Lacticaseibacillus rhamnosus GG and Lactobacillus casei Shirota Growth on a Medium Enriched with Rye Protein, and Assessment of DPP-IV Inhibitory Activity †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taveira, I.C.; Nogueira, K.M.V.; Oliveira, D.L.G.D.; Silva, R.D.N. Fermentation: Humanitys oldest biotechnological tool. Front. Young Minds 2021, 9, 568656. [Google Scholar] [CrossRef]
- Venegas-Ortega, M.G.; Flores-Gallegos, A.C.; Martínez-Hernández, J.L.; Aguilar, C.N.; Nevárez-Moorillón, G.V. Production of bioactive peptides from lactic acid bacteria: A sustainable approach for healthier foods. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1039–1051. [Google Scholar] [CrossRef] [PubMed]
- Chai, K.F.; Voo, A.Y.H.; Chen, W.N. Bioactive peptides from food fermentation: A comprehensive review of their sources, bioactivities, applications, and future development. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3825–3885. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Wu, Z.; Dai, Z.; Wang, G.; Wu, G. Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. J. Anim. Sci. Biotechnol. 2017, 8, 24. [Google Scholar] [CrossRef]
- Akbarian, M.; Khani, A.; Eghbalpour, S.; Uversky, V.N. Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of action. Int. J. Mol. Sci. 2022, 23, 1445. [Google Scholar] [CrossRef]
- Singh, B.P.; Bangar, S.P.; Alblooshi, M.; Ajayi, F.F.; Mudgil, P.; Maqsood, S. Plant-derived proteins as a sustainable source of bioactive peptides: Recent research updates on emerging production methods, bioactivities, and potential application. Crit. Rev. Food Sci. Nutr. 2023, 63, 9539–9560. [Google Scholar] [CrossRef] [PubMed]
- Añon, M.C.; Quiroga, A.; Scilingo, A.; Tironi, V. Plant Bioactive Peptides: From Oilseed, Legume, Cereal, Fruit, and Vegetable. In Handbook of Food Bioactive Ingredients: Properties and Applications, 1st ed.; Jafari, S.M., Rashidinejad, A., Simal-Gandara, J., Eds.; Springer International Publishing: Basingstoke, UK, 2023; Volume 1, pp. 907–940. [Google Scholar]
- Zhang, W.; Boateng, I.D.; Xu, J.; Zhang, Y. Proteins from Legumes, Cereals, and Pseudo-Cereals: Composition, Modification, Bioactivities, and Applications. Foods 2024, 13, 1974. [Google Scholar] [CrossRef] [PubMed]
- Erem, E.; Kilic-Akyilmaz, M. The role of fermentation with lactic acid bacteria in quality and health effects of plant-based dairy analogues. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13402. [Google Scholar] [CrossRef] [PubMed]
- Gille, D.; Schmid, A.; Walther, B.; Vergères, G. Fermented food and non-communicable chronic diseases: A review. Nutrients 2018, 10, 448. [Google Scholar] [CrossRef] [PubMed]
- Rollán, G.C.; Gerez, C.L.; LeBlanc, J.G. Lactic fermentation as a strategy to improve the nutritional and functional values of pseudocereals. Front. Nutr. 2019, 6, 98. [Google Scholar] [CrossRef] [PubMed]
- Aderinola, T.A.; Duodu, K.G. Production, health-promoting properties and characterization of bioactive peptides from cereal and legume grains. BioFactors 2022, 4, 972–992. [Google Scholar] [CrossRef] [PubMed]
- Orona-Tamayo, D.; Valverde, M.E.; Paredes-López, O. Bioactive peptides from selected latin american food crops–A nutraceutical and molecular approach. Crit. Rev. Food Sci. Nutr. 2019, 59, 1949–1975. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela Zamudio, F.; Segura Campos, M.R. Amaranth, quinoa and chia bioactive peptides: A comprehensive review on three ancient grains and their potential role in management and prevention of Type 2 diabetes. Crit. Rev. Food Sci. Nutr. 2022, 62, 2707–2721. [Google Scholar] [CrossRef] [PubMed]
- Lobo, M.O.; Mosso, A.L.; Jiménez, M.D.; Sammán, N. Ingredients of High Nutritional Value Obtained from Latin-American Crops through Biotechnology. In Latin-American Seeds, 1st ed.; Haros, C.M., Reguera, M., Sammán, N., Paredes-López, O., Eds.; CRC Press: Boca Raton, FL, USA, 2023; Volume 1, pp. 371–400. [Google Scholar]
