Tramadol Steady-State Pharmacokinetics of Immediate-Release Capsules and Sustained-Release Tablets in Dogs
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raffa, R.B.; Friderichs, E.; Reimann, W.; Shank, R.P.; Codd, E.E.; Vaught, J.L. Opioid and nonopioid components independently contribute to the mechanism of action of tramadol, an ‘atypical’ opioid analgesic. J. Pharmacol. Exp. Ther. 1992, 260, 275–285. [Google Scholar] [PubMed]
- Perez Jimenez, T.E.; Mealey, K.L.; Grubb, T.L.; Greene, S.A.; Court, M.H. Tramadol metabolism to O-desmethyl tramadol (M1) and N-desmethyl tramadol (M2) by dog liver microsomes: Species comparison and identification of responsible canine cytochrome P-450s (CYPs). Drug Metab. Dispos. 2016, 44, 1963–1972, Erratum in Drug Metab Dispos. 2017, 45, 706. PMCID:PMC5118633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez Jimenez, T.E.; Mealey, K.L.; Schnider, D.; Grubb, T.L.; Greene, S.A.; Court, M.H. Identification of canine cytochrome P-450s (CYPs) metabolizing the tramadol (+)-M1 and (+)-M2 metabolites to the tramadol (+)-M5 metabolite in dog liver microsomes. J. Vet. Pharmacol. Ther. 2018, 41, 815–824, PMCID:PMC6214715. [Google Scholar] [CrossRef] [PubMed]
- Kukanich, B.; Papich, M.G. Pharmacokinetics and antinociceptive effects of oral tramadol hydrochloride administration in Greyhounds. Am. J. Vet. Res. 2011, 72, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, M.; Saccomanni, G.; Lebkowska-Wieruszewska, B.; Kowalski, C. Pharmacokinetic evaluation of tramadol and its major metabolites after single oral sustained tablet administration in the dog: A pilot study. Vet. J. 2009, 180, 253–255. [Google Scholar] [CrossRef] [PubMed]
- Kögel, B.; Terlinden, R.; Schneider, J. Characterisation of tramadol, morphine and tapentadol in an acute pain model in Beagle dogs. Vet. Anaesth. Analg. 2014, 41, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, M.; Del Carlo, S.; Saccomanni, G.; Łebkowska-Wieruszewska, B.; Kowalski, C.J. Pharmacokinetic and urine profile of tramadol and its major metabolites following oral immediate release capsules administration in dogs. Vet. Res. Commun. 2009, 33, 875–885. [Google Scholar] [CrossRef] [PubMed]
- Schütter, A.F.; Tünsmeyer, J.; Kästner, S.B.R. Influence of tramadol on acute thermal and mechanical cutaneous nociception in dogs. Vet. Anaesth. Analg. 2017, 44, 309–316. [Google Scholar] [CrossRef] [PubMed]
- American Society of Anesthesiologists Task Force on Acute Pain Management. Practice guidelines for acute pain management in the perioperative setting: An updated report by the American Society of Anesthesiologists Task Force on Acute Pain Management. Anesthesiology 2012, 116, 248–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisen, S.A.; Miller, D.K.; Woodward, R.S.; Spitznagel, E.; Przybeck, T.R. The effect of prescribed daily dose frequency on patient medication compliance. Arch. Intern Med. 1990, 150, 1881–1884. [Google Scholar] [CrossRef] [PubMed]
