The Study of Natural Compounds as Antidepressants by Bioinformatics Methods †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ligand Selection and Assessment of Their Drug and Lead-Likeness Features
2.2. Computational Pharmacokinetics Profiles of Natural Compounds
2.3. Predicted Biological Activities of Natural Compounds on SERT, 5-HT1A and D2 by 3D-ALMOND-QSAR
3. Results
3.1. Drug-Likeness Features and Pharmacokinetics Profiles of Compounds
3.2. Predicted Biological Activities of Natural Compounds on SERT, 5-HT1A and D2
4. Discussions
4.1. The Most Active Natural Compounds on SERT, 5-HT1A and D2 Active Sites
4.2. The Drug-Likeness Features and Pharmacokinetics Profiles of the Most Active Compounds
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Depression. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 16 April 2021).
- Avram, S.; Milac, A.-L.; Mihailescu, D. 3D-QSAR Study Indicates an Enhancing Effect of Membrane Ions on Psychiatric Drugs Targeting Serotonin Receptor 5-HT1A. Mol. Biosyst. 2012, 8, 1418. [Google Scholar] [CrossRef]
- Yuan, Z.; Chen, Z.; Xue, M.; Zhang, J.; Leng, L. Application of Antidepressants in Depression: A Systematic Review and Meta-Analysis. J. Clin. Neurosci. 2020, 80, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Bae, H. Therapeutic Effects of Phytochemicals and Medicinal Herbs on Depression. BioMed Res. Int. 2017, 2017, 6596241. [Google Scholar] [CrossRef]
- Udrea, A.-M. Computational approaches of new perspectives in the treatment of depression during pregnancy. Farmacia 2018, 66, 680–687. [Google Scholar] [CrossRef]
- Khawam, E.A.; Laurencic, G.; Malone, D.A. Side Effects of Antidepressants: An Overview. Clevel. Clin. J. Med. 2006, 73, 351–353, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, M.H.; Fava, M.; Wisniewski, S.R.; Thase, M.E.; Quitkin, F.; Warden, D.; Ritz, L.; Nierenberg, A.A.; Lebowitz, B.D.; Biggs, M.M.; et al. Medication Augmentation after the Failure of SSRIs for Depression. N. Engl. J. Med. 2006, 354, 1243–1252. [Google Scholar] [CrossRef] [PubMed]
- Avram, S.; Puia, A.; Udrea, A.M.; Mihailescu, D.; Mernea, M.; Dinischiotu, A.; Oancea, F.; Stiens, J. Natural Compounds Therapeutic Features in Brain Disorders by Experimental, Bioinformatics and Cheminformatics Methods. Curr. Med. Chem. 2020, 27, 78–98. [Google Scholar] [CrossRef] [PubMed]
- Udrea, A.-M.; Mernea, M.; Buiu, C.; Avram, S. Scutellaria Baicalensis Flavones as Potent Drugs against Acute Respiratory Injury during SARS-CoV-2 Infection: Structural Biology Approaches. Processes 2020, 8, 1468. [Google Scholar] [CrossRef]
- Udrea, A.M.; Gradisteanu Pircalabioru, G.; Boboc, A.A.; Mares, C.; Dinache, A.; Mernea, M.; Avram, S. Advanced Bioinformatics Tools in the Pharmacokinetic Profiles of Natural and Synthetic Compounds with Anti-Diabetic Activity. Biomolecules 2021, 11, 1692. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Liang, Y.; Yang, Y.; Liu, Z.; Yao, K.; Chen, Z.; Zhai, S. Chinese Herbal Medicine for the Treatment of Depression: Applications, Efficacies and Mechanisms. Curr. Pharm. Des. 2017, 23, 5180–5190. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Kabra, A.; Rao, M.M.; Prajapati, P.K. Herbal and Holistic Solutions for Neurodegenerative and Depressive Disorders: Leads from Ayurveda. Curr. Pharm. Des. 2018, 24, 2597–2608. [Google Scholar] [CrossRef] [PubMed]
- Herbal Medicine for Depression, Anxiety and Insomnia: A Review of Psychopharmacology and Clinical Evidence—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0924977X1100071X (accessed on 22 December 2021).
- Avram, S.; Mernea, M.; Bagci, E.; Hritcu, L.; Borcan, L.-C.; Mihailescu, D.F. Advanced Structure-Activity Relationships Applied to Mentha Spicata L. Subsp. Spicata Essential Oil Compounds as AChE and NMDA Ligands, in Comparison with Donepezil, Galantamine and Memantine—New Approach in Brain Disorders Pharmacology. CNS Neurol. Disord. Drug Targets 2017, 16, 800–811. [Google Scholar] [CrossRef]
- Avram, S.; Movileanu, L.; Mihailescu, D.; Flonta, M.-L. Comparative Study of Some Energetic and Steric Parameters of the Wild Type and Mutants HIV-1 Protease: A Way to Explain the Viral Resistance. J. Cell. Mol. Med. 2002, 6, 251–260. [Google Scholar] [CrossRef]
- Milac, A.-L.; Avram, S.; Petrescu, A.-J. Evaluation of a Neural Networks QSAR Method Based on Ligand Representation Using Substituent Descriptors: Application to HIV-1 Protease Inhibitors. J. Mol. Graph. Model. 2006, 25, 37–45. [Google Scholar] [CrossRef]
- Avram, S.; Duda-Seiman, D.; Borcan, F.; Wolschann, P. QSAR-CoMSIA Applied to Antipsychotic Drugs with Their Dopamine D2 and Serotonine 5HT2A Membrane Receptors. J. Serbian Chem. Soc. 2011, 76, 263–281. [Google Scholar] [CrossRef]
- Avram, S.; Buiu, C.; Duda-Seiman, D.M.; Duda-Seiman, C.; Mihailescu, D. 3D-QSAR Design of New Escitalopram Derivatives for the Treatment of Major Depressive Disorders. Sci. Pharm. 2010, 78, 233–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Long, Y.; Yu, S.; Li, D.; Yang, M.; Guan, Y.; Zhang, D.; Wan, J.; Liu, S.; Shi, A.; et al. Natural Volatile Oils Derived from Herbal Medicines: A Promising Therapy Way for Treating Depressive Disorder. Pharmacol. Res. 2021, 164, 105376. [Google Scholar] [CrossRef] [PubMed]
- Avram, S.; Stan, M.S.; Udrea, A.M.; Buiu, C.; Boboc, A.A.; Mernea, M. 3D-ALMOND-QSAR Models to Predict the Antidepressant Effect of Some Natural Compounds. Pharmaceutics 2021, 13, 1449. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021: New Data Content and Improved Web Interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. J. Comb. Chem. 1999, 1, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Egan, W.J.; Merz, K.M.; Baldwin, J.J. Prediction of Drug Absorption Using Multivariate Statistics. J. Med. Chem. 2000, 43, 3867–3877. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. PkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef] [PubMed]
- PDSP. Available online: https://pdsp.unc.edu/databases/kidb.php (accessed on 22 December 2021).
- Tozar, T.; Santos Costa, S.; Udrea, A.-M.; Nastasa, V.; Couto, I.; Viveiros, M.; Pascu, M.L.; Romanitan, M.O. Anti-Staphylococcal Activity and Mode of Action of Thioridazine Photoproducts. Sci. Rep. 2020, 10, 18043. [Google Scholar] [CrossRef] [PubMed]
Compound | Hepatotoxicity | AMES Toxicity | hERG I Inhibitor | hERG II Inhibitor |
---|---|---|---|---|
linalyl acetate | No | No | No | No |
1,8-cineole | No | No | No | No |
neryl acetate | No | No | No | No |
paroxetine | Yes | Yes | No | Yes |
ziprasidone | Yes | No | No | Yes |
spiperone | Yes | No | No | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avram, S.; Stan, M.S.; Udrea, A.M.; Buiu, C.; Mernea, M. The Study of Natural Compounds as Antidepressants by Bioinformatics Methods. Biol. Life Sci. Forum 2021, 7, 10. https://doi.org/10.3390/ECB2021-10268
Avram S, Stan MS, Udrea AM, Buiu C, Mernea M. The Study of Natural Compounds as Antidepressants by Bioinformatics Methods. Biology and Life Sciences Forum. 2021; 7(1):10. https://doi.org/10.3390/ECB2021-10268
Chicago/Turabian StyleAvram, Speranta, Miruna Silvia Stan, Ana Maria Udrea, Catalin Buiu, and Maria Mernea. 2021. "The Study of Natural Compounds as Antidepressants by Bioinformatics Methods" Biology and Life Sciences Forum 7, no. 1: 10. https://doi.org/10.3390/ECB2021-10268
APA StyleAvram, S., Stan, M. S., Udrea, A. M., Buiu, C., & Mernea, M. (2021). The Study of Natural Compounds as Antidepressants by Bioinformatics Methods. Biology and Life Sciences Forum, 7(1), 10. https://doi.org/10.3390/ECB2021-10268