Multi-Bioactive Potential of a Rye Protein Isolate Hydrolysate by Enzymatic Processes †
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sahin, B.; Ilgün, G. Risk factors of deaths related to cardiovascular diseases in World Health Organization (WHO) member countries. Health Soc. Care Community 2022, 30, 73–80. [Google Scholar] [CrossRef]
- Lammi, C.; Aiello, G.; Boschin, G.; Arnoldi, A. Multifunctional peptides for the prevention of cardiovascular disease: A new concept in the area of bioactive food-derived peptides. J. Funct. Foods 2019, 55, 135–145. [Google Scholar] [CrossRef]
- Chai, K.F.; Voo, A.Y.H.; Chen, W.N. Bioactive peptides from food fermentation: A comprehensive review of their sources, bioactivities, applications, and future development. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3825–3885. [Google Scholar] [CrossRef]
- Dziki, D. Rye flour and rye bran: New perspectives for use. Processes 2022, 10, 293. [Google Scholar] [CrossRef]
- Drakos, A.; Malindretou, K.; Mandala, I.; Evageliou, V. Protein isolation from jet milled rye flours differing in particle size. Food Bioprod. Process. 2017, 104, 13–18. [Google Scholar] [CrossRef]
- Cano-Estrada, A.; Castañeda-Ovando, A.; Ramírez-Godinez, J.; Contreras-López, E. Proximate and fatty acid composition in raw and cooked muscle tissue of farmed rainbow trout (Oncorhynchus mykiss) fed with commercial fishmeal. J. Food Process. Preserv. 2018, 42, e13674. [Google Scholar] [CrossRef]
- Adler-Nissen, J. Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J. Agric. Food Chem. 1979, 27, 1256–1262. [Google Scholar] [CrossRef]
- Ramírez-Godínez, J.; Jaimez-Ordaz, J.; Castañeda-Ovando, A.; Añorve-Morga, J.; Salazar-Pereda, V.; González-Olivares, L.G.; Contreras-López, E. Optimization of physical conditions for the aqueous extraction of antioxidant compounds from ginger (Zingiber officinale) applying a box-Behnken design. Plant Foods Hum. Nutr. 2017, 72, 34–40. [Google Scholar] [CrossRef]
- Hussein, F.A.; Chay, S.Y.; Zarei, M.; Auwal, S.M.; Hamid, A.A.; Wan Ibadullah, W.Z.; Saari, N. Whey protein concentrate as a novel source of bifunctional peptides with angiotensin-I converting enzyme inhibitory and antioxidant properties: RSM study. Foods 2020, 9, 64. [Google Scholar] [CrossRef]
- Nongonierma, A.B.; FitzGerald, R.J. Prospects for the management of type 2 diabetes using food protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity. Curr. Opin. Food Sci. 2016, 8, 19–24. [Google Scholar] [CrossRef]
- Vilcacundo, R.; Martínez-Villaluenga, C.; Miralles, B.; Hernández-Ledesma, B. Release of multifunctional peptides from kiwicha (Amaranthus caudatus) protein under in vitro gastrointestinal digestion. J. Sci. Food Agric. 2019, 99, 1225–1232. [Google Scholar] [CrossRef]
- Cui, Q.; Sun, Y.; Zhou, Z.; Cheng, J.; Guo, M. Effects of enzymatic hydrolysis on physicochemical properties and solubility and bitterness of milk protein hydrolysates. Foods 2021, 10, 2462. [Google Scholar] [CrossRef]
- Chirinos, R.; Cerna, E.; Pedreschi, R.; Calsin, M.; Aguilar-Galvez, A.; Campos, D. Multifunctional in vitro bioactive properties: Antioxidant, antidiabetic, and antihypertensive of protein hydrolyzates from tarwi (Lupinus mutabilis Sweet) obtained by enzymatic biotransformation. Cereal Chem. 2021, 98, 423–433. [Google Scholar] [CrossRef]