- Leenen, F.H.; Wilson, T.W.; Bolli, P.; Larochelle, P.; Myers, M.; Handa, S.P.; Boileau, G.; Tanner, J. Patterns of compliance with once versus twice daily antihypertensive drug therapy in primary care: A randomized clinical trial using electronic monitoring. Can. J. Cardiol. 1997, 13, 914–920. [Google Scholar] [PubMed]
- Petrilla, A.A.; Benner, J.S.; Battleman, D.S.; Tierce, J.C.; Hazard, E.H. Evidence-based interventions to improve patient compliance with antihypertensive and lipid-lowering medications. Int. J. Clin. Pract. 2005, 59, 1441–1451. [Google Scholar] [CrossRef] [PubMed]
- Wareham, K.J.; Brennan, M.L.; Dean, R.S. Systematic review of the factors affecting cat and dog owner compliance with pharmaceutical treatment recommendations. Vet. Rec. 2019, 184, 154. [Google Scholar] [CrossRef] [PubMed]
- Barter, L.S.; Watson, A.D.; Maddison, J.E. Owner compliance with short term antimicrobial medication in dogs. Aust. Vet. J. 1996, 74, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Toutain, P.L.; Ferran, A.; Bousquet-Mélou, A. Species differences in pharmacokinetics and pharmacodynamics. Handb. Exp. Pharmacol. 2010, 199, 19–48. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.H.; Upton, R.N.; Foster, D.J.R. Comparison of non-compartmental and mixed effect modelling methods for establishing bioequivalence for the case of two compartment kinetics and censored concentrations. J. Pharmacokinet. Pharmacodyn. 2017, 44, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Barnett, H.Y.; Geys, H.; Jacobs, T.; Jaki, T. Methods for Non-Compartmental Pharmacokinetic Analysis With Observations Below the Limit of Quantification. Stat. Biopharm. Res. 2021, 13, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Hing, J.P.; Woolfrey, S.G.; Greenslade, D.; Wright, P.M. Analysis of toxicokinetic data using NONMEM: Impact of quantification limit and replacement strategies for censored data. J. Pharmacokinet. Pharmacodyn. 2001, 28, 465–479. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R. Methods for Handling Concentration Values Below the Limit of Quantification in PK Studies. In PhUSE US Connect 2018; Kent Innovation Centre: Broadstairs, UK, 2018; pp. 1–9. [Google Scholar]
- Beal, S.L. Ways to fit a PK model with some data below the quantification limit. J. Pharmacokinet. Pharmacodyn. 2001, 28, 481–504, Erratum in J. Pharmacokinet. Pharmacodyn. 2002, 29, 309. [Google Scholar] [CrossRef] [PubMed]
- Irby, D.J.; Ibrahim, M.E.; Dauki, A.M.; Badawi, M.A.; Illamola, S.M.; Chen, M.; Wang, Y.; Liu, X.; Phelps, M.A.; Mould, D.R. Approaches to handling missing or “problematic” pharmacology data: Pharmacokinetics. CPT Pharmacometrics Syst. Pharmacol. 2021, 10, 291–308, PMCID:PMC8099444. [Google Scholar] [CrossRef] [PubMed]
