Machine Intelligent Hybrid Methods Based on Kalman Filter and Wavelet Transform for Short-Term Wind Speed Prediction
Abstract
:1. Introduction
2. Background Theories
2.1. ARIMA Model
2.2. Wavelet Transform (WT)
2.3. Kalman Filter (KF)
- the prediction step
- the correction step
3. Hybrid Models Framework
3.1. ARIMA-WT-ML
3.2. KF-WT-ML
4. Data Description and Evaluation Metrics
4.1. Data Description
4.2. Evaluation Metrics
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Georgilakis, P.S. Technical challenges associated with the integration of wind power into power systems. Renew. Sustain. Energy Rev. 2008, 12, 852–863. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.C.; Milligan, M.R.; DeMeo, E.A.; Parsons, B. Utility wind integration and operating impact state of the art. IEEE Trans. Power Syst. 2007, 22, 900–908. [Google Scholar] [CrossRef]
- Soder, L.; Hofmann, L.; Orths, A.; Holttinen, H.; Wan, Y.; Tuohy, A. Experience from wind integration in some high penetration areas. IEEE Trans. Energy Convers. 2007, 22, 4–12. [Google Scholar] [CrossRef]
- Dhiman, H.S.; Deb, D.; Balas, V.E. Supervised Machine Learning in Wind Forecasting and Ramp Event Prediction; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Tascikaraoglu, A.; Uzunoglu, M. A review of combined approaches for prediction of short-term wind speed and power. Renew. Sustain. Energy Rev. 2014, 34, 243–254. [Google Scholar] [CrossRef]
- Han, Q.; Meng, F.; Hu, T.; Chu, F. Non-parametric hybrid models for wind speed forecasting. Energy Convers. Manag. 2017, 148, 554–568. [Google Scholar] [CrossRef]
- Chang, W.Y. A literature review of wind forecasting methods. J. Power Energy Eng. 2014, 2, 161. [Google Scholar] [CrossRef]
- Liu, D.; Niu, D.; Wang, H.; Fan, L. Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm. Renew. Energy 2014, 62, 592–597. [Google Scholar] [CrossRef]
- Cadenas, E.; Rivera, W. Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model. Renew. Energy 2010, 35, 2732–2738. [Google Scholar] [CrossRef]
- Liu, H.; Tian, H.Q.; Pan, D.F.; Li, Y.F. Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks. Appl. Energy 2013, 107, 191–208. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, J.; Dong, Y.; Wu, J. Combined forecasting models for wind energy forecasting: A case study in China. Renew. Sustain. Energy Rev. 2015, 44, 271–288. [Google Scholar] [CrossRef]
- Dhiman, H.S.; Deb, D.; Foley, A.M. Bilateral Gaussian Wake Model Formulation for Wind Farms: A Forecasting based approach. Renew. Sustain. Energy Rev. 2020, 127, 109873. [Google Scholar] [CrossRef]
- Dhiman, H.S.; Anand, P.; Deb, D. Wavelet transform and variants of SVR with application in wind forecasting. In Innovations in Infrastructure; Springer: Singapore, 2019; pp. 501–511. [Google Scholar]
- Bossanyi, E. Short-Term Wind Prediction Using Kalman Filters. Wind. Eng. 1985, 9, 1–8. [Google Scholar]
- Su, Z.; Wang, J.; Lu, H.; Zhao, G. A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting. Energy Convers. Manag. 2014, 85, 443–452. [Google Scholar] [CrossRef]
- Liu, H.; Tian, H.-Q.; Li, Y.-F. Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction. Appl. Energy 2012, 98, 415–424. [Google Scholar] [CrossRef]
- Hur, S.-H. Short-term wind speed prediction using Extended Kalman filter and machine learning. Energy Rep. 2021, 7, 1046–1054. [Google Scholar] [CrossRef]
- Lio, W.H.; Li, A.; Meng, F. Real-time rotor effective wind speed estimation using Gaussian process regression and Kalman filtering. Renew. Energy 2021, 169, 670–686. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, H.; Li, C.; Zhang, K. A hybrid nonlinear forecasting strategy for short-term wind speed. Energies 2020, 13, 1596. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Chen, H. A novel decomposition-ensemble prediction model for ultra-short-term wind speed. Energy Convers. Manag. 2021, 248, 114775. [Google Scholar] [CrossRef]
- Tian, Z. Modes decomposition forecasting approach for ultra-short-term wind speed. Appl. Soft Comput. 2021, 105, 107303. [Google Scholar] [CrossRef]