- Tachie, C.Y.; Onuh, J.O.; Aryee, A.N. Nutritional and potential health benefits of fermented food proteins. J. Sci. Food Agric. 2024, 104, 1223–1233. [Google Scholar] [CrossRef]
- Ali, M.K.; Pearson-Stuttard, J.; Selvin, E.; Gregg, E.W. Interpreting global trends in type 2 diabetes complications and mortality. Diabetologia 2022, 65, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Sandhu, K.S.; Purewal, S.S.; Kaur, M.; Singh, S.K. Rye: A wonder crop with industrially important macromolecules and health benefits. Food Res. Int. 2021, 150, 110769. [Google Scholar] [CrossRef] [PubMed]
- Dziki, D. Rye flour and rye bran: New perspectives for use. Processes 2022, 10, 293. [Google Scholar] [CrossRef]
- Deleu, L.J.; Lemmens, E.; Redant, L.; Delcour, J.A. The major constituents of rye (Secale cereale L.) flour and their role in the production of rye bread, a food product to which a multitude of health aspects are ascribed. Cereal Chem. 2020, 97, 739–754. [Google Scholar] [CrossRef]
- Islas-Martínez, D.; Ávila-Vargas, Y.N.; Rodríguez-Serrano, G.M.; González-Olivares, L.G.; Pérez-Flores, J.G.; Contreras-López, E.; Olloqui, E.J.; Pérez-Escalante, E. Multi-Bioactive Potential of a Rye Protein Isolate Hydrolysate by Enzymatic Processes. Biol. Life Sci. Forum 2023, 26, 38. [Google Scholar] [CrossRef]
- Naghili, H.; Tajik, H.; Mardani, K.; Rouhani, S.M.R.; Ehsani, A.; Zare, P. Validation of drop plate technique for bacterial enumeration by parametric and nonparametric tests. Vet. Res. Forum 2013, 4, 179–183. [Google Scholar]
- Adler-Nissen, J. Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J. Agric. Food Chem. 1979, 2, 1256–1262. [Google Scholar] [CrossRef] [PubMed]
- Nongonierma, A.B.; FitzGerald, R.J. Prospects for the management of type 2 diabetes using food protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity. Curr. Opin. Food Sci. 2016, 8, 19–24. [Google Scholar] [CrossRef]
- Kocková, M.; Dilongová, M.; Hybenová, E.; Valík, L.U. Evaluation of cereals and pseudocereals suitability for the development of new probiotic foods. J. Chem. 2013, 2013, 414303. [Google Scholar] [CrossRef]
- Matejčeková, Z.; Liptáková, D.; Valík, Ľ. Functional probiotic products based on fermented buckwheat with Lactobacillus rhamnosus. LWT-Food Sci. Technol. 2017, 81, 35–41. [Google Scholar] [CrossRef]
- Němečková, I.; Dragounová, H.; Pechačová, M.; Rysova, J.; Roubal, P. Fermentation of vegetable substrates by lactic acid bacteria as a basis of functional foods. Czech J. Food Sci. 2011, 29, S42–S48. [Google Scholar] [CrossRef]
- Ziarno, M.; Cichońska, P. Lactic acid bacteria-fermentable cereal-and pseudocereal-based beverages. Microorganisms 2021, 9, 2532. [Google Scholar] [CrossRef] [PubMed]
- Nithya, A.; Misra, S.; Panigrahi, C.; Dalbhagat, C.G.; Mishra, H.N. Probiotic potential of fermented foods and their role in non-communicable diseases management: An understanding through recent clinical evidences. Food Chem. Adv. 2023, 3, 100381. [Google Scholar] [CrossRef]
- Moiseenko, K.V.; Glazunova, O.A.; Fedorova, T.V. Fermentation of Rice, Oat, and Wheat Flour by Pure Cultures of Common Starter Lactic Acid Bacteria: Growth Dynamics, Sensory Evaluation, and Functional Properties. Foods 2024, 13, 2414. [Google Scholar] [CrossRef] [PubMed]
- González-Olivares, L.G.; Jiménez-Guzmán, J.; Cruz-Guerrero, A.; Rodríguez-Serrano, G.; Gómez-Ruiz, L.; García-Garibay, M. Liberación de péptidos bioactivos por bacterias lácticas en leches fermentadas comerciales. Rev. Mex. Ing. Quim. 2011, 10, 179–188. [Google Scholar]
- Pérez-Escalante, E.; Jaimez-Ordaz, J.; Castañeda-Ovando, A.; Contreras-López, E.; Añorve-Morga, J.; González-Olivares, L.G. Antithrombotic activity of milk protein hydrolysates by lactic acid bacteria isolated from commercial fermented milks. Braz. Arch. Biol. Technol. 2018, 61, e18180132. [Google Scholar] [CrossRef]
