Kinetic Study of Commercial Tabletop Sweeteners Using Thermal Analysis †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Thermal Characterization
3.2. Kinetic Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carocho, M.; Morales, P.; Ferreira, I.C.F.R. Sweeteners as food additives in the XXI century: A review of what is known, and what is to come. Food Chem. Toxicol. 2017, 107, 302–317. [Google Scholar] [CrossRef]
- IMARC. Low-Calorie Sweetener Market Report by Source (Natural, Artificial), Product (Sucralose, Saccharin, Aspartame, 11 Neotame, Advantam, Acesulfame Potassium, Stevia, and Others), Form (Solid, Liquid), Application (Food, Beverages, 12 Pharmaceuticals, and Others), and Region 2024–2032. Available online: https://www.imarcgroup.com/low-calorie-sweetener-market (accessed on 29 January 2025).
- International Diabetes Federation. Diabetes. Facts & Figures, IDF. Available online: https://idf.org/about-diabetes/diabetes-facts-figures/ (accessed on 29 January 2025).
- Market Research Future. Sweeteners Market Research Report Information By Type (Natural, and Artificial), By Application (Bakery and Confectionery, Dairy and Frozen Desserts, Beverages, and Others), And By Region (North America, Europe, Asia-Pacific, And Rest Of The World)—Market Forecast Till 2032. Available online: https://www.marketresearchfuture.com/reports/sweeteners-market-5000 (accessed on 29 January 2025).
- World Health Organization. Aspartame Hazard and Risk Assessment Results Released. Available online: https://www.who.int/news/item/14-07-2023-aspartame-hazard-and-risk-assessment-results-released (accessed on 29 January 2025).
- Santana, N.S.; Mothé, M.G.; Mothé, C.G. Thermal and rheological behavior of non-nutritive sweeteners. J. Therm. Anal. Calorim. 2019, 138, 3577–3586. [Google Scholar] [CrossRef]
- Santana, N.S.; Mothé, C.G.; de Souza, M.N.; Mothé, M.G. An investigation by thermal analysis of glycosidic natural sweeteners. J. Therm. Anal. Calorim. 2022, 147, 13275–13287. [Google Scholar] [CrossRef]
- Santana, N.S.; Mothé, C.G.; de Souza, M.N.; Mothé, M.G. Thermal and rheological study of artificial and natural powder tabletop sweeteners. Food Res. Int. 2022, 162, 112039. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.-W.; Jiu, J.-T.; Sugahara, T.; Nagao, S.; Suganuma, K.; Uchida, H.; Schroder, K.A. Using the Friedman method to study the thermal degradation kinetics of photonically cured electrically conductive adhesives. J. Therm. Anal. Calorim. 2015, 119, 425–433. [Google Scholar] [CrossRef]
- Roos, Y.H. Thermal analysis, state transitions and food quality. J. Therm. Anal. Calorim. 2003, 71, 197–203. [Google Scholar] [CrossRef]
- Wesolowski, M.; Rojek, B. Thermogravimetric detection of incompatibilities between atenolol and excipients using multivariate techniques. J. Therm. Anal. Calorim. 2013, 113, 169–177. [Google Scholar] [CrossRef]
- Magnuson, B.A.; Roberts, A.; Nestmann, E.R. Critical review of the current literature on the safety of sucralose. Food Chem. Toxicol. 2017, 106, 324–355. [Google Scholar] [CrossRef] [PubMed]
- Soejarto, D.D.; Addo, E.M.; Kinghorn, A.D. Highly sweet compounds of plant origin: From ethnobotanical observations to wide utilization. J. Ethnopharmacol. 2019, 243, 112056. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, H. Sweeteners and Sugar Alternatives in Food Technology, 1st ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2006. [Google Scholar]
- ASTM E698-23; Standard Test Method for Kinetic Parameters for Thermally Unstable Materials Using Differential Scanning Calorimetry and the Flynn/Wall/Ozawa Method. ASTM: West Conshohocken, PA, USA, 2023. [CrossRef]