- Tian, Z.; Li, H.; Li, F. A combination forecasting model of wind speed based on decomposition. Energy Rep. 2021, 7, 1217–1233. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, S.; Xiao, L.; Fu, T. Wind speed forecasting based on multi-objective grey wolf optimisation algorithm, weighted information criterion, and wind energy conversion system: A case study in Eastern China. Energy Convers. Manag. 2021, 243, 114402. [Google Scholar] [CrossRef]
- Altan, A.; Karasu, S.; Zio, E. A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer. Appl. Soft Comput. 2021, 100, 106996. [Google Scholar] [CrossRef]
- Duan, J.; Zuo, H.; Bai, Y.; Duan, J.; Chang, M.; Chen, B. Short-term wind speed forecasting using recurrent neural networks with error correction. Energy 2021, 217, 119397. [Google Scholar] [CrossRef]
- Karasu, S.; Saraç, Z. Classification of power quality disturbances by 2D-Riesz Transform, multi-objective grey wolf optimizer and machine learning methods. Digit. Signal Process. 2020, 101, 102711. [Google Scholar] [CrossRef]
- Martinez-García, F.P.; Contreras-de Villar, A.; Muñoz-Perez, J.J. Review of Wind Models at a Local Scale: Advantages and Disadvantages. J. Mar. Sci. Eng. 2021, 9, 318. [Google Scholar] [CrossRef]
- Singh, S.; Mohapatra, A. Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting. Renew. Energy 2019, 136, 758–768. [Google Scholar]
- Dhiman, H.S.; Deb, D. Machine intelligent and deep learning techniques for large training data in short-term wind speed and ramp event forecasting. Int. Trans. Electr. Energy Syst. 2021, 31, e12818. [Google Scholar] [CrossRef]
- Bajric, R.; Zuber, N.; Skrimpas, G.A.; Mijatovic, N. Feature extraction using discrete wavelet transform for gear fault diagnosis of wind turbine gearbox. Shock Vib. 2016, 2016, 6748469. [Google Scholar] [CrossRef] [Green Version]
- Catalão, J.P.d.S.; Pousinho, H.M.I.; Mendes, V.M.F. Short-term wind power forecasting in Portugal by neural networks and wavelet transform. Renew. Energy 2011, 36, 1245–1251. [Google Scholar] [CrossRef]
- Dhiman, H.S.; Deb, D.; Guerrero, J.M. Hybrid machine intelligent SVR variants for wind forecasting and ramp events. Renew. Sustain. Energy Rev. 2019, 108, 369–379. [Google Scholar] [CrossRef]
- Yang, M.; Sang, Y.F.; Liu, C.; Wang, Z. Discussion on the choice of decomposition level for wavelet based hydrological time series modeling. Water 2016, 8, 197. [Google Scholar] [CrossRef] [Green Version]
- Haney, S.A. High Content Screening: Science, Techniques and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Romanna, S.; Lingras, P.; Sombattheera, C.; Krishna, A. Multi-Disciplinary Trends in Artificial Intelligence: 7th International Workshop, MIWAI 2013, Krabi, Thailand, December 9–11. 2013, Proceedings; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8271. [Google Scholar]
- Kleinbauer, R. Kalman Filtering Implementation with Matlab; University of Stuttgart: Stuttgar, Germany, 2004. [Google Scholar]
- Gupta, S.; Singh, A.P.; Deb, D.; Ozana, S. Kalman Filter and Variants for Estimation in 2DOF Serial Flexible Link and Joint Using Fractional Order PID Controller. Appl. Sci. 2021, 11, 6693. [Google Scholar] [CrossRef]
- Louka, P.; Galanis, G.; Siebert, N.; Kariniotakis, G.; Katsafados, P.; Pytharoulis, I.; Kallos, G. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. J. Wind. Eng. Ind. Aerodyn. 2008, 96, 2348–2362. [Google Scholar] [CrossRef] [Green Version]
- Khoshrodi, M.N.; Jannati, M.; Sutikno, T. A Review of Wind Speed Estimation for Wind Turbine Systems Based on Kalman Filter Technique. Int. J. Electr. Comput. Eng. 2016, 6, 1406. [Google Scholar]
- Welch, G.; Bishop, G. An Introduction to the Kalman Filter; Department of Computer Science, University of North Carolina at Chapel Hill: Chapel Hill, NC, USA, 17 December 1997. [Google Scholar]
- Abdelgawad, A.M. Resourse-Aware Data Fusion Algorithms for Wireless Sensor Networks. Ph.D. Thesis, University of Louisiana at Lafayette, Lafayette, LA, USA, 2011. [Google Scholar]
- Kassambara, A. Machine Learning Essentials: Practical Guide in R. 2018. Available online: http://www.sthda.com (accessed on 20 October 2020).