- Olvera-Rosales, L.B.; Pérez-Escalante, E.; Castañeda-Ovando, A.; Contreras-López, E.; Cruz-Guerrero, A.E.; Regal-López, P.; Cardelle-Cobas, A.; González-Olivares, L.G. ACE-Inhibitory Activity of Whey Proteins Fractions Derived of Fermentation by Lacticaseibacillus rhamnosus GG and Streptococcus thermophilus SY-102. Foods 2023, 12, 2416. [Google Scholar] [CrossRef] [PubMed]
- Olvera-Rosales, L.B.; Cruz-Guerrero, A.E.; Jaimez-Ordaz, J.; Pérez-Escalante, E.; Quintero-Lira, A.; Ramírez-Moreno, E.; ContrerasLópez, E.; González-Olivares, L.G. Differences in the Proteolytic System of Lactic Acid Bacteria Affect the Release of DPP-IV Inhibitory Peptides from Whey Proteins. Dairy 2023, 4, 515–526. [Google Scholar] [CrossRef]
- Feng, L.; Xie, Y.; Peng, C.; Liu, Y.; Wang, H. A novel antidiabetic food produced via solid-state fermentation of Tartary buckwheat by L. plantarum TK9 and L. paracasei TK1501. Food Technol. Biotech. 2018, 56, 373. [Google Scholar] [CrossRef] [PubMed]
- Garzón, A.G.; Veras, F.F.; Brandelli, A.; Drago, S.R. Bio-functional and prebiotics properties of products based on whole grain sorghum fermented with lactic acid bacteria. J. Sci. Food Agric. 2024, 104, 2971–2979. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Lu, S.; Liu, J.; Yang, S.; Yan, Q.; Jiang, Z. Physicochemical properties and bioactivities of rice beans fermented by Bacillus amyloliquefaciens. Engineering 2021, 7, 219–225. [Google Scholar] [CrossRef]
Lactic Acid Bacteria Strain | Bacterial Concentration (Log CFU/mL) | Free Amino Groups Concentration (mg/L) | DPP-IV Inhibition (%) | |||
---|---|---|---|---|---|---|
0 h | 24 h | 0 h | 24 h | 0 h | 24 h | |
L. rhamnosus GG | 7.58 ± 0.02 b | 9.72 ± 0.10 a | 163.33 ± 6.97 a | 167.50 ± 1.54 a | 5.72 ± 0.14 b | 20.32 ± 0.95 a |
L. casei Shirota | 8.47 ± 0.07 b | 10.52 ± 0.07 a | 11.80 ± 0.00 b | 891.78 ± 48.92 a | 10.37 ± 1.04 b | 27.04 ± 1.57 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Escamilla, A.E.; Solís-Macías, Z.D.; Rodríguez-Serrano, G.M.; González-Olivares, L.G.; Pérez-Flores, J.G.; Contreras-López, E.; García-Curiel, L.; Pérez-Escalante, E. Lacticaseibacillus rhamnosus GG and Lactobacillus casei Shirota Growth on a Medium Enriched with Rye Protein, and Assessment of DPP-IV Inhibitory Activity. Biol. Life Sci. Forum 2024, 40, 34. https://doi.org/10.3390/blsf2024040034
García-Escamilla AE, Solís-Macías ZD, Rodríguez-Serrano GM, González-Olivares LG, Pérez-Flores JG, Contreras-López E, García-Curiel L, Pérez-Escalante E. Lacticaseibacillus rhamnosus GG and Lactobacillus casei Shirota Growth on a Medium Enriched with Rye Protein, and Assessment of DPP-IV Inhibitory Activity. Biology and Life Sciences Forum. 2024; 40(1):34. https://doi.org/10.3390/blsf2024040034
Chicago/Turabian StyleGarcía-Escamilla, Areli Elizabeth, Zaira Daniela Solís-Macías, Gabriela Mariana Rodríguez-Serrano, Luis Guillermo González-Olivares, Jesús Guadalupe Pérez-Flores, Elizabeth Contreras-López, Laura García-Curiel, and Emmanuel Pérez-Escalante. 2024. "Lacticaseibacillus rhamnosus GG and Lactobacillus casei Shirota Growth on a Medium Enriched with Rye Protein, and Assessment of DPP-IV Inhibitory Activity" Biology and Life Sciences Forum 40, no. 1: 34. https://doi.org/10.3390/blsf2024040034
APA StyleGarcía-Escamilla, A. E., Solís-Macías, Z. D., Rodríguez-Serrano, G. M., González-Olivares, L. G., Pérez-Flores, J. G., Contreras-López, E., García-Curiel, L., & Pérez-Escalante, E. (2024). Lacticaseibacillus rhamnosus GG and Lactobacillus casei Shirota Growth on a Medium Enriched with Rye Protein, and Assessment of DPP-IV Inhibitory Activity. Biology and Life Sciences Forum, 40(1), 34. https://doi.org/10.3390/blsf2024040034