Detecting a Midlatitude Island Climate Signature in the Great Lakes Coastal Region of Ontario, Canada
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methods
3. Results
3.1. Island Station Analysis
3.2. Local Comparisons for Six Focal Areas
3.2.1. Kingston
3.2.2. Toronto
3.2.3. Pelee
3.2.4. Tobermory
3.2.5. Gore Bay
3.2.6. Thunder Bay
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gough, W.A.; Shi, B. Impact of coastalization on day to day temperature variability along China’s east coast. J. Coast. Res. 2020, 36, 451–456. [Google Scholar] [CrossRef]
- Gough, W.A. Thermal metrics for identifying Canadian coastal environments. Coasts 2022, 2, 93–101. [Google Scholar] [CrossRef]
- Conrad, V. Usual formulas of continentality and their limits of validity. Eos Trans. Am. Geophys. Union 1946, 27, 663–664. [Google Scholar]
- Driscoll, D.M.; Yee Fong, J.M. Continentality: A basic climate parameter re-examined. Int. J. Clim. 1992, 12, 185–192. [Google Scholar] [CrossRef]
- Szymanowski, M.; Bednarczyk, P.; Kryza, M.; Nowosad, M. Spatial interpolation of Ewert’s index of continentality in Poland. Pure Appl. Geophys. 2017, 174, 623–642. [Google Scholar] [CrossRef]
- Sakakibara, Y.; Owa, K. Urban–rural temperature differences in coastal cities: Influence of rural sites. Int. J. Climatol. 2005, 25, 811–820. [Google Scholar] [CrossRef]
- Oke, T.R. City size and the urban heat island. Atmos. Environ. 1973, 7, 769–779. [Google Scholar] [CrossRef]
- Munn, R.E.; Hirt, M.S.; Findlay, B.F. A climatological study of urban temperature anomaly in the lakeshore environment of Toronto. J. Appl. Meteorol. 1969, 8, 411–422. [Google Scholar] [CrossRef]
- Nwakaire, C.M.; Onn, C.C.; Yap, S.P.; Yuen, C.W.; Onodagu, P.D. Urban heat island studies with emphasis on urban pavements: A review. Sustain. Cities Soc. 2020, 60, 102476. [Google Scholar] [CrossRef]
- Anderson, C.; Gough, W.A.; Mohsin, T. Characterization and estimation of urban heat island at Toronto: Revisiting the choice of rural sites using a measure of day to day variation. Urban Clim. 2018, 25, 187–196. [Google Scholar] [CrossRef]
- Hewer, M.J.; Gough, W.A. Lake Ontario Ice Coverage: Past, Present and Future. J. Great Lake Res. 2019, 45, 1080–1089. [Google Scholar] [CrossRef]
- Scott, R.W.; Huff, F.A. Impacts of Great Lakes on regional climate conditions. Great Lakes Res. 1996, 22, 845–863. [Google Scholar] [CrossRef]
- Wang, J.; Xue, P.; Pringle, W.; Yang, Z.; Qian, Y. Impacts of Lake Surface temperature on the summer climate over the Great Lakes region. J. Geophys. Res. 2022, 127, e2021JD036231. [Google Scholar] [CrossRef]
- Leathers, D.J.; Ellis, G.A. Synoptic mechanisms associated with snowfall increases to the lee of Lakes Erie and Ontario. Int. J. Climatol. 1996, 16, 1117–1135. [Google Scholar] [CrossRef]
- Ellis, G.A.; Johnson, J.J. Hydroclimatic analysis of snowfall trends associated with the North American Great Lakes. J. Hydrometeorol. 2004, 5, 471–486. [Google Scholar] [CrossRef]
- Angel, J.R.; Isard, S.A. The frequency and intensity of Great Lakes cyclones. J. Clim. 1998, 11, 61–71. [Google Scholar] [CrossRef]
- Assel, R.; Janowiak, J.; Young, S.; Boyce, D. Comparison of 1994 Great Lakes winter weather and ice conditions with previous years. Bull. Am. Meteorol. Soc. 1996, 77, 71–88. [Google Scholar] [CrossRef]
