Open AccessArticle
Marine Algal Response to Cultural Eutrophication in a Tidal System in Argentina
by
Anna Fricke, Germán A. Kopprio, Marianela Gastaldi, Maite Narvarte, Daniela Alemany, Ana M. Martínez, Florencia Biancalana, R. David Rodríquez Rendas, Mariano J. Albano, Fernando J. Hidalgo, Oscar Iribarne, Rubén J. Lara and Paulina Martinetto
Viewed by 99
Abstract
Cultural eutrophication caused by human activity significantly impacts benthic ecosystems. This study investigated how different phytobenthic components—rhodophyte germlings, mesoalgal and macroalgal assemblages, and
Ulva cf.
lactuca—respond to nutrient enrichment in a tidal channel system in San Antonio Bay, Argentina. Two experiments were
[...] Read more.
Cultural eutrophication caused by human activity significantly impacts benthic ecosystems. This study investigated how different phytobenthic components—rhodophyte germlings, mesoalgal and macroalgal assemblages, and
Ulva cf.
lactuca—respond to nutrient enrichment in a tidal channel system in San Antonio Bay, Argentina. Two experiments were conducted: one in spring examined the interaction between nutrient enrichment (N + P, N + P + Fe) and grazing pressure on early and established algal communities, and the other in autumn assessed nutrient effects on assemblages and
Ulva cf.
lactuca. Results showed that early successional stages, such as germlings and mesoalgae, responded most strongly to nutrient inputs, while mature macroalgae remained largely unaffected. Significant growth of mesoalgae, with increased pigment concentrations (chlorophyll a, c, and carotenoids), occurred at the eutrophied SAO Channel in spring. Nutrient additions increased rhodophyte germlings but eventually reduced diatom-dominated mesoalgal growth. Mature macroalgae showed site-specific differences but did not respond to fertilization. Grazing effects were evident in treatments with protective cages, suggesting herbivory influences early-stage algal development. Overall, the study emphasizes the importance of the successional stage, grazing pressure, and environmental nutrient history in shaping benthic algal responses to eutrophication, offering key insights into the dynamics of coastal ecosystems under increasing nutrient stress.
Full article
►▼
Show Figures