Previous Issue
Volume 4, June
 
 

Astronomy, Volume 4, Issue 3 (September 2025) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
24 pages, 18383 KB  
Article
The Status of the Astrophysical Parameters of Upper Main Sequence Stars
by Lukas Kueß and Ernst Paunzen
Astronomy 2025, 4(3), 15; https://doi.org/10.3390/astronomy4030015 - 22 Aug 2025
Viewed by 472
Abstract
Calibrating the ages, masses, and radii of stars on the upper main sequence depends heavily on accurate measurements of the effective temperature (Teff) and surface gravity (logg). These parameters are difficult to obtain meticulously due to the [...] Read more.
Calibrating the ages, masses, and radii of stars on the upper main sequence depends heavily on accurate measurements of the effective temperature (Teff) and surface gravity (logg). These parameters are difficult to obtain meticulously due to the nature of hot stars, which exhibit features such as rapid rotation, atomic diffusion, pulsation, and stellar winds. We compare the Teff and logg values of apparent normal B-F stars in four recent catalogues that employ different methods and pipelines to obtain these parameters. We derived various statistical parameters to compare the differences between the catalogues and discussed the astrophysical implications of these differences. Our results show that the huge differences in Teff (up to 104 K) and logg (up to 2 dex) between the catalogues have serious implications on the determination of ages, masses, and radii of the stars in question. We conclude that there appears to be no homogeneous set of stellar parameters on the upper main sequence, and one must be cautious when interpreting results obtained from using only one of the catalogues. The homogenisation of said parameters is an essential task for the future and will have a significant impact on astrophysical research dealing with stars on the upper main sequence. Full article
Show Figures

Figure 1

29 pages, 2044 KB  
Article
Gravity Wave Phase Shift in a Cold Quark Star with a Nonconvex QCD BZT Shock Wave Van Der Waals Equation of State
by Keith Andrew, Eric V. Steinfelds and Kristopher A. Andrew
Astronomy 2025, 4(3), 14; https://doi.org/10.3390/astronomy4030014 - 22 Aug 2025
Viewed by 254
Abstract
We investigate BZT shocks and the QCD phase transition in the dense core of a cold quark star in beta equilibrium subject to the multicomponent van der Waals (MvdW) equation of state (EoS) as a model of internal structure. When this system is [...] Read more.
We investigate BZT shocks and the QCD phase transition in the dense core of a cold quark star in beta equilibrium subject to the multicomponent van der Waals (MvdW) equation of state (EoS) as a model of internal structure. When this system is expressed in terms of multiple components, it can be used to explore the impact of a phase transition from a hadronic state to a quark plasma state with a complex clustering structure. The clustering can take the form of colored diquarks or triquarks and bound colorless meson, baryon, or hyperon states at the phase transition boundary. The resulting multicomponent EoS system is nonconvex, which can give rise to Bethe–Zel’dovich–Thompson (BZT) phase-changing shock waves. Using the BZT shock wave condition, we find constraints on the quark density and examine how this changes the tidal deformability of the compact core. These results are then combined with the TOV equations to find the resulting mass and radius relationship. These states are compared to recent astrophysical high-mass neutron star systems, which may provide evidence for a core that has undergone a quark gluon phase transition such as PSR 0943+10 or GW 190814. Full article
Show Figures

Figure 1

14 pages, 6616 KB  
Article
The Use of Conditional Variational Autoencoders in Generating Stellar Spectra
by Marwan Gebran and Ian Bentley
Astronomy 2025, 4(3), 13; https://doi.org/10.3390/astronomy4030013 - 22 Aug 2025
Viewed by 220
Abstract
We present a conditional variational autoencoder (CVAE) that generates stellar spectra covering 4000 ≤ Teff ≤ 11,000 K, 2.0logg5.0 dex, 1.5[M/H]+1.5 dex, vsini300 [...] Read more.
We present a conditional variational autoencoder (CVAE) that generates stellar spectra covering 4000 ≤ Teff ≤ 11,000 K, 2.0logg5.0 dex, 1.5[M/H]+1.5 dex, vsini300 km/s, ξt between 0 and 4 km/s, and for any instrumental resolving powers less than 115,000. The spectra can be calculated in the wavelength range 4450–5400 Å. Trained on a grid of SYNSPEC spectra, the network synthesizes a spectrum in around two orders of magnitude faster than line-by-line radiative transfer. We validate the CVAE on 104 test spectra unseen during training. Pixel-wise statistics yield a median absolute residual of <1.8×103 flux units with no wavelength-dependent bias. A residual error map across the parameters plane shows |ΔF|<2×103 everywhere, and marginal diagnostics versus Teff, logg, vesini, ξt, and [M/H] reveal no relevant trends. These results demonstrate that the CVAE can serve as a drop-in, physics-aware surrogate for radiative transfer codes, enabling real-time forward modeling in stellar parameter inference and offering promising tools for spectra synthesis for large astrophysical data analysis. Full article
Show Figures