- Karami, Z.; Akbari-Adergani, B. Bioactive food derived peptides: A review on correlation between structure of bioactive peptides and their functional properties. J. Food Sci. Technol. 2019, 56, 535–547. [Google Scholar] [CrossRef]
- Darewicz, M.; Pliszka, M.; Borawska-Dziadkiewicz, J.; Minkiewicz, P.; Iwaniak, A. Multi-Bioactivity of Protein Digests and Peptides from Oat (Avena sativa L.) Kernels in the Prevention of the Cardiometabolic Syndrome. Molecules 2022, 27, 7907. [Google Scholar] [CrossRef]
- Pérez-Escalante, E.; Padilla-Zúñiga, S.A.; Contreras-López, E.; Sebastián-Nicolás, J.L.; Pérez-Flores, J.G.; Olloqui, E.J.; González-Olivares, L.G. Antioxidant and Antihypertensive Properties from Muscle Hydrolysates of Farm Rainbow Trout. Biol. Life Sci. Forum 2022, 18, 55. [Google Scholar] [CrossRef]
- Berraquero-García, C.; Rivero-Pino, F.; Ospina, J.L.; Pérez-Gálvez, R.; Espejo-Carpio, F.J.; Guadix, A.; García-Moreno, P.J.; Guadix, E.M. Activity, structural features and in silico digestion of antidiabetic peptides. Food Biosci. 2023, 55, 102954. [Google Scholar] [CrossRef]
Enzyme | Hydrolysis Time (h) | Free Amino Group Content (ppm) | Radical Scavenging (%) | ACE Inhibition (%) | DPPIV Inhibition (%) |
---|---|---|---|---|---|
Alcalase | 0 | 2291.74 ± 155.49 c | 43.78 ± 2.66 c | 81.87 ± 4.90 a | 51.69 ± 2.61 b |
4 | 4300.24 ± 203.97 b | 56.50 ± 2.84 b | 86.76 ± 3.17 a | 63.70 ± 1.27 a | |
8 | 5481.40 ± 409.43 a | 78.58 ± 1.04 a | 86.76 ± 2.02 a | 57.53 ± 0.15 ab | |
Flavourzyme | 0 | 812.03 ± 63.36 b | 9.76 ± 1.65 c | 78.82 ± 0.58 b | ND b |
4 | 2933.09 ± 76.80 a | 31.12 ± 1.52 b | 84.93 ± 0.58 a | 40.62 ± 2.61 a | |
8 | 2974.15 ± 275.39 a | 34.77 ± 0.59 a | 86.15 ± 1.15 a | 36.62 ± 1.56 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islas-Martínez, D.; Ávila-Vargas, Y.N.; Rodríguez-Serrano, G.M.; González-Olivares, L.G.; Pérez-Flores, J.G.; Contreras-López, E.; Olloqui, E.J.; Pérez-Escalante, E. Multi-Bioactive Potential of a Rye Protein Isolate Hydrolysate by Enzymatic Processes. Biol. Life Sci. Forum 2023, 26, 38. https://doi.org/10.3390/Foods2023-15037
Islas-Martínez D, Ávila-Vargas YN, Rodríguez-Serrano GM, González-Olivares LG, Pérez-Flores JG, Contreras-López E, Olloqui EJ, Pérez-Escalante E. Multi-Bioactive Potential of a Rye Protein Isolate Hydrolysate by Enzymatic Processes. Biology and Life Sciences Forum. 2023; 26(1):38. https://doi.org/10.3390/Foods2023-15037
Chicago/Turabian StyleIslas-Martínez, Desiree, Yair Noé Ávila-Vargas, Gabriela Mariana Rodríguez-Serrano, Luis Guillermo González-Olivares, Jesús Guadalupe Pérez-Flores, Elizabeth Contreras-López, Enrique J. Olloqui, and Emmanuel Pérez-Escalante. 2023. "Multi-Bioactive Potential of a Rye Protein Isolate Hydrolysate by Enzymatic Processes" Biology and Life Sciences Forum 26, no. 1: 38. https://doi.org/10.3390/Foods2023-15037
APA StyleIslas-Martínez, D., Ávila-Vargas, Y. N., Rodríguez-Serrano, G. M., González-Olivares, L. G., Pérez-Flores, J. G., Contreras-López, E., Olloqui, E. J., & Pérez-Escalante, E. (2023). Multi-Bioactive Potential of a Rye Protein Isolate Hydrolysate by Enzymatic Processes. Biology and Life Sciences Forum, 26(1), 38. https://doi.org/10.3390/Foods2023-15037