- Ghaderi, F.; Nemati, M.; Siahi-Shadbad, M.R.; Valizadeh, H.; Monajjemzadeh, F. DSC kinetic study of the incompatibility of doxepin with dextrose. J. Therm. Anal. Calorim. 2016, 123, 2081–2090. [Google Scholar] [CrossRef]
- Siahi, M.R.; Rahimi, S.; Monajjemzadeh, F. Analytical Investigation of the Possible Chemical Interaction of Methyldopa with Some Reducing Carbohydrates Used as Pharmaceutical Excipients. Adv. Pharm. Bull. 2018, 8, 657–666. [Google Scholar] [CrossRef]
- Castro-Cabado, M.; Parra-Ruiz, F.J.; Casado, A.L.; Román, J.S. Thermal Crosslinking of Maltodextrin and Citric Acid. Methodology to Control the Polycondensation Reaction under Processing Conditions. Polym. Polym. Compos. 2016, 24, 643–654. [Google Scholar] [CrossRef]
- Hsieh, W.; Cheng, W.; Chen, L.; Lin, S. Non-isothermal dehydration kinetic study of aspartame hemihydrate using DSC, TGA and DSC-FTIR microspectroscopy. Asian J. Pharm. Sci. 2018, 13, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Leung, S.S.; Padden, B.E.; Munson, E.J.; Grant, D.J.W. Solid-State Characterization of Two Polymorphs of Aspartame Hemihydrate. J. Pharm. Sci. 1998, 87, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Guguta, C.; Meekes, H.; de Gelder, R. The hydration/dehydration behavior of aspartame revisited. J. Pharm. Biomed. Anal. 2008, 46, 617–624. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, L.C.; Segato, M.P.; Nunes, R.S.; Novak, C.; Cavalheiro, É.T.G. Thermoanalytical studies of some sweeteners. J. Therm. Anal. Calorim. 2009, 97, 359–365. [Google Scholar] [CrossRef]
- Ferreira, P.O.; de Moura, A.; de Almeida, A.C.; dos Santos, É.C.; Kogawa, A.C.; Caires, F.J. Mechanochemical synthesis, thermoanalytical study and characterization of new multicomponent solid forms of norfloxacin with saccharin. J. Therm. Anal. Calorim. 2022, 147, 1985–1997. [Google Scholar] [CrossRef]
- Lech, A.; Garbacz, P.; Sikorski, A.; Gazda, M.; Wesolowski, M. New Saccharin Salt of Chlordiazepoxide: Structural and Physicochemical Examination. Int. J. Mol. Sci. 2022, 23, 12050. [Google Scholar] [CrossRef] [PubMed]
- Conceição, M.M.; Fernandes, V.J., Jr.; Sinfrônio, F.S.M.; Santos, J.C.O.; Silva, M.C.D.; Fonseca, V.M.; Souza, A.G. Evaluation of isothermal kinetic of sweetener. J. Therm. Anal. Calorim. 2005, 79, 263–266. [Google Scholar] [CrossRef]
Sweetener | Chemical Structure | Characteristics |
---|---|---|
Erythritol |
| |
Xylitol |
| |
Aspartame |
| |
Saccharin |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santana, N.d.S.; Monteiro, S.N.; da Silva, T.C.; Mothé, M.G. Kinetic Study of Commercial Tabletop Sweeteners Using Thermal Analysis. Biol. Life Sci. Forum 2024, 40, 35. https://doi.org/10.3390/blsf2024040035
Santana NdS, Monteiro SN, da Silva TC, Mothé MG. Kinetic Study of Commercial Tabletop Sweeteners Using Thermal Analysis. Biology and Life Sciences Forum. 2024; 40(1):35. https://doi.org/10.3390/blsf2024040035
Chicago/Turabian StyleSantana, Naienne da Silva, Sergio Neves Monteiro, Tatiana Carestiato da Silva, and Michelle Gonçalves Mothé. 2024. "Kinetic Study of Commercial Tabletop Sweeteners Using Thermal Analysis" Biology and Life Sciences Forum 40, no. 1: 35. https://doi.org/10.3390/blsf2024040035
APA StyleSantana, N. d. S., Monteiro, S. N., da Silva, T. C., & Mothé, M. G. (2024). Kinetic Study of Commercial Tabletop Sweeteners Using Thermal Analysis. Biology and Life Sciences Forum, 40(1), 35. https://doi.org/10.3390/blsf2024040035