- Assel, R.; Cronk, K.; Norton, D. Recent trends in Laurentian Great Lakes ice cover. Clim. Chang. 2003, 57, 185–204. [Google Scholar] [CrossRef]
- Wang, J.; Bai, X.; Hu, H.; Clites, A.; Colton, M.; Lofgren, B. Temporal and spatial variability of Great Lakes ice cover, 1973–2010. J. Clim. 2012, 25, 1318–1329. [Google Scholar] [CrossRef]
- Mason, L.A.; Riseng, C.M.; Gronewold, A.D.; Rutherford, E.S.; Wang, J.; Clites, A.; Smith, S.D.; McIntyre, P.B. Fine-scale spatial variation in ice cover and surface temperature trends across the surface of the Laurentian Great Lakes. Clim. Chang. 2016, 138, 71–83. [Google Scholar] [CrossRef]
- Gough, W.A. Theoretical considerations of day-to-day temperature variability applied to Toronto and Calgary, Canada data. Theor. Appl. Climatol. 2008, 94, 97–105. [Google Scholar] [CrossRef]
- Tam, B.Y.; Gough, W.A.; Mohsin, T. The impact of urbanization on day to day temperature variation. Urban Clim. 2015, 12, 1–10. [Google Scholar] [CrossRef]
- Wu, F.-T.; Fu, C.; Qian, Y.; Gao, Y.; Wang, S.-Y. High frequency daily temperature variability in China and its relationship to large scale circulation. Int. J. Climatol. 2017, 37, 570–582. [Google Scholar] [CrossRef]
- Gough, W.A.; Leung, A.C.W. Do airports have their own climate? Meteorology 2022, 1, 171–182. [Google Scholar] [CrossRef]
- Xu, Z.; Huang, F.; Liu, Q.; Fu, C. Global pattern of historical and future rapid temperature variability. Environ. Res. Lett. 2019, 15, 124073. [Google Scholar] [CrossRef]
- Bonacci, O.; Bonacci, D.; Roje-Bonacci, T. Different air temperatures changes in continental and Mediterranean regions: A case study from two Croation stations. Theor. Appl. Clim. 2021, 145, 1333–1346. [Google Scholar] [CrossRef]
- Bonacci, O.; Roje-Bonacci, T.; Vrsalovic, A. The day-to-day temperature variability method as a tool for urban heat island analysis: A case of Zagreb-Gric Observatory (1887–2018). Urban Clim. 2022, 45, 101281. [Google Scholar] [CrossRef]
- Bonacci, O.; Durin, B.; Bonacci, T.R.; Bonacci, D. The influence of reservoirs on water temperature in the downstream part of an open watercourse: A case study at Botovo station on the Drava River. Water 2022, 14, 3534. [Google Scholar] [CrossRef]
- Tong, X.; Wang, P.; Wu, S.; Luo, M. Urbanization effects on high frequency temperature variability over South China. Urban Clim. 2022, 42, 101092. [Google Scholar] [CrossRef]
Station | Latitude (N) | Longitude (W) | Elevation (m) | Years |
---|---|---|---|---|
Pelee Island | 41.75 | 82.68 | 175.30 | 1961–1970 |
Toronto Island A | 43.63 | 79.4 | 76.50 | 1991–2000 |
Main Duck Island | 43.93 | 76.63 | 75.00 | 1971–1980 |
Wolfe Island | 44.15 | 76.53 | 90.00 | 1987–1995 |
Grenadier Island | 44.42 | 75.85 | 82.00 | 2001–2010 |
Western Island | 45.03 | 80.37 | 191.10 | 1996–1998, 2000–2001 |
Cove Island | 45.33 | 81.73 | 180.70 | 1970–1979 |
Great Duck Island | 45.65 | 82.97 | 182.80 | 1970–1979 |
Cockburn Island | 45.95 | 83.3 | 185.90 | 1900–1909 |
Caribou Island | 47.33 | 85.83 | 187.00 | 1971–1980 |
Welcome Island | 48.37 | 89.12 | 211.40 | 2009–2013 |
Slate Island | 48.62 | 87 | 185.90 | 1971–1980 |
Royal Island | 49.47 | 94.76 | 329.00 | 2016–2018, 2021 |
Little Flatland Island | 49.69 | 88.31 | 261.00 | 2012–2018 |
Station | DTDTmin | ADTDTmin | ADTR | Lake |
---|---|---|---|---|
Pelee Island | 2.06 | 1.89 | 7.52 | Erie |
Toronto Island A | 2.28 | 1.94 | 7.30 | Ontario |
Main Duck Island | 2.08 | 1.95 | 5.52 | Ontario |