Wind Farm (Dataset) | Data Points | Time Interval (Min.) | Terrain (on/off Shore) | Mean (m/s) | Std Dev |
---|---|---|---|---|---|
TN | 4460 | 10 | on-land | 5.03 | 1.48 |
EDP T01 | 57,428 | 10 | on-land | 5.79 | 2.48 |
Jaisalmer | 52,000 | 30 | on-land | 3.73 | 2.09 |
EDP T01 | 8808 | 60 | on-land | 4.50 | 1.81 |
Az HT1 | 8808 | 10 | hilly | 4.44 | 2.31 |
Cal HT2 | 4000 | 10 | hilly | 3.60 | 1.78 |
NREL | 20,000 | 10 | Offshore | 10.16 | 4.62 |
Orsted | 11,362 | 10 | Offshore | 9.45 | 4.72 |
Metrics | ML SVR | RF | ARIMA-WT-ML SVR | RF | KF-WT-ML SVR | RF |
---|---|---|---|---|---|---|
R2 | 0.81842 | 0.84237 | 0.99594 | 0.99996 | 0.99812 | 0.99998 |
RMSE | 0.63806 | 0.59450 | 0.06932 | 0.00648 | 0.06323 | 0.00627 |
MAE | 0.40712 | 0.35344 | 0.06229 | 0.00394 | 0.05214 | 0.00003 |
Metrics | ML SVR | RF | ARIMA-WT-ML SVR | RF | KF-WT-ML SVR | RF |
---|---|---|---|---|---|---|
R2 | 0.93240 | 0.96738 | 0.99809 | 0.99770 | 0.99888 | 0.99813 |
RMSE | 0.82982 | 0.57640 | 0.11358 | 0.12458 | 0.09861 | 0.12715 |
MAE | 0.68861 | 0.33224 | 0.09760 | 0.01552 | 0.08626 | 0.01616 |
Metrics | ML SVR | RF | ARIMA-WT-ML SVR | RF | KF-WT-ML SVR | RF |
---|---|---|---|---|---|---|
R2 | 0.48459 | 0.64206 | 0.99679 | 0.99978 | 0.99711 | 0.99997 |
RMSE | 1.48526 | 1.23775 | 0.09436 | 0.02374 | 0.11117 | 0.01023 |
MAE | 2.20600 | 1.53203 | 0.08258 | 0.00056 | 0.10023 | 0.00010 |
Metrics | ML SVR | RF | ARIMA-WT-ML SVR | RF | KF-WT-ML SVR | RF |
---|---|---|---|---|---|---|
R2 | 0.53552 | 0.66426 | 0.99694 | 0.99498 | 0.99840 | 0.99970 |
RMSE | 1.23116 | 0.9540 | 0.07311 | 0.07435 | 0.07010 | 0.03109 |
MAE | 1.51577 | 0.91011 | 0.06366 | 0.00552 | 0.05576 | 0.00096 |
Dataset | On Land TN | EDP T01 | Off-Shore Portland | Orsted | Hilly Regions Az HR1 | Cal HR2 |
---|---|---|---|---|---|---|
R2 | 0.99812 | 0.99888 | 0.99810 | 0.99703 | 0.99747 | 0.99742 |
RMSE | 0.06323 | 0.09861 | 0.20321 | 0.27273 | 0.11514 | 0.07940 |
MAE | 0.05214 | 0.08626 | 0.16784 | 0.22727 | 0.10199 | 0.00096 |
Dataset | On Land TN | EDP T01 | Off-Shore Portland | Orsted | Hilly Regions Az HR1 | Cal HR2 |
---|---|---|---|---|---|---|
R2 | 0.99998 | 0.99813 | 0.999826 | 0.99859 | 0.999961 | 0.99997 |
RMSE | 0.00627 | 0.12715 | 0.06140 | 0.18788 | 0.01428 | 0.00813 |
MAE | 0.00003 | 0.01616 | 0.003770 | 0.03530 | 0.000203 | 0.00006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, Y.; Deb, D. Machine Intelligent Hybrid Methods Based on Kalman Filter and Wavelet Transform for Short-Term Wind Speed Prediction. Wind 2022, 2, 37-50. https://doi.org/10.3390/wind2010003
Patel Y, Deb D. Machine Intelligent Hybrid Methods Based on Kalman Filter and Wavelet Transform for Short-Term Wind Speed Prediction. Wind. 2022; 2(1):37-50. https://doi.org/10.3390/wind2010003
Chicago/Turabian StylePatel, Yug, and Dipankar Deb. 2022. "Machine Intelligent Hybrid Methods Based on Kalman Filter and Wavelet Transform for Short-Term Wind Speed Prediction" Wind 2, no. 1: 37-50. https://doi.org/10.3390/wind2010003
APA StylePatel, Y., & Deb, D. (2022). Machine Intelligent Hybrid Methods Based on Kalman Filter and Wavelet Transform for Short-Term Wind Speed Prediction. Wind, 2(1), 37-50. https://doi.org/10.3390/wind2010003