A Green Method to Synthesize Size-Controllable Gold Nanostars for Photothermal Therapy and Photoacoustic Imaging †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of AuNS
2.3. Characterization
2.4. In Vitro PTT
2.5. In Vitro PAI
3. Results and Discussion
3.1. TEM and UV–Vis Absorption Spectra
3.2. In Vitro PTT
3.3. In Vitro PAI
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, X.; El-Sayed, M.A. Plasmonic photo-thermal therapy (PPTT). Alex. J. Med. 2011, 47, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Phan, T.T.V.; Bui, N.Q.; Cho, S.-W.; Bharathiraja, S.; Manivasagan, P.; Moorthy, M.S.; Mondal, S.; Kim, C.-S.; Oh, J. Photoacoustic Imaging-Guided Photothermal Therapy with Tumor-Targeting HA-FeOOH@PPy Nanorods. Sci. Rep. 2018, 8, 8809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, J.; Beard, P.C.; Bohndiek, S.E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 2016, 13, 639–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phan, T.T.V.; Bharathiraja, S.; Nguyen, V.T.; Moorthy, M.S.; Manivasagan, P.; Lee, K.D.; Oh, J. Polypyrrole–methylene blue nanoparticles as a single multifunctional nanoplatform for near-infrared photo-induced therapy and photoacoustic imaging. RSC Adv. 2017, 7, 35027–35037. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; El-Sayed, M.A. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 2010, 1, 13–28. [Google Scholar] [CrossRef] [Green Version]
- Khoury, C.G.; Vo-Dinh, T. Gold Nanostars For Surface-Enhanced Raman Scattering: Synthesis, Characterization and Optimization. J. Phys. Chem. C 2008, 112, 18849–18859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moorthy, M.S.; Bharathiraja, S.; Manivasagan, P.; Oh, Y.; Phan, T.T.V.; Mondal, S.; Kim, H.; Lee, K.D.; Oh, J. Synthesis of Fe3O4 modified mesoporous silica hybrid for pH-responsive drug delivery and magnetic hyperthermia applications. J. Porous Mater. 2017, 25, 1251–1264. [Google Scholar] [CrossRef]
- Wu, H.-Y.; Liu, M.; Huang, M.H. Direct Synthesis of Branched Gold Nanocrystals and Their Transformation into Spherical Nanoparticles. J. Phys. Chem. B 2006, 110, 19291–19294. [Google Scholar] [CrossRef] [PubMed]
- Bakr, O.M.; Wunsch, B.H.; Stellacci, F. High-Yield Synthesis of Multi-Branched Urchin-Like Gold Nanoparticles. Chem. Mater. 2006, 18, 3297–3301. [Google Scholar] [CrossRef]
- Bui, N.Q.; Cho, S.-W.; Moorthy, M.S.; Park, S.M.; Piao, Z.; Nam, S.Y.; Kang, H.W.; Kim, C.-S.; Oh, J. In vivo photoacoustic monitoring using 700-nm region Raman source for targeting Prussian blue nanoparticles in mouse tumor model. Sci. Rep. 2018, 8, 2000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phan, T.T.V. A Green Method to Synthesize Size-Controllable Gold Nanostars for Photothermal Therapy and Photoacoustic Imaging. Biol. Life Sci. Forum 2021, 7, 5. https://doi.org/10.3390/ECB2021-10278
Phan TTV. A Green Method to Synthesize Size-Controllable Gold Nanostars for Photothermal Therapy and Photoacoustic Imaging. Biology and Life Sciences Forum. 2021; 7(1):5. https://doi.org/10.3390/ECB2021-10278
Chicago/Turabian StylePhan, Thi Tuong Vy. 2021. "A Green Method to Synthesize Size-Controllable Gold Nanostars for Photothermal Therapy and Photoacoustic Imaging" Biology and Life Sciences Forum 7, no. 1: 5. https://doi.org/10.3390/ECB2021-10278
APA StylePhan, T. T. V. (2021). A Green Method to Synthesize Size-Controllable Gold Nanostars for Photothermal Therapy and Photoacoustic Imaging. Biology and Life Sciences Forum, 7(1), 5. https://doi.org/10.3390/ECB2021-10278