitoring of Fish Behaviour in the Lower Reaches of the Vasse-Wonnerup Wetland System during the Summer of 1999/2000; Department of Conservation & Land Management and the Geographe Catchment Council: Busselton, Australia, 2000; p. 54.
- Loneragan, N.R.; Potter, I.C.; Lenanton, R.C.J. Influence of site, season and year on contributions made by marine, estuarine, diadromous and freshwater species to the fish fauna of a temperate Australian estuary. Mar. Biol. 1989, 103, 461–479. [Google Scholar] [CrossRef]
- Sarre, G.A.; Potter, I.C. Comparisons between the reproductive biology of black bream Acanthopagrus butcheri (Teleostei: Sparidae) in four estuaries with widely differing characteristics. Int. J. Salt Lake Res. 1999, 8, 179–210. [Google Scholar] [CrossRef]
- Hoeksema, S.D.; Chuwen, B.M.; Hesp, S.A.; Hall, N.G.; Potter, I.C. Impact of Environmental Changes on the Fish Faunas of Western Australian South-Coast Estuaries; Centre for Fish and Fisheries Research, Murdoch University: Perth, Australia, 2006; p. 190. [Google Scholar]
- Hoeksema, S.D.; Chuwen, B.M.; Potter, I.C. Massive mortalities of Black Bream, Acanthopagrus butcheri (Sparidae) in two normally-closed estuaries, following extreme increases in salinity. J. Mar. Biol. Assoc. U. K. 2006, 86, 893–897. [Google Scholar] [CrossRef]
- Cottingham, A.; Tweedley, J.R.; Beatty, S.J.; McCormack, R. Synopsis of Black Bream Research in the Vasse-Wonnerup; Report for the Department of Water and Environmental Regulation; Murdoch University: Perth, Australia, 2019; p. 35. [Google Scholar]
- Ayvazian, S.G.; Hyndes, G.A. Surf-zone fish assemblages in south-western Australia: Do adjacent nearshore habitats and the warm Leeuwin Current influence the characteristics of the fish fauna? Mar. Biol. 1995, 122, 527–536. [Google Scholar] [CrossRef]
- Poh, B.; Tweedley, J.R.; Chaplin, J.A.; Trayler, K.M.; Crisp, J.A.; Loneragan, N.R. Influence of physico-chemical and biotic factors on the distribution of a penaeid in a temperate estuary. Estuar. Coast. Shelf Sci. 2019, 218, 70–85. [Google Scholar] [CrossRef]
- Poh, B.; Tweedley, J.R.; Chaplin, J.A.; Trayler, K.M.; Loneragan, N.R. Estimating predation rates of restocked individuals: The influence of timing-of-release on metapenaeid survival. Fish. Res. 2018, 198, 165–179. [Google Scholar] [CrossRef]
- Tweedley, J.R. The Relationships between Habitat Types and Faunal Community Structure in Broke Inlet, Western Australia. Ph.D. Thesis, Murdoch University, Perth, Australia, 2011. [Google Scholar]
- Cottingham, A.; Hall, N.G.; Potter, I.C. Performance and contribution to commercial catches and egg production by restocked Acanthopagrus butcheri (Sparidae) in an estuary. Estuar. Coast. Shelf Sci. 2015, 164, 194–203. [Google Scholar] [CrossRef]
- Lane, J.A.K.; Clarke, A.G.; Pearson, G.B. Waterbirds of the Vasse-Wonnerup Wetlands in 1998–2000 and Some Comparisons with Earlier Data; Western Australian Department of Environment and Conservation: Busselton, Australia, 2007; p. 51.
- Department of Water and Environmental Regulation. Sediments of the Vasse Estuary Exit Channel: A Study of the Characteristics and Feasibility of Removing Sediments; Department of Water and Environmental Regulation: Perth, Australia, 2019; p. 72.