- Yáñez, J.A.; Remsberg, C.M.; Sayre, C.L.; Forrest, M.L.; Davies, N.M. Flip-flop pharmacokinetics--delivering a reversal of disposition: Challenges and opportunities during drug development. Ther. Deliv. 2011, 2, 643–672, PMCID:PMC3152312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrison, K.L.; Sahin, S.; Benet, L.Z. Few Drugs Display Flip-Flop Pharmacokinetics and These Are Primarily Associated with Classes 3 and 4 of the BDDCS. J. Pharm. Sci. 2015, 104, 3229–3235, PMCID:PMC4536115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lintz, W.; Barth, H.; Osterloh, G.; Schmidt-Böthelt, E. Bioavailability of enteral tramadol formulations. 1st communication: Capsules. Arzneimittelforschung 1986, 36, 1278–1283. [Google Scholar] [PubMed]
- Lehmann, K.A.; Kratzenberg, U.; Schroeder-Bark, B.; Horrichs-Haermeyer, G. Postoperative patient-controlled analgesia with tramadol: Analgesic efficacy and minimum effective concentrations. Clin. J. Pain. 1990, 6, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Grond, S.; Meuser, T.; Uragg, H.; Stahlberg, H.J.; Lehmann, K.A. Serum concentrations of tramadol enantiomers during patient-controlled analgesia. Br. J. Clin. Pharmacol. 1999, 48, 254–257, PMCID:PMC2014292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarbu, A.; Radulescu, F.; Robertson, S.; Bouchard, S. Onset of analgesic effect and plasma levels of controlled-release tramadol (Tramadol Contramid once-a-day) 200-mg tablets in patients with acute low back pain. J. Opioid Manag. 2008, 4, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Donati, P.A.; Tarragona, L.; Franco, J.V.A.; Kreil, V.; Fravega, R.; Diaz, A.; Verdier, N.; Otero, P.E. Efficacy of tramadol for postoperative pain management in dogs: Systematic review and meta-analysis. Vet. Anaesth. Analg. 2021, 48, 283–296. [Google Scholar] [CrossRef] [PubMed]
- Kendall, J.; Papich, M.G. Posaconazole pharmacokinetics after administration of an intravenous solution, oral suspension, and delayed-release tablet to dogs. Am. J. Vet. Res. 2015, 76, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Boozer, L.B.; Platt, S.R.; Haley, A.C.; Linville, A.V.; Kent, M.; Barron, L.E.; Nie, B.; Arnold, R.D. Pharmacokinetic evaluation of immediate- and extended-release formulations of levetiracetam in dogs. Am. J. Vet. Res. 2015, 76, 719–723. [Google Scholar] [CrossRef] [PubMed]
- Thomason, J.D.; Boothe, D.; KuKanich, B.; Rapoport, G. Pharmacokinetic evaluation of a sustained-release compounded procainamide preparation after 24-h (acute) administration in normal dogs. J. Vet. Cardiol. 2019, 24, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Bach, J.E.; Kukanich, B.; Papich, M.G.; McKiernan, B.C. Evaluation of the bioavailability and pharmacokinetics of two extended-release theophylline formulations in dogs. J. Am. Vet. Med. Assoc. 2004, 224, 1113–1119. [Google Scholar] [CrossRef] [PubMed]
- Cavett, C.L.; Li, Z.; McKiernan, B.C.; Reinhart, J.M. Pharmacokinetics of a modified, compounded theophylline product in dogs. J. Vet. Pharmacol. Ther. 2019, 42, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Reinhart, J.M.; Perkowski, C.; Lester, C.; Campos, V.; Kadotani, S.; Li, Z.; McKiernan, B.C.; Fries, R. Multidose pharmacokinetics and safety of a modified, compounded theophylline product in dogs. J. Vet. Pharmacol. Ther. 2021, 44, 902–909. [Google Scholar] [CrossRef] [PubMed]