Wolfe Island | 3.57 | 3.12 | 8.25 | Ontario |
Grenadier Island | 2.91 | 2.48 | 9.84 | Ontario |
Western Island | 2.39 | 1.89 | 6.52 | Huron |
Cove Island | 1.79 | 1.75 | 6.12 | Huron |
Great Duck Island | 2.4 | 2.34 | 6.86 | Huron |
Cockburn Island | 3.23 | 2.9 | 11.13 | Huron |
Caribou Island | 1.32 | 1.31 | 4.93 | Superior |
Welcome Island | 2.23 | 1.87 | 6.62 | Superior |
Slate Island | 2.13 | 2.05 | 7.02 | Superior |
Royal Island | 2.76 | 2.26 | 9.22 | Lake of the Woods |
Little Flatland Island | 2.62 | 2.15 | 8.25 | Lake Nipigon |
Stations | Latitude | Longitude | Elevation | Years | DTDTmin | ADTDTmin | ADTR |
---|---|---|---|---|---|---|---|
Kingston | |||||||
Kingston CS | 44.22 | 76.6 | 93.00 | 2011–2020 | 3.31 | 2.98 | 9.50 |
Wolfe Island | 44.15 | 76.53 | 90.00 | 1987–1995 | 3.57 | 3.12 | 8.25 |
Grenadier Island | 44.42 | 75.85 | 82.00 | 2001–2010 | 2.91 | 2.48 | 9.84 |
Main Duck Island | 43.93 | 76.63 | 75.00 | 1971–1980 | 2.08 | 1.95 | 5.52 |
Toronto | |||||||
Toronto | 43.67 | 79.4 | 112.50 | 1991–2000 | 2.76 | 2.46 | 7.42 |
Toronto Pearson | 43.68 | 79.68 | 173.40 | 1991–2000 | 2.76 | 2.47 | 10.27 |
Clarkson | 43.52 | 79.62 | 93.00 | 1951–1960 | 2.81 | 2.51 | 9.85 |
Toronto Island A | 43.63 | 79.4 | 76.50 | 1991–2000 | 2.28 | 1.94 | 7.30 |
Pelee | |||||||
Point Pelee CS | 41.95 | 82.52 | 176.80 | 2003–2011 | 2.7 | 2.6 | 8.37 |
Leamington | 42.05 | 82.63 | 213.40 | 1966–1975 | 2.93 | 2.81 | 7.76 |
Kingsville | 42.04 | 82.67 | 200.00 | 1991–2000 | 2.87 | 2.81 | 8.51 |
Pelee Island | 41.75 | 82.68 | 175.30 | 1961–1970 | 2.06 | 1.89 | 7.52 |
Tobermory | |||||||
Tobermory | 45.25 | 81.67 | 182.90 | 1971–1980 | 2.9 | 2.59 | 7.89 |
Tobermory Cyprus Lake | 45.23 | 81.53 | 190.00 | 1989–1993 | 3.97 | 3.69 | 10.45 |
Tobermory RCS | 45.23 | 81.63 | 213.50 | 2011–2020 | 2.84 | 2.47 | 8.25 |
Cove Island | 45.33 | 81.73 | 180.70 | 1970–1979 | 1.79 | 1.75 | 6.12 |
Gore Bay | |||||||
Gore Bay CS | 45.88 | 82.57 | 188.60 | 2011–2020 | 3.17 | 2.69 | 9.26 |
Gore Bay | 45.92 | 82.47 | 190.50 | 1971–1980 | 4 | 3.44 | 9.70 |
Cockburn Island | 45.95 | 83.3 | 185.90 | 1900–1909 | 3.23 | 2.9 | 11.13 |
Great Duck Island | 45.65 | 82.97 | 182.80 | 1970–1979 | 2.4 | 2.34 | 6.90 |
Thunder Bay | |||||||
Thunder Bay A | 48.37 | 89.33 | 199.30 | 1991–2000 | 3.77 | 3.35 | 12.57 |
Port Arthur | 48.43 | 89.22 | 195.10 | 1931–1940 | 3.89 | 3.3 | 10.19 |
Thunder Bay WPCP | 48.4 | 89.23 | 184.40 | 1970–1979 | 3.84 | 3.31 | 10.09 |
Welcome Island | 48.37 | 89.12 | 211.40 | 2009–2013 | 2.23 | 1.87 | 6.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gough, W.A.; Li, Z. Detecting a Midlatitude Island Climate Signature in the Great Lakes Coastal Region of Ontario, Canada. Coasts 2024, 4, 454-468. https://doi.org/10.3390/coasts4020023
Gough WA, Li Z. Detecting a Midlatitude Island Climate Signature in the Great Lakes Coastal Region of Ontario, Canada. Coasts. 2024; 4(2):454-468. https://doi.org/10.3390/coasts4020023
Chicago/Turabian StyleGough, William A., and Zhihui Li. 2024. "Detecting a Midlatitude Island Climate Signature in the Great Lakes Coastal Region of Ontario, Canada" Coasts 4, no. 2: 454-468. https://doi.org/10.3390/coasts4020023
APA StyleGough, W. A., & Li, Z. (2024). Detecting a Midlatitude Island Climate Signature in the Great Lakes Coastal Region of Ontario, Canada. Coasts, 4(2), 454-468. https://doi.org/10.3390/coasts4020023