Length (mm) | Overall | Deadwater (DW) | Wonnerup Inlet (WI) | Vasse Estuary (VE) | Wonnerup Estuary (WE) | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Species | EUFG | Mean | Range | # | Cr | SE | % | R | Cr | SE | % | R | Cr | SE | % | R | Cr | SE | % | R | Cr | SE | % | R |
Mugil cephalus | MEO | 243 | 110–455 | 1305 | 16.31 | 2.24 | 32.95 | 1 | 14.50 | 3.11 | 28.17 | 1 | 18.78 | 3.78 | 29.06 | 1 | 12.88 | 9.61 | 95.37 | 1 | 17.13 | 6.59 | 100.00 | 1 |
Aldrichetta forsteri | MEO | 268 | 123–394 | 834 | 10.43 | 1.93 | 21.06 | 2 | 9.31 | 1.11 | 18.09 | 3 | 16.59 | 4.42 | 25.68 | 2 | 0.63 | 0.38 | 4.63 | 2 | ||||
Acanthopagrus butcheri | E | 235 | 103–433 | 718 | 8.98 | 1.22 | 18.13 | 3 | 12.38 | 2.28 | 24.04 | 2 | 10.06 | 1.60 | 15.57 | 3 | ||||||||
Gerres subfasciatus | MEO | 143 | 112–220 | 275 | 3.44 | 1.30 | 6.94 | 4 | 0.91 | 0.34 | 1.76 | 8 | 7.69 | 3.10 | 11.90 | 4 | ||||||||
Amniataba caudavittata | E | 188 | 118–290 | 266 | 3.33 | 0.60 | 6.72 | 5 | 2.97 | 0.67 | 5.77 | 5 | 5.34 | 1.24 | 8.27 | 5 | ||||||||
Helotes octolineatus | MEO | 187 | 136–265 | 206 | 2.58 | 0.76 | 5.20 | 6 | 5.88 | 1.75 | 11.41 | 4 | 0.56 | 0.18 | 0.87 | 10 | ||||||||
Rhabdosargus sarba | MEO | 157 | 104–249 | 132 | 1.65 | 0.35 | 3.33 | 7 | 2.47 | 0.67 | 4.80 | 6 | 1.66 | 0.51 | 2.56 | 6 | ||||||||
Sillago schomburgkii | MEO | 255 | 155–317 | 104 | 1.30 | 0.27 | 2.63 | 8 | 1.66 | 0.40 | 3.22 | 7 | 1.59 | 0.54 | 2.47 | 7 | ||||||||
Argyrosomus japonicus | MEO | 386 | 234–528 | 46 | 0.58 | 0.16 | 1.16 | 9 | 0.63 | 0.24 | 1.21 | 9 | 0.81 | 0.31 | 1.26 | 9 | ||||||||
Arripis truttaceus | MEO | 202 | 147–283 | 31 | 0.39 | 0.13 | 0.78 | 10 | 0.16 | 0.09 | 0.30 | 11 | 0.81 | 0.30 | 1.26 | 9 | ||||||||
Pomatomus saltatrix | MEO | 234 | 173–287 | 19 | 0.24 | 0.08 | 0.48 | 11 | 0.38 | 0.17 | 0.73 | 10 | 0.22 | 0.12 | 0.34 | 11 | ||||||||
Pseudocaranx wrighti | MEO | 162 | 120–183 | 7 | 0.09 | 0.04 | 0.18 | 12 | 0.09 | 0.07 | 0.18 | 12 | 0.13 | 0.07 | 0.19 | 13 | ||||||||
Sillago bassensis | MEO | 279 | 255–304 | 5 | 0.06 | 0.06 | 0.13 | 13 | 0.16 | 0.16 | 0.24 | 12 | ||||||||||||
Elops machnata | MEO | 322 | 270–407 | 4 | 0.05 | 0.02 | 0.10 | 14 | 0.09 | 0.05 | 0.18 | 12 | 0.03 | 0.03 | 0.05 | 17 | ||||||||
Pseudorhombus jenynsii | MEO | 198 | 172–223 | 3 | 0.04 | 0.02 | 0.08 | 15 | 0.06 | 0.04 | 0.12 | 14 | 0.03 | 0.03 | 0.05 | 17 | ||||||||
Cnidoglanis macrocephalus | E&M | 412 | 264–560 | 2 | 0.03 | 0.02 | 0.05 | 16 | 0.06 | 0.04 | 0.10 | 14 | ||||||||||||
Sillago vittata | MS | 259 | 215–303 | 2 | 0.03 | 0.03 | 0.05 | 16 | 0.06 | 0.06 | 0.10 | 14 | ||||||||||||
Trygonorrhina fasciata | MS | 560 | 560 | 1 | 0.01 | 0.01 | 0.03 | 18 | 0.03 | 0.03 | 0.05 | 17 | ||||||||||||
Number of species | 18 | 14 | 18 | 2 | 1 | |||||||||||||||||||
Total catch rate (fish h−1) | 49.5 | 51.5 | 64.6 | 13.5 | 17.1 | |||||||||||||||||||
Number of samples | 80 | 32 | 32 | 8 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tweedley, J.R.; Beatty, S.J.; Cottingham, A.; Morgan, D.L.; Lynch, K.; Lymbery, A.J. Spatial and Temporal Changes in the Fish Fauna of a Low-Inflow Estuary following a Mass Mortality Event and Natural and Artificial Bar Breaches. Coasts 2024, 4, 366-391. https://doi.org/10.3390/coasts4020019
Tweedley JR, Beatty SJ, Cottingham A, Morgan DL, Lynch K, Lymbery AJ. Spatial and Temporal Changes in the Fish Fauna of a Low-Inflow Estuary following a Mass Mortality Event and Natural and Artificial Bar Breaches. Coasts. 2024; 4(2):366-391. https://doi.org/10.3390/coasts4020019
Chicago/Turabian StyleTweedley, James R., Stephen J. Beatty, Alan Cottingham, David L. Morgan, Kath Lynch, and Alan J. Lymbery. 2024. "Spatial and Temporal Changes in the Fish Fauna of a Low-Inflow Estuary following a Mass Mortality Event and Natural and Artificial Bar Breaches" Coasts 4, no. 2: 366-391. https://doi.org/10.3390/coasts4020019
APA StyleTweedley, J. R., Beatty, S. J., Cottingham, A., Morgan, D. L., Lynch, K., & Lymbery, A. J. (2024). Spatial and Temporal Changes in the Fish Fauna of a Low-Inflow Estuary following a Mass Mortality Event and Natural and Artificial Bar Breaches. Coasts, 4(2), 366-391. https://doi.org/10.3390/coasts4020019