Figure 1

12 pages, 9217 KB  
Article
Nonlinearity in Turbulent Diffusion as a Possible Cause of Stellar Flares
by Elena Popova
Astronomy 2025, 4(3), 12; https://doi.org/10.3390/astronomy4030012 - 7 Jul 2025
Viewed by 310
Abstract
Extremely powerful flares releasing energy well above 1032 erg are rare compared to the typical manifestations of solar activity, which are already being routinely monitored by the existing Space Weather network—with some level of predictability. However, much less is known about the [...] Read more.
Extremely powerful flares releasing energy well above 1032 erg are rare compared to the typical manifestations of solar activity, which are already being routinely monitored by the existing Space Weather network—with some level of predictability. However, much less is known about the mechanisms behind such rare events (like the well-documented Carrington event of 1859) or about hypothetical superflares that could exceed current energy estimates by several orders of magnitude. We propose a model based on the nonlinear suppression of turbulent diffusion with increasing magnetic field, which ultimately leads to the random occurrence of regions with a magnetic field amplitude significantly exceeding the magnetic field amplitude in a regular cycle. This is similar to the mechanism of a local “explosion of an overheated boiler”. Such regions can be correlated with flares. In our model, flares have different powers. Full article
Show Figures

Figure 1

32 pages, 1934 KB  
Review
A Library of 77 Multibody Solar and Extrasolar Subsystems—A Review of Their Dynamical Properties, Global Mean-Motion Resonances, and the Landau-Damped Mean Tidal Fields
by Dimitris M. Christodoulou, Silas G. T. Laycock and Demosthenes Kazanas
Astronomy 2025, 4(3), 11; https://doi.org/10.3390/astronomy4030011 - 23 Jun 2025
Viewed by 568
Abstract
We revisit 77 relaxed (extra)solar multibody (sub)systems containing 2–9 bodies orbiting about gravitationally dominant central bodies. The listings are complete down to (sub)systems with 5 orbiting bodies and additionally contain 33 smaller systems with 2–4 orbiting bodies. Most of the multiplanet systems (68) [...] Read more.
We revisit 77 relaxed (extra)solar multibody (sub)systems containing 2–9 bodies orbiting about gravitationally dominant central bodies. The listings are complete down to (sub)systems with 5 orbiting bodies and additionally contain 33 smaller systems with 2–4 orbiting bodies. Most of the multiplanet systems (68) have been observed outside of our solar system, and very few of them (5) exhibit classical Laplace resonances (LRs). The remaining 9 subsystems have been found in our solar system; they include 7 well-known satellite groups in addition to the four gaseous giant planets and the four terrestrial planets, and they exhibit only one classical Laplace resonant chain, the famous Galilean LR. The orbiting bodies (planets, dwarfs, or satellites) appear to be locked in/near global mean-motion resonances (MMRs), as these are determined in reference to the orbital period of the most massive (most inert) body in each (sub)system. We present a library of these 77 multibody subsystems for future use and reference. The library listings of dynamical properties also include regular spacings of the orbital semimajor axes. Regularities in the spatial configurations of the bodies were determined from patterns that had existed in the mean tidal field that drove multibody migrations toward MMRs, well before the tidal field was erased by the process of `gravitational Landau damping’ which concluded its work when all major bodies had finally settled in/near the global MMRs presently observed. Finally, detailed comparisons of results help us discern the longest commonly-occurring MMR chains, distinguish the most important groups of triple MMRs, and identify a new criterion for the absence of librations in triple MMRs. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop