Methane Synthesis as a Source of Energy Loss Impacting Microbial Protein Synthesis in Beef Cattle—A Review
Simple Summary
Abstract
1. Introduction
1.1. Global Significance of Methane Emissions in Ruminant Production Systems
1.2. Overview of Microbial Protein Synthesis (MPS) in Beef Cattle
2. Microbial Protein Synthesis in the Rumen
2.1. Relevance of MPS in Ruminant Nutrition
2.2. Key Factors Influencing MPS
2.2.1. Energy Availability and Nitrogen Balance
2.2.2. Nitrogen Content and Sources
2.2.3. Rate of Passage and Synchronization of Nutrient Availability
3. Methane Synthesis in Rumen Fermentation
3.1. Biochemical Pathways of Methane Production
3.2. Contribution of Methanogenesis to Energy Losses
3.3. Relationship Between Rumen Microbes, Hydrogen Utilization, and Methane
4. Impact of CH4 on Energy Efficiency and MPS
4.1. Energy Redirection from Microbial Growth to Methane Synthesis
4.2. Implications of Methane-Related Energy Loss on Nutrient Use Efficiency
4.3. Correlation Between Methane Production and MPS
5. Mitigation Strategies for Methane and Enhancement of MPS
5.1. Dietary Interventions
5.2. Plant Secondary Metabolites (PSM) as a Methane Mitigation Strategy
5.3. Grain and Forage Management to Optimize Carbohydrate Fermentation
5.4. Defaunation-like Effect of PSM to Mitigate Methane Synthesis and Improve MPS
6. Future Directions and Research Opportunities
6.1. Emerging Technologies and Practices to Improve MPS
6.2. Microbiome Association Between CH4 and MPS
6.3. Development of Novel Feed Additives and Management Practices
6.4. Validation of Findings Through On-Farm Trials
6.5. Gaps in Research and Future Directions
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.E.; Hill, T.M.; Ward, G.M.; Johnson, K.A.; Branine, M.E.; Carmean, B.R.; Carmean, B.R.; Lodman, D.W. Ruminants and Other Animals. In Atmospheric Methane: Sources and Sinks and Role in Global, Change; Khalil, M.A.K., Ed.; Springer: Berlin/Heidelberg, Germany, 1993; Chapter 11; pp. 199–229. [Google Scholar]
- Gerber, P.J.; Hristov, A.N.; Henderson, B.; Makkar, H.; Oh, J.; Lee, C.; Meinen, R.; Montes, F.; Ott, T.; Firkins, J.; et al. Oosting. Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: A review. Animal 2013, 7, 220–234. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014 Synthesis Report; IPCC: Geneva, Szwitzerland, 2014; pp. 1059–1072. [Google Scholar]
- Beck, M.R.; Thompson, L.R.; Rowntree, J.E.; Campbell, T.N.; Koziel, J.A.; Place, S.E.; Stackhouse-Lawson, K.R. US manure methane emissions represent a greater contributor to implied climate warming than enteric methane emissions using the global warming potential* methodology. Front. Sustain. Food Syst. 2023, 7, 1209541. [Google Scholar] [CrossRef]
- EPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2013; US Environmental Protection Agency: Washington, DC, USA, 2015.
- Cabezas-Garcia, E.H.; Krizsan, S.J.; Shingfield, K.J.; Huhtanen, P. Between-cow variation in digestion and rumen fermentation variables associated with methane production. J. Dairy Sci. 2017, 100, 4409–4424. [Google Scholar] [CrossRef] [PubMed]
- Arndt, C.; Hristov, A.N.; Price, W.J.; McClelland, S.C.; Pelaez, A.M.; Cueva, S.F.; Oh, J.; Dijkstra, J.; Bannink, A.; Bayat, A.R.; et al. Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 °C target by 2030 but not 2050. Proc. Natl. Acad. Sci. USA 2022, 119, e2111294119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meinshausen, M.; Meinshausen, N.; Hare, W.; Raper, S.C.B.; Frieler, K.; Knutti, R.; Frame, D.J.; Allen, M.R. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 2009, 458, 1158–1162. [Google Scholar] [CrossRef] [PubMed]
- Qin, D.; Chen, Z.; Averyt, K.B.; Miller, H.L.; Solomon, S.; Manning, M.; Tignor, M. IPCC, 2007: Summary for Policymakers. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Beauchemin, K.A.; McAllister, T.A.; McGinn, S.M. Dietary mitigation of enteric methane from cattle. CABI Rev. 2009, 4, 1–18. [Google Scholar] [CrossRef]
- Van Gastelen, S.; Dijkstra, J.; Bannink, A. Are dietary strategies to mitigate enteric methane emission equally effective across dairy cattle, beef cattle, and sheep? J. Dairy Sci. 2019, 102, 6109–6130. [Google Scholar] [CrossRef]
- Lean, I.J.; Golder, H.M.; Grant, T.M.D.; Moate, P.J. A meta-analysis of effects of dietary seaweed on beef and dairy cattle performance and methane yield. PLoS ONE 2021, 16, e0249053. [Google Scholar] [CrossRef]
- Rotz, C.A.; Isenberg, B.J.; Stackhouse-Lawson, K.R.; Pollak, E.J. A simulation-based approach for evaluating and comparing the environmental footprints of beef production systems. J. Anim. Sci. 2013, 91, 5427–5437. [Google Scholar] [CrossRef]
- Rotz, C.A.; Asem-Hiablie, S.; Dillon, J.; Bonifacio, H. Cradle-to-farm gate environmental footprints of beef cattle production in Kansas, Oklahoma, and Texas. J. Anim. Sci. 2015, 93, 2509–2519. [Google Scholar] [CrossRef]
- Place, S.E.; Mitloehner, F.M. Pathway to Climate Neutrality for US Beef and Dairy Cattle Production; UC Davis: Davis, CA, USA, 2021. [Google Scholar]
- Dong, L.; Li, B.; Diao, Q. Effects of Dietary Forage Proportion on Feed Intake, Growth Performance, Nutrient Digestibility, and Enteric Methane Emissions of Holstein Heifers at Various Growth Stages. Animals 2019, 9, 725. [Google Scholar] [CrossRef] [PubMed]
- Eugène, M.; Klumpp, K.; Sauvant, D. Methane mitigating options with forages fed to ruminants. Grass Forage Sci. 2021, 76, 196–204. [Google Scholar] [CrossRef]
- Xie, K.; Liu, F.; Zhang, C.; Hou, F. Nitrogen utilisation, energy utilisation and methane emissions of sheep grazing in two types of pasture. Animal 2023, 17, 100705. [Google Scholar] [CrossRef] [PubMed]
- Koscheck, J.F.W.; Romanzini, E.P.; Barbero, R.P.; Delevatti, L.M.; Ferrari, A.C.; Mulliniks, J.T.; Mousquer, C.J.; Berchielli, T.T.; Reis, R.A. How do animal performance and methane emissions vary with forage management intensification and supplementation? Anim. Prod. Sci. 2020, 60, 1201–1209. [Google Scholar] [CrossRef]
- Martinez, J.J.; Löest, C.A.; McCuistion, K.C.; Wester, D.B.; Bell, N.L. Effects of monensin and protein supplementation on intake, digestion, and ruminal fermentation in beef cattle consuming low-quality forage. Appl. Anim. Sci. 2022, 38, 13–21. [Google Scholar] [CrossRef]
- Guo, C.; Wu, Y.; Li, S.; Cao, Z.; Wang, Y.; Mao, J.; Shi, H.; Shi, R.; Sun, X.; Zheng, Y.; et al. Effects of Different Forage Types on Rumen Fermentation, Microflora, and Production Performance in Peak-Lactation Dairy Cows. Fermentation 2022, 8, 507. [Google Scholar] [CrossRef]
- Mountford, H.; Waskow, D.; Gonzalez, L.; Gajjar, C.; Cogswell, N.; Holt, M.; Fransen, T.; Bergen, M.; Gerholdt, R. COP26: Key Outcomes from the UN Climate Talks in Glasgow; World Resources Institute: Washington, DC, USA, 2021. [Google Scholar]
- Vargas, J.; Ungerfeld, E.; Muñoz, C.; DiLorenzo, N. Feeding strategies to mitigate enteric methane emission from ruminants in grassland systems. Animals 2022, 12, 1132. [Google Scholar] [CrossRef]
- Shibata, M.; Terada, F.; Iwasaki, K.; Kurihara, M.; Nishida, T. Methane production in heifers, sheep and goats consuming diets of various hay-concentrate ratios. Anim. Sci. Technol. 1992, 63, 1221–1227. [Google Scholar]
- Mitsumori, M.; Sun, W. Control of rumen microbial fermentation for mitigating methane emissions from the rumen. Asian Australas. J. Anim. Sci. 2008, 21, 144–154. [Google Scholar] [CrossRef]
- Shibata, M.; Terada, F. Factors affecting methane production and mitigation in ruminants. Anim. Sci. J. 2010, 81, 2–10. [Google Scholar] [CrossRef]
- Owens, F.N.; Basalan, M. Ruminal Fermentation. In Rumenology; Millen, D., De Beni Arrigoni, M., Lauritano Pacheco, R., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Janssen, P.H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol. 2010, 160, 1–22. [Google Scholar] [CrossRef]
- Pereira, A.M.; de Lurdes Nunes Enes Dapkevicius, M.; Borba, A.E. Alternative pathways for hydrogen sink originated from the ruminal fermentation of carbohydrates: Which microorganisms are involved in lowering methane emission? Anim. Microbiome 2022, 4, 5. [Google Scholar] [CrossRef]
- Hungate, R.E. Hydrogen as an intermediate in the rumen fermentation. Arch. Mikrobiol. 1967, 59, 158–164. [Google Scholar] [CrossRef]
- Czerkawski, J.W. Degradation of solid feeds in the rumen: Spatial distribution of microbial activity and its consequences. In Control of Digestion and Metabolism in Ruminants, Proceedings of the Sixth International Symposium on Ruminant Physiology, Banff, AB, Canada, 10–14 September 1984; Prentice-Hall: Englewood Cliffs, NJ, USA, 1986; pp. 158–171. [Google Scholar]
- Hegarty, R.S.; Gerdes, R. Hydrogen production and transfer in the rumen. Recent Adv. Anim. Nutr. Aust. 1999, 12, 37–44. [Google Scholar]
- Ungerfeld, E.M. Metabolic hydrogen flows in rumen fermentation: Principles and possibilities of interventions. Front. Microbiol. 2020, 11, 589. [Google Scholar] [CrossRef]
- Ungerfeld, E.M. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: A meta-analysis. Front. Microbiol. 2015, 6, 37. [Google Scholar] [CrossRef]
- Rosmalia, A.; Sahroni, W.P.; Permana, I.G. Effect of rumen degradable protein and sulfur supplementation on in vitro digestibility and ruminal fermentation. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; Volume 951, p. 012013. [Google Scholar]
- Thompson, F.; Lamming, G.E. The flow of digesta, dry matter and starch to the duodenum in sheep given rations containing straw of varying particle size. Br. J. Nutr. 1972, 28, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Broderick, G.A. Desirable characteristics of forage legumes for improving protein utilization in ruminants. J. Anim. Sci. 1995, 73, 2760–2773. [Google Scholar] [CrossRef]
- Oba, M.; Allen, M.S. Effects of diet fermentability on efficiency of microbial nitrogen production in lactating dairy cows. J. Dairy Sci. 2003, 86, 195–207. [Google Scholar] [CrossRef]
- Nocek, J.E.; Russell, J. Protein and energy as an integrated system. Relationship of ruminal protein and carbohydrate availability to microbial synthesis and milk production. J. Dairy Sci. 1988, 71, 2070–2107. [Google Scholar] [CrossRef]
- Dijkstra, J.; Ellis, J.L.; Kebreab, E.; Strathe, A.B.; López, S.; France, J.; Bannink, A. Ruminal pH regulation and nutritional consequences of low pH. Anim. Feed Sci. Technol. 2012, 172, 22–33. [Google Scholar] [CrossRef]
- Firkins, J.L.; Eastridge, M.L.; St-Pierre, N.R.; Noftsger, S.M. Effects of grain variability and processing on starch utilization by lactating dairy cattle. J. Anim. Sci. 2001, 79 (Suppl. E), E218–E238. [Google Scholar] [CrossRef]
- Hoover, W.H. Chemical factors involved in ruminal fiber digestion. J. Dairy Sci. 1986, 69, 2755–2766. [Google Scholar] [CrossRef]
- National Research Council. Ruminant Nitrogen Usage. National Academy of Sciences; National Academy Press: Washington, DC, USA, 1985. [Google Scholar]
- Beauchemin, K.A.; McGinn, S.M. Methane emissions from feedlot cattle fed barley or corn diets. J. Anim. Sci. 2005, 83, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Ominski, K.H.; Boadi, D.A.; Wittenberg, K.M. Enteric methane emissions from backgrounded cattle consuming all-forage diets. Can. J. Anim. Sci. 2006, 86, 393–400. [Google Scholar] [CrossRef]
- NASEM. Nutrient Requirements of Beef Cattle, 8th ed.; National Academies Press: Washington, DC, USA, 2016; ISBN 978-0-309-31702-3. [Google Scholar]
- Bergen, W.G.; Bates, D.B.; Johnson, D.E.; Waller, J.C.; Black, J.R. Ruminal microbial protein synthesis and efficiency. Agric. Econ. Staff. Pap. Mich. State Univ. 1980, 82. [Google Scholar]
- Storm, E.; Ørskov, E.R. The nutritive value of rumen micro-organisms in ruminants: 1. Large-scale isolation and chemical composition of rumen micro-organisms. Br. J. Nutr. 1983, 50, 463–470. [Google Scholar] [CrossRef]
- Satter, L.D.; Klopfenstein, T.J.; Erickson, G.E. The role of nutrition in reducing nutrient output from ruminants. J. Anim. Sci. 2002, 80, E143–E156. [Google Scholar] [CrossRef]
- National Research Council, Committee on Animal Nutrition, and Subcommittee on Dairy Cattle Nutrition. Nutrient Requirements of Dairy Cattle: 2001; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Broderick, G.A.; Colombini, S. In vitro methods to determine rate and extent of ruminal protein degradation. In Energy and Protein Metabolism and Nutrition; Wageningen Academic Publishers: Wageningen, The Netherlands, 2010. [Google Scholar]
- Clark, J.H.; Klusmeyer, T.H.; Cameron, M.R. Microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows. J. Dairy Sci. 1992, 75, 2304–2323. [Google Scholar] [CrossRef]
- Galyean, M.L.; Tedeschi, L.O. Predicting microbial protein synthesis in beef cattle: Relationship to intakes of total digestible nutrients and crude protein. J. Anim. Sci. 2014, 92, 5099–5111. [Google Scholar] [CrossRef]
- Ørskov, E.R.; Fraser, C. The effects of processing of barley-based supplements on rumen pH, rate of digestion and voluntary intake of dried grass in sheep. Br. J. Nutr. 1975, 34, 493–500. [Google Scholar] [CrossRef]
- Wallace, R.J.; McPherson, C.A. Factors affecting the rate of breakdown of bacterial protein in rumen fluid. Br. J. Nutr. 1987, 58, 313–323. [Google Scholar] [CrossRef]
- Sniffen, C.J.; Robinson, P.H. Microbial growth and flow as influenced by dietary manipulations. J. Dairy Sci. 1987, 70, 425–441. [Google Scholar] [CrossRef]
- De Visser, H.; Klop, A.; Van der Meulen, J.; Van Vuuren, A.M. Influence of maturity of grass silage and flaked corn starch on the production and metabolism of volatile fatty acids in dairy cows. J. Dairy Sci. 1998, 81, 1028–1035. [Google Scholar] [CrossRef]
- Hoover, W.H.; Stokes, S.R. Balancing carbohydrates and proteins for optimum rumen microbial yield. J. Dairy Sci. 1991, 74, 3630–3644. [Google Scholar] [CrossRef]
- Russell, J.B.; Wilson, D.B. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? J. Dairy Sci. 1996, 79, 1503–1509. [Google Scholar] [CrossRef]
- Bünemann, K.; Johannes, M.; Schmitz, R.; Hartwiger, J.; Soosten, D.V.; Hüther, L.; Meyer, U.; Westendarp, H.; Hummel, J.; Zeyner, A.; et al. Effects of Different Concentrate Feed Proportions on Ruminal Ph Parameters, Duodenal Nutrient Flows and Efficiency of Microbial Crude Protein Synthesis in Dairy Cows During Early Lactation. Animals 2020, 10, 267. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bach, A.; Calsamiglia, S.; Stern, M.D. Nitrogen metabolism in the rumen. J. Dairy Sci. 2005, 88, E9–E21. [Google Scholar] [CrossRef]
- Isaacson, H.R.; Hinds, F.C.; Bryant, M.P.; Owens, F.N. Efficiency of energy utilization by mixed rumen bacteria in continuous culture. J. Dairy Sci. 1975, 58, 1645–1659. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, L.A.; Garnsworth, P.C.; Newbold, J.R.; Buttery, P.J. Effect of synchronizing the rate of dietary energy and nitrogen release on rumen fermentation and microbial protein synthesis in sheep. J. Agric. Sci. 1993, 120, 251–263. [Google Scholar] [CrossRef]
- Makkar, H.P.; Blümmel, M.; Becker, K. In vitro effects of and interactions between tannins and saponins and fate of tannins in the rumen. J. Sci. Food Agric. 1995, 69, 481–493. [Google Scholar] [CrossRef]
- Kim, J.N.; Henriksen, E.D.; Cann, I.K.; Mackie, R.I. Nitrogen utilization and metabolism in Ruminococcus albus 8. Appl. Environ. Microbiol. 2014, 80, 3095–3102. [Google Scholar] [CrossRef]
- Hackmann, T.J.; Diese, L.E.; Firkins, J.L. Quantifying the responses of mixed rumen microbes to excess carbohydrate. Appl. Environ. Microbiol. 2013, 79, 3786–3795. [Google Scholar] [CrossRef] [PubMed]
- Hubbell, D.S.; Goetsch, A.L.; Galloway Sr, D.L.; Forster, L.A., Jr.; Sun, W.; Harrison, K.F. Digestion and performance responses to lasalocid and concentrate supplements by beef cattle fed bermudagrass hay. Arch. Anim. Nutr. 1992, 42, 79–92. [Google Scholar] [CrossRef]
- Salter, D.N.; Smith, R.H.; Hewitt, D. Factors affecting the capture of dietary nitrogen by micro-organisms in the forestomachs of the young steer. Experiments with [15N] urea. Br. J. Nutr. 1983, 50, 427–435. [Google Scholar] [CrossRef]
- Stern, M.D.; Hoover, W.H. Methods for determining and factors affecting rumen microbial protein synthesis: A review. J. Anim. Sci. 1979, 49, 1590–1603. [Google Scholar] [CrossRef]
- Salter, D.N.; Daneshvar, K.; Smith, R.H. The origin of nitrogen incorporated into compounds in the rumen bacteria of steers given protein-and urea-containing diets. Br. J. Nutr. 1979, 41, 197–209. [Google Scholar] [CrossRef]
- Wells, J.E.; Russell, J.B. Why do many ruminal bacteria die and lyse so quickly? J. Dairy Sci. 1996, 79, 1487–1495. [Google Scholar] [CrossRef]
- Dewhurst, R.J.; Davies, D.R.; Merry, R.J. Microbial protein supply from the rumen. Anim. Feed Sci. Technol. 2000, 85, 1–21. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Beef Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 1996. [Google Scholar]
- National Research Council. Nutrient Requirements of Beef Cattle: Update 2000; National Academies Press: Washington, DC, USA, 2000. [Google Scholar]
- Chibisa, G.E.; Beauchemin, K.A. Effects of feeding corn silage from short-season hybrids and extending the backgrounding period on production performance and carcass traits of beef cattle. J. Anim. Sci. 2018, 96, 2490–2503. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.B.; Banta, J.P.; Foster, J.L.; Redmon, L.A.; Machado, T.J.; Tedeschi, L.O.; Rouquette, F.M., Jr. Evaluation of growth performance and carcass characteristics of beef stocker cattle grazing Tifton 85 bermudagrass supplemented with dried distillers’ grains with solubles then finished in the feedlot. Appl. Anim. Sci. 2020, 36, 308–319. [Google Scholar] [CrossRef]
- Olson, K.; Harty, A. BEEF. Supplementation of Beef Cows; SDSU Extension: Brookings, SD, USA, 2020; Chapter 18. [Google Scholar]
- Sinclair, L.A.; Garnsworthy, P.C.; Newbold, J.R.; Buttery, P.J. Effects of synchronizing the rate of dietary energy and nitrogen release in diets with a similar carbohydrate composition on rumen fermentation and microbial protein synthesis in sheep. J. Agric. Sci. 1995, 124, 463–472. [Google Scholar] [CrossRef]
- Bowen, J.M.; McCabe, M.S.; Lister, S.J.; Cormican, P.; Dewhurst, R.J. Evaluation of microbial communities associated with the liquid and solid phases of the rumen of cattle offered a diet of perennial ryegrass or white clover. Front. Microbiol. 2018, 9, 2389. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.Q.; Zhang, Y.D.; Zhao, M.; Zhang, T.; Zhu, D.; Bu, D.P.; Wang, J.Q. Effect of dietary energy source and level on nutrient digestibility, rumen microbial protein synthesis, and milk performance in lactating dairy cows. J. Dairy Sci. 2015, 98, 7209–7217. [Google Scholar] [CrossRef]
- Atasoglu, C.; Valdés, C.; Newbold, C.J.; Wallace, R.J. Influence of peptides and amino acids on fermentation rate and de novo synthesis of amino acids by mixed micro-organisms from the sheep rumen. Br. J. Nutr. 1999, 81, 307–314. [Google Scholar] [CrossRef]
- Atasoglu, C.; Guliye, A.Y.; Wallace, R.J. Use of stable isotopes to measure de novo synthesis and turnover of amino acid-C and -N in mixed micro-organisms from the sheep rumen in vitro. Br. J. Nutr. 2004, 91, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Allison, M.J.; Bryant, M.P.; Doetsch, R.N. Studies on the Metabolic Function of Branched-Chain Volatile Fatty Acids, Growth Factors for Ruminococci I: Incorporation of Isovalerate into Leucine. J. Bacteriol. 1962, 83, 523–532. [Google Scholar] [CrossRef]
- Baldwin, R.L.; Denham, S.C. Quantitative and dynamic aspects of nitrogen metabolism in the rumen: A modeling analysis. J. Anim. Sci. 1979, 49, 1631–1639. [Google Scholar] [CrossRef]
- Sannes, R.A.; Messman, M.A.; Vagnoni, D.B. Form of rumen-degradable carbohydrate and nitrogen on microbial protein synthesis and protein efficiency of dairy cows. J. Dairy Sci. 2002, 85, 900–908. [Google Scholar] [CrossRef]
- Brito, A.F.; Broderick, G.A.; Reynal, S.M. Effects of different protein supplements on omasal nutrient flow and microbial protein synthesis in lactating dairy cows. J. Dairy Sci. 2007, 90, 1828–1841. [Google Scholar] [CrossRef]
- Russell, J.B.; Sniffen, C.J.; Van Soest, P.J. Effect of carbohydrate limitation on degradation and utilization of casein by mixed rumen bacteria. J. Dairy Sci. 1983, 66, 763–775. [Google Scholar] [CrossRef] [PubMed]
- Argyle, J.L.; Baldwin, R.L. Effects of amino acids and peptides on rumen microbial growth yields. J. Dairy Sci. 1989, 72, 2017–2027. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.B.; O’connor, J.D.; Fox, D.G.; Van Soest, P.J.; Sniffen, C.J. A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. J. Anim. Sci. 1992, 70, 3551–3561. [Google Scholar] [CrossRef] [PubMed]
- Van Kessel, J.A.S.; Russell, J.B. The effect of pH on ruminal methanogenesis. FEMS Microbiol. Ecol. 1996, 20, 205–210. [Google Scholar] [CrossRef]
- Russell, J.B.; Robinson, P.H. Compositions and characteristics of strains of Streptococcus bovis. J. Dairy Sci. 1984, 67, 1525–1531. [Google Scholar] [CrossRef]
- Putri, E.M.; Zain, M.; Warly, L.; Hermon, H. Effects of rumen-degradable-to-undegradable protein ratio in ruminant diet on in vitro digestibility, rumen fermentation, and microbial protein synthesis. Vet. World 2021, 14, 640–648. [Google Scholar] [CrossRef] [PubMed]
- Broderick, G.A.; Reynal, S.M. Effect of source of rumen-degraded protein on production and ruminal metabolism in lactating dairy cows. J. Dairy Sci. 2009, 92, 2822–2834. [Google Scholar] [CrossRef]
- Charmley, E.; Veira, D.M. Inhibition of proteolysis in alfalfa silages using heat at harvest: Effects on digestion in the rumen, voluntary intake and animal performance. J. Anim. Sci. 1990, 68, 2042–2051. [Google Scholar] [CrossRef]
- Firkins, J.L.; Yu, Z.; Morrison, M. Ruminal nitrogen metabolism: Perspectives for integration of microbiology and nutrition for dairy. J. Dairy Sci. 2007, 90, E1–E16. [Google Scholar] [CrossRef]
- Polan, C.E. Update: Dietary protein and microbial protein contribution. J. Nutr. 1988, 118, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J. Nutritional Ecology of the Ruminant; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Fernández, C.; Romero, T.; Martí, J.V.; Moya, V.J.; Hernando, I.; Loor, J.J. Energy, nitrogen partitioning, and methane emissions in dairy goats differ when an isoenergetic and isoproteic diet contained orange leaves and rice straw crop residues. J. Dairy Sci. 2021, 104, 7830–7844. [Google Scholar] [CrossRef]
- Shabat, S.K.B.; Sasson, G.; Doron-Faigenboim, A.; Durman, T.; Yaacoby, S.; Berg Miller, M.E.; White, B.; Shterzer, N.; Mizrahi, I. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J. 2016, 10, 2958–2972. [Google Scholar] [CrossRef]
- Tapio, I.; Snelling, T.J.; Strozzi, F.; Wallace, R.J. The ruminal microbiome associated with methane emissions from ruminant livestock. J. Anim. Sci. Biotechnol. 2017, 8, 7. [Google Scholar] [CrossRef]
- Janssen, P.H.; Kirs, M. Structure of the archaeal community of the rumen. Appl. Environ. Microbiol. 2008, 74, 3619–3625. [Google Scholar] [CrossRef] [PubMed]
- Lambie, S.C.; Kelly, W.J.; Leahy, S.C.; Li, D.; Reilly, K.; McAllister, T.A.; Valle, E.; Atwood, G.; Altermann, E. The complete genome sequence of the rumen methanogen Methanosarcina barkeri CM1. Stand. Genom. Sci. 2015, 10, 57. [Google Scholar] [CrossRef]
- Thauer, R.K.; Kaster, A.K.; Seedorf, H.; Buckel, W.; Hedderich, R. Methanogenic archaea: Ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 2008, 6, 579–591. [Google Scholar] [CrossRef]
- Large, P.J. Physiology and Biochemistry of Methane-Producing (Methanogenic) Bacteria. In Methylotrophy and Methanogenesis; Springer: Dordrecht, The Netherlands, 1983; pp. 11–24. [Google Scholar]
- Schlegel, K.; Müller, V. Evolution of Na+ and H+ bioenergetics in methanogenic archaea. Biochem. Soc. Trans. 2013, 41, 421–426. [Google Scholar] [CrossRef]
- Honan, M.; Feng, X.; Tricarico, J.M.; Kebreab, E. Feed additives as a strategic approach to reduce enteric methane production in cattle: Modes of action, effectiveness and safety. Anim. Prod. Sci. 2021, 62, 1303–1317. [Google Scholar] [CrossRef]
- Morgavi, D.P.; Forano, E.; Martin, C.; Newbold, C.J. Microbial ecosystem and methanogenesis in ruminants. Animal 2010, 4, 1024–1036. [Google Scholar] [CrossRef] [PubMed]
- Hungate, R.E. Interrelationships in the rumen microbiota. In Physiology of Digestion and Metabolism in the Ruminant; Oriel Press Ltd.: London, UK, 1970; pp. 292–305. [Google Scholar]
- Boone, D.R.; Whitman, W.B.; Rouvière, P. Diversity and taxonomy of methanogens. In Methanogenesis: Ecology, Physiology, Biochemistry Genetics; Springer: Boston, MA, USA, 1993; pp. 35–80. [Google Scholar]
- Direkvandi, E.; Mohammadabadi, T.; Salem, A.Z. Effect of microbial feed additives on growth performance, microbial protein synthesis, and rumen microbial population in growing lambs. Transl. Anim. Sci. 2020, 4, txaa203. [Google Scholar] [CrossRef] [PubMed]
- Nasrollahi, S.M.; Zali, A.; Ghorbani, G.R.; Khani, M.; Maktabi, H.; Beauchemin, K.A. Effects of increasing diet fermentability on intake, digestion, rumen fermentation, blood metabolites and milk production of heat-stressed dairy cows. Animal 2019, 13, 2527–2535. [Google Scholar] [CrossRef]
- Wang, K.; Xiong, B.; Zhao, X. Could propionate formation be used to reduce enteric methane emission in ruminants? Sci. Total Environ. 2023, 855, 158867. [Google Scholar] [CrossRef]
- Wang, M.; Sun, X.Z.; Janssen, P.H.; Tang, S.X.; Tan, Z.L. Responses of methane production and fermentation pathways to the increased dissolved hydrogen concentration generated by eight substrates in in vitro ruminal cultures. Anim. Feed Sci. Technol. 2014, 194, 1–11. [Google Scholar] [CrossRef]
- Kohn, R.A.; Boston, R.C. The role of thermodynamics in controlling rumen metabolism. In Modelling Nutrient Utilization in Farm Animals; CABI Publishing: Wallingford, UK, 2000; pp. 11–24. [Google Scholar]
- Ungerfeld, E.M.; Kohn, R.A. The role of thermodynamics in the control of ruminal fermentation. In Ruminant Physiology; Wageningen Academic: Wageningen, The Netherlands, 2006; pp. 55–85. [Google Scholar]
- Ungerfeld, E.M.; Rust, S.R.; Burnett, R. Increases in microbial nitrogen production and efficiency in vitro with three inhibitors of ruminal methanogenesis. Can. J. Microbiol. 2007, 53, 496–503. [Google Scholar] [CrossRef]
- Pinares-Patiño, C.S.; Ebrahimi, S.H.; McEwan, J.C.; Dodds, K.G.; Clark, H.; Luo, D. Is rumen retention time implicated in sheep differences in methane emission. In Proceedings of the New Zealand Society of Animal Production; New Zealand Society of Animal Production: Wellington, New Zealand, 2011; Volume 71, pp. 219–222. [Google Scholar]
- Sauer, F.D.; Teather, R.M. Changes in oxidation reduction potentials and volatile fatty acid production by rumen bacteria when methane synthesis is inhibited. J. Dairy Sci. 1987, 70, 1835–1840. [Google Scholar] [CrossRef]
- Jiao, H.P.; Dale, A.J.; Carson, A.F.; Murray, S.; Gordon, A.W.; Ferris, C.P. Effect of concentrate feed level on methane emissions from grazing dairy cows. J. Dairy Sci. 2014, 97, 7043–7053. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Xu, Z.; Shen, Z.; Tian, Y.; Shen, H. Dietary energy level promotes rumen microbial protein synthesis by improving the energy productivity of the ruminal microbiome. Front. Microbiol. 2019, 10, 847. [Google Scholar] [CrossRef]
- Huhtanen, P.; Huuskonen, A. Modelling effects of carcass weight, dietary concentrate and protein levels on the CH4 emission, N and P excretion of dairy bulls. Livest. Sci. 2020, 232, 103896. [Google Scholar] [CrossRef]
- Fenchel, T.; Finlay, B.J. The diversity of microbes: Resurgence of the phenotype. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 1965–1973. [Google Scholar] [CrossRef]
- Newbold, C.J.; De La Fuente, G.; Belanche, A.; Ramos-Morales, E.; McEwan, N.R. The role of ciliate protozoa in the rumen. Front. Microbiol. 2015, 6, 1313. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.B. Isotrichid protozoa influence conversion of glucose to glycogen and other microbial products. J. Dairy Sci. 2011, 94, 4589–4602. [Google Scholar] [CrossRef] [PubMed]
- Denton, B.L.; Diese, L.E.; Firkins, J.L.; Hackmann, T.J. Accumulation of reserve carbohydrate by rumen protozoa and bacteria in competition for glucose. Appl. Environ. Microbiol. 2015, 81, 1832–1838. [Google Scholar] [CrossRef] [PubMed]
- Hackmann, T.J.; Firkins, J.L. Maximizing efficiency of rumen microbial protein production. Front. Microbiol. 2015, 6, 465. [Google Scholar] [CrossRef]
- Mogensen, L.; Kristensen, T.; Nguyen, T.L.T.; Knudsen, M.T.; Hermansen, J.E. Method for calculating carbon footprint of cattle feeds–including contribution from soil carbon changes and use of cattle manure. J. Clean. Prod. 2014, 73, 40–51. [Google Scholar] [CrossRef]
- Vugt, S.V.; Waghorn, G.C.; Clark, D.A.; Woodward, S.L. Impact of monensin on methane production and performance of cows fed forage diets. Proc. N. Z. Soc. Anim. Prod. 2005, 65, 362–366. [Google Scholar]
- Beauchemin, K.A.; Kreuzer, M.; O’Mara, F.; McAllister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- Herliatika, A.; Widiawati, Y.; Jayanegara, A.; Harahap, R.P.; Kusumaningrum, D.A.; Shiddieqy, M.I.; Adiati, U. Meta-analysis of the relationship between dietary starch intake and enteric methane emissions in cattle from in vivo experiments. J. Adv. Vet. Anim. Res. 2024, 11, 212. [Google Scholar] [CrossRef]
- Van Gastelen, S.; Antunes-Fernandes, E.C.; Hettinga, K.A.; Klop, G.; Alferink, S.J.J.; Hendriks, W.H.; Dijkstra, J. Enteric methane production, rumen volatile fatty acid concentrations, and milk fatty acid composition in lactating Holstein-Friesian cows fed grass silage- or corn silage-based diets. J. Dairy Sci. 2015, 98, 1915–1927. [Google Scholar] [CrossRef]
- Hristov, A.N.; Oh, J.; Firkins, J.L.; Dijkstra, J.; Kebreab, E.; Waghorn, G.; Makkar, H.P.; Adesogan, A.T.; Yang, W.; Lee, C.; et al. Special topics—Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 2013, 91, 5045–5069. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.G.; Coleman, G.S.; Williams, A.G.; Coleman, G.S. Role of protozoa in the rumen. Rumen Protozoa 1992, 317–347. [Google Scholar]
- Miller, G.A.; Auffret, M.D.; Roehe, R.; Nisbet, H.; Martínez-Álvaro, M. Different microbial genera drive methane emissions in beef cattle fed with two extreme diets. Front. Microbiol. 2023, 14, 1102400. [Google Scholar] [CrossRef] [PubMed]
- Vyas, D.; Alemu, A.W.; McGinn, S.M.; Duval, S.M.; Kindermann, M.; Beauchemin, K.A. The combined effects of supplementing monensin and 3-nitrooxypropanol on methane emissions, growth rate, and feed conversion efficiency in beef cattle fed high-forage and high-grain diets. J. Anim. Sci. 2018, 96, 2923–2938. [Google Scholar] [CrossRef]
- Boadi, D.; Wittenberg, K.; Scott, S.; Burton, D.; Buckley, K.; Small, J.; Ominski, K. Effect of low and high forage diet on enteric and manure pack greenhouse gas emissions from a feedlot. Can. J. Anim. Sci. 2004, 84, 445–453. [Google Scholar] [CrossRef]
- Watanabe, Y.; Suzuki, R.; Koike, S.; Nagashima, K.; Mochizuki, M.; Forster, R.J.; Kobayashi, Y. In vitro evaluation of cashew nutshell liquid as a methane-inhibiting and propionate-enhancing agent for ruminants. J. Dairy Sci. 2010, 93, 5258–5267. [Google Scholar] [CrossRef] [PubMed]
- Marumo, J.L.; LaPierre, P.A.; Van Amburgh, M.E. Enteric methane emissions prediction in dairy cattle and effects of monensin on methane emissions: A meta-analysis. Animals 2023, 13, 1392. [Google Scholar] [CrossRef]
- Cuervo, W.A.C. Tackling the Inefficiency of the Ruminal Ecosystem; the Impact of Methane and Glycogen as Energy Losses. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2024. [Google Scholar]
- Perna, F., Jr.; Vásquez, D.C.Z.; Gardinal, R.; Meyer, P.M.; Berndt, A.; Friguetto, R.T.S.; de Abreu Demarchi, J.J.A.; Rodrigues, P.H.M. Short-term use of monensin and tannins as feed additives on digestibility and methanogenesis in cattle. Rev. Bras. Zootec. 2020, 49, e20190098. [Google Scholar] [CrossRef]
- Benchaar, C. Feeding oregano oil and its main component carvacrol does not affect ruminal fermentation, nutrient utilization, methane emissions, milk production, or milk fatty acid composition of dairy cows. J. Dairy Sci. 2020, 103, 1516–1527. [Google Scholar] [CrossRef]
- Odongo, N.E.; Bagg, R.; Vessie, G.; Dick, P.; Or-Rashid, M.M.; Hook, S.E.; Gray, J.T.; Kebreab, E.; France, J.; McBride, B.W. Long-term effects of feeding monensin on methane production in lactating dairy cows. J. Dairy Sci. 2007, 90, 1781–1788. [Google Scholar] [CrossRef]
- Hardan, A.; Garnsworthy, P.C.; Bell, M.J. Variability in Enteric Methane Emissions among Dairy Cows during Lactation. Animals 2022, 13, 157. [Google Scholar] [CrossRef]
- FAO. The Future of Food and Agriculture: Alternative Pathways to 2050; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- Van Middelaar, C.E.; Dijkstra, J.; Berentsen, P.B.M.; De Boer, I.J.M. Cost-effectiveness of feeding strategies to reduce greenhouse gas emissions from dairy farming. J. Dairy Sci. 2014, 97, 2427–2439. [Google Scholar] [CrossRef] [PubMed]
- Ermler, U.; Grabarse, W.; Shima, S.; Goubeaud, M.; Thauer, R.K. Crystal structure of methyl-coenzyme M reductase: The key enzyme of biological methane formation. Science 1997, 278, 1457–1462. [Google Scholar] [CrossRef]
- Cieslak, A.; Szumacher-Strabel, M.; Stochmal, A.; Oleszek, W. Plant components with specific activities against rumen methanogens. Animal 2013, 7, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Schaefer, D.M.; Guo, W.S.; Ren, L.P.; Meng, Q.X. Comparisons of in vitro nitrate reduction, methanogenesis, and fermentation acid profile among rumen bacterial, protozoal and fungal fractions. Asian-Australas. J. Anim. Sci. 2011, 24, 471–478. [Google Scholar] [CrossRef]
- Jordan, E.; Lovett, D.K.; Monahan, F.J.; Callan, J.; Flynn, B.; O’mara, F.P. Effect of refined coconut oil or copra meal on methane output and on intake and performance of beef heifers. J. Anim. Sci. 2006, 84, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Vaddella, V.; Zhou, D. Effects of chestnut tannins and coconut oil on growth performance, methane emission, ruminal fermentation, and microbial populations in sheep. J. Dairy Sci. 2011, 94, 6069–6077. [Google Scholar] [CrossRef]
- Doreau, M.; Bamière, L.; Pellerin, S.; Lherm, M.; Benoit, M. Mitigation of enteric methane for French cattle: Potential extent and cost of selected actions. Anim. Prod. Sci. 2014, 54, 1417–1422. [Google Scholar] [CrossRef]
- Doreau, M.; Meynadier, A.; Fievez, V.; Ferlay, A. Ruminal metabolism of fatty acids: Modulation of polyunsaturated, conjugated, and trans fatty acids in meat and milk. In Handbook of Lipids in Human Function; AOCS Press: Champaign, IL, USA, 2016; pp. 521–542. [Google Scholar]
- Bica, R.; Palarea-Albaladejo, J.; Lima, J.; Uhrin, D.; Miller, G.A.; Bowen, J.M.; Pacheco, D.; Macrae, A.; Dewhurst, R.J. Methane emissions and rumen metabolite concentrations in cattle fed two different silages. Sci. Rep. 2022, 12, 5441. [Google Scholar] [CrossRef]
- Celis-Alvarez, M.D.; López-González, F.; Arriaga-Jordán, C.M.; Robles-Jiménez, L.E.; González-Ronquillo, M. Feeding Forage Mixtures of Ryegrass (Lolium spp.) with Clover (Trifolium spp.) Supplemented with Local Feed Diets to Reduce Enteric Methane Emission Efficiency in Small-Scale Dairy Systems: A Simulated Study. Animals 2021, 11, 946. [Google Scholar] [CrossRef]
- Woodmartin, S.; Smith, P.E.; Creighton, P.; Boland, T.M.; Dunne, E.; McGovern, F.M. Sward type alters enteric methane emissions, nitrogen output and the relative abundance of the rumen microbial ecosystem in sheep. J. Anim. Sci. 2024, 102, skae256. [Google Scholar] [CrossRef]
- Joblin, K.N. Ruminal acetogens and their potential to lower ruminant methane emissions. Aust. J. Agric. Res. 1999, 50, 1307–1314. [Google Scholar] [CrossRef]
- Asanuma, N.; Iwamoto, M.; Hino, T. Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. J. Dairy Sci. 1999, 82, 780–787. [Google Scholar] [CrossRef] [PubMed]
- Duin, E.C.; Wagner, T.; Shima, S.; Prakash, D.; Cronin, B.; Yáñez-Ruiz, D.R.; Duval, S.; Rümbeli, R.; Stemmler, R.T.; Thauer, R.K.; et al. Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol. Proc. Natl. Acad. Sci. USA 2016, 113, 6172–6177. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, S.H.; Lee, C.; Pechtl, H.A.; Hettick, J.M.; Campler, M.R.; Pairis-Garcia, M.D.; Beauchemin, K.A.; Celi, P.; Duval, S.M. Effects of 3-nitrooxypropanol on enteric methane production, rumen fermentation, and feeding behavior in beef cattle fed a high-forage or high-grain diet1. J. Anim. Sci. 2019, 97, 2687–2699. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van Gastelen, S.; Dijkstra, J.; Binnendijk, G.; Duval, S.M.; Heck, J.M.L.; Kindermann, M.; Zandstra, T.; Bannink, A. 3-Nitrooxypropanol decreases methane emissions and increases hydrogen emissions of early lactation dairy cows, with associated changes in nutrient digestibility and energy metabolism. J. Dairy Sci. 2020, 103, 8074–8093. [Google Scholar] [CrossRef] [PubMed]
- Jayanegara, A.; Wina, E.; Takahashi, J. Meta-analysis on methane mitigating properties of saponin-rich sources in the rumen: Influence of addition levels and plant sources. Asian-Australas. J. Anim. Sci. 2014, 27, 1426. [Google Scholar] [CrossRef]
- Wallace, R.J.; Arthaud, L.; Newbold, C.J. Influence of Yucca shidigera extract on ruminal ammonia concentrations and ruminal microorganisms. Appl. Environ. Microbiol. 1994, 60, 1762–1767. [Google Scholar] [CrossRef]
- Hess, H.D.; Kreuzer, M.; Dıaz, T.E.; Lascano, C.E.; Carulla, J.E.; Soliva, C.R.; Machmüller, A. Saponin rich tropical fruits affect fermentation and methanogenesis in faunated and defaunated rumen fluid. Anim. Feed Sci. Technol. 2003, 109, 79–94. [Google Scholar] [CrossRef]
- Jayanegara, A.; Goel, G.; Makkar, H.P.S.; Becker, K. Reduction in methane emissions from ruminants by plant secondary metabolites: Effects of polyphenols and saponins. In Sustainable Improvement of Animal Production and Health; Odongo, N.E., Garcia, M., Viljoen, G.J., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010; pp. 151–157. [Google Scholar]
- Hristov, A.N.; Callaway, T.R.; Lee, C.; Dowd, S.E. Rumen bacterial, archaeal, and fungal diversity of dairy cows in response to ingestion of lauric or myristic acid1. J. Anim. Sci. 2012, 90, 4449–4457. [Google Scholar] [CrossRef]
- Delgado, D.C.; Galindo, J.; González, R.; Savón, L.; Scull, I.; González, N.; Marrero, Y. Potential of tropical plants to exert defaunating effects on the rumen and to reduce methane production. In Sustainable Improvement of Animal Production and Health; FAO: Rome, Italy, 2010; pp. 49–54. [Google Scholar]
- Tamori, K.; Matsunaga, B.; Boonsaen, P.; Khongpradit, A.; Sawanon, S.; Nagashima, K.; Koike, S.; Kobayashi, Y. Feeding cashew nut shell liquid decreases methane production from feces by altering fecal bacterial and archaeal communities in Thai local ruminants. Anim. Sci. J. 2021, 92, e13569. [Google Scholar] [CrossRef]
- Owens, J.; Provenza, F.D.; Wiedmeier, R.D.; Villalba, J.J. Influence of saponins and tannins on intake and nutrient digestion of alkaloid-containing foods. J. Sci. Food Agric. 2012, 92, 2373–2378. [Google Scholar] [CrossRef] [PubMed]
- Malinow, M.R.; McLaughlin, P.; Stafford, C.; Livingston, A.L.; Kohler, G.O.; Cheeke, P.R. Comparative effects of alfalfa saponins and alfalfa fiber on cholesterol absorption in rats. Am. J. Clin. Nutr. 1979, 32, 1810–1812. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.K.; Saxena, J. Dietary phytochemicals as rumen modifiers: A review of the effects on microbial populations. Antonie Van Leeuwenhoek 2009, 96, 363–375. [Google Scholar] [CrossRef]
- Solomon, R.; Wein, T.; Levy, B.; Eshed, S.; Dror, R.; Reiss, V.; Zehavi, T.; Furman, O.; Mizrahi, I.; Jami, E. Protozoa populations are ecosystem engineers that shape prokaryotic community structure and function of the rumen microbial ecosystem. ISME J. 2022, 16, 1187–1197. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nguyen, S.H.; Nguyen, H.D.T.; Hegarty, R.S. Defaunation and its impacts on ruminal fermentation, enteric methane production and animal productivity. Livest. Res. Rural. Dev. 2020, 32, 1–9. [Google Scholar]
- Firkins, J.L. Invited Review: Advances in rumen efficiency. Appl. Anim. Sci. 2021, 37, 388–403. [Google Scholar] [CrossRef]
- Lu, C.D.; Jorgensen, N.A. Alfalfa saponins affect site and extent of nutrient digestion in ruminants. J. Nutr. 1987, 117, 919–927. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, G.; Li, Y.; Zhang, Y. Effects of High Forage/Concentrate Diet on Volatile Fatty Acid Production and the Microorganisms Involved in VFA Production in Cow Rumen. Animals 2020, 10, 223. [Google Scholar] [CrossRef]
- Guyader, J.; Eugène, M.; Noziere, P.; Morgavi, D.P.; Doreau, M.; Martin, C. Influence of rumen protozoa on methane emission in ruminants: A meta-analysis approach1. Animal 2014, 8, 1816–1825. [Google Scholar] [CrossRef]
- Finlay, B.J.; Esteban, G.; Clarke, K.J.; Williams, A.G.; Embley, T.M.; Hirt, R.P. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol. Lett. 1994, 117, 157–161. [Google Scholar] [CrossRef]
- Naumann, H.D.; Lambert, B.D.; Armstrong, S.A.; Fonseca, M.A.; Tedeschi, L.O.; Muir, J.P.; Ellersieck, M.R. Effect of replacing alfalfa with panicled-tick clover or sericea lespedeza in corn-alfalfa-based substrates on in vitro ruminal methane production. J. Dairy Sci. 2015, 98, 3980–3987. [Google Scholar] [CrossRef] [PubMed]
- Ørskov, E.R.; Ryle, M. Energy Nutrition in Ruminants; Elsevier Science Publishers: Amsterdam, The Netherlands, 1990; pp. 10–27. [Google Scholar]
- Li, Z.; Deng, Q.; Liu, Y.; Yan, T.; Li, F.; Cao, Y.; Yao, J. Dynamics of methanogenesis, ruminal fermentation and fiber digestibility in ruminants following elimination of protozoa: A meta-analysis. J. Anim. Sci. Biotechnol. 2018, 9, 89. [Google Scholar] [CrossRef]
- Millen, D.D.; Pacheco, R.D.L.; da Silva Cabral, L.; Cursino, L.L.; Watanabe, D.H.M.; Rigueiro, A.L.N. Ruminal acidosis. Rumenology 2016, 127–156. [Google Scholar]
- Maeda, K.; Nguyen, V.T.; Suzuki, T.; Yamada, K.; Kudo, K.; Hikita, C.; Le, V.P.; Nguyen, M.C.; Yoshida, N. Network analysis and functional estimation of the microbiome reveal the effects of cashew nutshell liquid feeding on methanogen behaviour in the rumen. Microb. Biotechnol. 2020, 14, 277–290. [Google Scholar] [CrossRef]
- Shinkai, T.; Enishi, O.; Mitsumori, M.; Higuchi, K.; Kobayashi, Y.; Takenaka, A.; Nagashima, K.; Mochizuki, M.; Kobayashi, Y. Mitigation of methane production from cattle by feeding cashew nutshell liquid. J. Dairy Sci. 2012, 95, 5308–5316. [Google Scholar] [CrossRef] [PubMed]
- Adetunji, A.P.; Aderinboye, R.Y.; Adebayo, K.O.; Ojo, V.O.; Idowu, P.A.; Mtileni, B. Effect of cashew nutshell liquid at varying inclusion levels on rumen fermentation and methane production in vitro. J. Anim. Behav. Biometeorol. 2020, 8, 82–87. [Google Scholar] [CrossRef]
- Sarmikasoglou, E.; Johnson, M.L.; Vinyard, J.R.; Sumadong, P.; Lobo, R.R.; Arce-Cordero, J.A.; Bahman, A.; Ravelo, A.; Halima, S.; Salas-Solis, G.K.; et al. Effects of cashew nutshell extract and monensin on microbial fermentation in a dual-flow continuous culture. J. Dairy Sci. 2023, 106, 8746–8757. [Google Scholar] [CrossRef] [PubMed]
- Danielsson, R.; Werner-Omazic, A.; Ramin, M.; Schnürer, A.; Griinari, M.; Dicksved, J.; Bertilsson, J. Effects on enteric methane production and bacterial and archaeal communities by the addition of cashew nutshell extract or glycerol—An in vitro evaluation. J. Dairy Sci. 2014, 97, 5729–5741. [Google Scholar] [CrossRef]
- Sarmikasoglou, E.; Sumadong, P.; Dagaew, G.; Johnson, M.L.; Vinyard, J.R.; Salas-Solis, G.; Siregar, M.; Faciola, A.P. Effects of Bacillus subtilis on in vitro ruminal fermentation and methane production. Transl. Anim. Sci. 2024, 8, txae054. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karnati, S.K.R.; Sylvester, J.T.; Ribeiro, C.V.D.M.; Gilligan, L.E.; Firkins, J.L. Investigating unsaturated fat, monensin, or bromoethanesulfonate in continuous cultures retaining ruminal protozoa. I. Fermentation, biohydrogenation, and microbial protein synthesis. J. Dairy Sci. 2009, 92, 3849–3860. [Google Scholar] [CrossRef]
- Cuervo, W.; Gomez, C.; Fernandez-Marenchino, I.; Maderal, A.B.; Tarnonsky, F.; Erazo-Mendes, C.; Schulmeister, T.; DiLorenzo, N. 144 Utilizing invasive pigweed (Amaranthus Spinosus) as a novel methane mitigation strategy in beef cattle feed: A sustainable approach. J. Anim. Sci. 2024, 102 (Suppl. 1), 72–73. [Google Scholar] [CrossRef]
- Terry, S.A.; Basarab, J.A.; Guan, L.L.; McAllister, T.A. Strategies to improve the efficiency of beef cattle production. Can. J. Anim. Sci. 2020, 101, 1–19. [Google Scholar] [CrossRef]
- Russell, J.B. Energy-yielding and energy-consuming reactions. Rumen Microb. Ecosyst. 1997, 246–282. [Google Scholar]
- Ramos, S.C.; Jeong, C.D.; Mamuad, L.L.; Kim, S.H.; Kang, S.H.; Kim, E.T.; Cho, Y.I.; Lee, S.S.; Lee, S.S. Diet Transition from High-Forage to High-Concentrate Alters Rumen Bacterial Community Composition, Epithelial Transcriptomes and Ruminal Fermentation Parameters in Dairy Cows. Animals 2021, 11, 838. [Google Scholar] [CrossRef]
- Hook, S.E.; Steele, M.A.; Northwood, K.S.; Dijkstra, J.; France, J.; Wright, A.D.G.; McBride, B.W. Impact of subacute ruminal acidosis (SARA) adaptation and recovery on the density and diversity of bacteria in the rumen of dairy cows. FEMS Microbiol. Ecol. 2011, 78, 275–284. [Google Scholar] [CrossRef]
- Huntington, G.B.; Harmon, D.L.; Richards, C.J. Sites, rates, and limits of starch digestion and glucose metabolism in growing cattle. J. Anim. Sci. 2006, 84 (Suppl. 13), E14–E24. [Google Scholar] [CrossRef]
- Ramos, S.; Tejido, M.L.; Martínez, M.E.; Ranilla, M.J.; Carro, M.D. Microbial protein synthesis, ruminal digestion, microbial populations, and nitrogen balance in sheep fed diets varying in forage-to-concentrate ratio and type of forage. J. Anim. Sci. 2009, 87, 2924–2934. [Google Scholar] [CrossRef] [PubMed]
- Wora-Anu, S.; Wanapat, M.; Wachirapakorn, C.; Nontaso, N. Effect of roughage sources on cellulolytic bacteria and rumen ecology of beef cattle. Asian Australas. J. Anim. Sci. 2007, 20, 1705–1712. [Google Scholar] [CrossRef]
- Wanapat, M.; Gunun, P.; Anantasook, N.; Kang, S. Changes of rumen pH, fermentation and microbial population as influenced by different ratios of roughage (rice straw) to concentrate in dairy steers. J. Agric. Sci. 2014, 152, 675–685. [Google Scholar] [CrossRef]