Analyte | Retention Time (min) | m/z Ratio | LLOQ (µg/L) | Range (µg/L) | Regression Coefficient | Bias (%) | CV (%) |
---|---|---|---|---|---|---|---|
Tramadol | 2.58 | 264.2 | 5 | 5–1500 | 0.99950 | 1.5–14.0 | 1.5–10.5 |
M1 | 2.40 | 250.2 | 5 | 5–1500 | 0.99868 | −1.2–13.0 | 3.4–10.2 |
M2 | 2.58 | 250.2 | 5 | 5–1500 | 0.99907 | −2.8–13.0 | 2.5–10.3 |
M5 | 2.41 | 236.2 | 5 | 5–1500 | 0.99837 | −3.7–14.0 | 2.9–11.3 |
Tramadol | M2 | M5 | ||||
---|---|---|---|---|---|---|
IR | SR | IR | SR | IR | SR | |
Tmax (h) | ||||||
Median | 1.75 | 6.00 | 2.0 | 7.5 | 1.25 | 6.0 |
Range | 0.75–2.00 | 3.00–9.00 | 0.5–4 | 3–15 | 0.75–2 | 1.5–9 |
Cmax (µg/L) | ||||||
Median | 35.3 | 107.5 | 304 | 345 | 52.5 | 66.3 |
Range | 17.0–213.5 | 1.10–380.6 | 131–397 | 53–590 | 29.7–84.7 | 24.7–107 |
Cmax/D (µg/L/mg/kg) | ||||||
Median | 11.1 | 7.74 | 85.5 | 24.6 | 14.4 | 5.3 |
Range | 4.8–70.4 | 0.09–25.3 | 37.1–131.1 | 4.5–39.2 | 10.1–28.0 | 2.1–7.1 |
Clast (µg/L) | ||||||
Median | 5.7 | 3.0 | 149 | 61.7 | 34.5 | 26.8 |
Range | 1.5–12.2 | 0.51–8.4 | 22.3–263 | 2.14–185 | 14.7–53.4 | 2.6–52.5 |
AUCtau (h × µg/L) | ||||||
Median | 95.5 | 783 | 1363 | 3794 | 246 | 1126 |
Range | 43.3–426.8 | 0–2619 | 405–1766 | 451–7239 | 130–404 | 317–1623 |
AUCtau/D (h × kg × µg/L/mg) | ||||||
Median | 29.8 | 55.5 | 378 | 302 | 67.2 | 83.1 |
Range | 12.2–140.8 | 0–174.1 | 114–540 | 38–481 | 43.8–133 | 26.8–114 |
AUCinf/D (h × kg × µg/L/mg) | ||||||
Median | 33.1 | 85.7 | 613 | 358 | 195 | 143 |
Range | 13.6–144.3 | 14.9–175.3 | 135–933 | 39.1–830 | 78.0–379 | 29.1–233 |
% extrapolated AUC0-inf | 10.0% | 35.2% | 38.3% | 15.6% | 65.5% | 41.9% |
T1/2 (h) | ||||||
Median | 1.70 | 2.38 | 3.1 | 5.4 | 7.2 | 17.2 |
Range | 0.95–2.11 | 1.77–6.22 | 1.9–3.8 | 3.0–22.1 | 4.8–12.9 | 7.2–35.4 |
MRTlast | ||||||
Median | 2.20 | 7.72 | 2.8 | 10.2 | 2.8 | 10.7 |
Range | 1.52–2.87 | 0–10.52 | 2.1–3.1 | 6.6–13.2 | 2.5–2.9 | 9.2–12.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winter, E.; van Geijlswijk, I.; Akkerdaas, I.; Sturkenboom, M.; Gehring, R. Tramadol Steady-State Pharmacokinetics of Immediate-Release Capsules and Sustained-Release Tablets in Dogs. Future Pharmacol. 2022, 2, 660-668. https://doi.org/10.3390/futurepharmacol2040040
Winter E, van Geijlswijk I, Akkerdaas I, Sturkenboom M, Gehring R. Tramadol Steady-State Pharmacokinetics of Immediate-Release Capsules and Sustained-Release Tablets in Dogs. Future Pharmacology. 2022; 2(4):660-668. https://doi.org/10.3390/futurepharmacol2040040
Chicago/Turabian StyleWinter, Esther, Ingeborg van Geijlswijk, Ies Akkerdaas, Marieke Sturkenboom, and Ronette Gehring. 2022. "Tramadol Steady-State Pharmacokinetics of Immediate-Release Capsules and Sustained-Release Tablets in Dogs" Future Pharmacology 2, no. 4: 660-668. https://doi.org/10.3390/futurepharmacol2040040
APA StyleWinter, E., van Geijlswijk, I., Akkerdaas, I., Sturkenboom, M., & Gehring, R. (2022). Tramadol Steady-State Pharmacokinetics of Immediate-Release Capsules and Sustained-Release Tablets in Dogs. Future Pharmacology, 2(4), 660-668. https://doi.org/10.3390/futurepharmacol2040040