- Patra, A.K. Meta-analyses of effects of phytochemicals on digestibility and rumen fermentation characteristics associated with methanogenesis. J. Sci. Food Agric. 2010, 90, 2700–2708. [Google Scholar] [CrossRef]
- Dai, X.; Faciola, A.P. Evaluating strategies to reduce ruminal protozoa and their impacts on nutrient utilization and animal performance in ruminants–a meta-analysis. Front. Microbiol. 2019, 10, 2648. [Google Scholar] [CrossRef]
- Pitta, D.W.; Indugu, N.; Melgar, A.; Hristov, A.; Challa, K.; Vecchiarelli, B.; Hennessy, M.; Narayan, K.; Duval, S.; Kindermann, M.; et al. The effect of 3-nitrooxypropanol, a potent methane inhibitor, on ruminal microbial gene expression profiles in dairy cows. Microbiome 2022, 10, 146. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Oh, S.; Myint, H.; Koike, S. Use of Asian selected agricultural byproducts to modulate rumen microbes and fermentation. J. Anim. Sci. Biotechnol. 2016, 7, 70. [Google Scholar] [CrossRef] [PubMed]
- Konda, S.; Onodera, R.; Kanchanasatit, E.; Boonsaen, P.; Sawanon, S.; Nagashima, K.; Suzuki, Y.; Koike, S.; Kobayashi, Y. Effect of cashew nut shell liquid feeding on fermentation and microbiota in the rumen of Thai native cattle and swamp buffaloes. Livest. Sci. 2019, 226, 99–106. [Google Scholar] [CrossRef]
- Oh, S.; Shintani, R.; Koike, S.; Kobayashi, Y. Ginkgo fruit extract as an additive to modify rumen microbiota and fermentation and to mitigate methane production. J. Dairy Sci. 2017, 100, 1923–1934. [Google Scholar] [CrossRef]
- Sarmikasoglou, E.; Sumadong, P.; Roesch, L.F.W.; Halima, S.; Arriola, K.; Yuting, Z.; Jeong, K.C.C.; Vyas, D.; Hikita, C.; Watanabe, T.; et al. Effects of cashew nutshell extract and monensin on in vitro ruminal fermentation, methane production, and ruminal bacterial community. J. Dairy Sci. 2024, 107, 840–856. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Tan, J.; Fang, L.; Jiang, L. Harnessing meta-omics to unveil and mitigate methane emissions in ruminants: Integrative approaches and future directions. Sci. Total Environ. 2024, 951, 175732. [Google Scholar] [CrossRef]
- Xue, M.Y.; Xie, Y.Y.; Zhong, Y.; Ma, X.-J.; Sun, H.-Z.; Liu, J.-X. Integrated meta-omics reveals new ruminal microbial features associated with feed efficiency in dairy cattle. Microbiome 2022, 10, 32. [Google Scholar] [CrossRef]
- Zhao, H.; Bai, S.; Tan, J.; Liu, M.; Zhao, Y.; Jiang, L. Can meta-omics revolutionize our understanding of rumen methane emissions? Anim. Nutr. 2024, 1, e14. [Google Scholar] [CrossRef]
- Nam, K.T.; Choi, N.; Na, Y.; Choi, Y. Effect of the Temperature–Humidity Index on the Productivity of Dairy Cows and the Correlation between the Temperature–Humidity Index and Rumen Temperature Using a Rumen Sensor. Animals 2024, 14, 2848. [Google Scholar] [CrossRef]
- Fan, M.; Hu, J.; Liu, C.; Zhang, S.; Liu, Y.; Zhao, G. Investigation of the Impact Mechanism of Taurine on Rumen Microbial Protein Synthesis and Nitrogen Metabolism in Beef Steers Through Rumen Metabolomics Profiling Using Sodium Sulfate as a Contrast. Available online: https://ssrn.com/abstract=4929659 (accessed on 20 December 2024).
- Galyean, M.L.; Tedeschi, L.O. Predicting Microbial Protein Synthesis in Cattle: Evaluation of Extant Equations and Steps Needed to Improve Accuracy and Precision of Future Equations. Animals 2024, 14, 2903. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.W.; Faciola, A.P. Impacts of slow-release urea in ruminant diets: A review. Fermentation 2024, 10, 527. [Google Scholar] [CrossRef]
- Soltan, Y.A.; Patra, A.K. Advancements in Methane-Mitigating Feed Additives in Ruminants. In Feed Additives and Supplements for Ruminants; Springer Nature: Singapore, 2024; pp. 119–141. [Google Scholar]
- Zebeli, Q.; Ölschläger, V.; Tafaj, M.; Vahjen, W.; Junck, B.; Simon, O.; Drochner, W. Evaluation of counts of ruminal fibrolytic bacteria and enzyme activities in response to corn silage particle size in high-yielding dairy cows. J. Dairy Sci. 2007, 90, 618–619. [Google Scholar]
- Yang, W.Z.; Beauchemin, K.A. Altering physically effective fiber intake through forage proportion and particle length: Chewing and ruminal pH. J. Dairy Sci. 2007, 90, 2826–2838. [Google Scholar] [CrossRef]
- Haque, M. Dietary manipulation: A sustainable way to mitigate methane emissions from ruminants. J. Anim. Sci. Technol. 2018, 60, 15. [Google Scholar] [CrossRef]
- Hersom, M. Can Nutrient Synchrony Affect Performance of Forage-Fed Cattle? In Florida Ruminant Nutrition Symposium; Best Western Gateway Grand: Gainesville, FL, USA, 2008. [Google Scholar]
- Johnson, K.; Huyler, M.; Westberg, H.; Lamb, B.; Zimmerman, P. Measurement of methane emissions from ruminant livestock using a sulfur hexafluoride tracer technique. Environ. Sci. Technol. 1994, 28, 359–362. [Google Scholar] [CrossRef]
- Correa Cardona, H.J.; Jaimes Cruz, L.J. Design and operation of a spirometry mask to quantify exhaled methane emission by grazing cattle. Livest. Res. Rural. Dev. 2023, 35, 83. [Google Scholar]
- Arndt, C. First Use of a Drone to Measure Ruminant Methane Emissions in Africa. International Livestock Research Institute. 2024. Available online: https://www.ilri.org/news/first-use-drone-measure-ruminant-methane-emissions-africa (accessed on 17 September 2024).
- Capper, J.L.; Berger, L.; Brashears, M.M.; Jensen, H.H. Animal Feed vs. Human Food: Challenges and Opportunities in Sustaining Animal Agriculture Toward 2050; Staff General Research Papers Archive, (37409); Iowa State University, Department of Economics: Ames, IA, USA, 2014. [Google Scholar]
- Schader, C.; Muller, A.; Scialabba, N.E.H.; Hecht, J.; Isensee, A.; Erb, K.H.; Smith, P.; Makkar, H.P.; Klocke, P.; Leiber, F.; et al. Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability. J. R. Soc. Interface 2015, 12, 891. [Google Scholar] [CrossRef]
- Benchaar, C. Diet supplementation with cinnamon oil, cinnamaldehyde, or monensin does not reduce enteric methane production of dairy cows. Animal 2016, 10, 418–425. [Google Scholar] [CrossRef]
- Meale, S.J.; Chaves, A.V.; McAllister, T.A.; Iwaasa, A.D.; Yang, W.Z.; Benchaar, C. Including essential oils in lactating dairy cow diets: Effects on methane emissions1. Anim. Prod. Sci. 2014, 54, 1215–1218. [Google Scholar] [CrossRef]
- Tyrrell, H.F.; Moe, P.W. Net energy value for lactation of a high and low concentrate ration containing corn silage. J. Dairy Sci. 1972, 55, 1106–1112. [Google Scholar] [CrossRef]
- Moe, P.W.; Tyrell, H.F.; Hooven, N.W. Energy balance measurements with corn meal and ground oats for lactating cows. J. Dairy Sci. 1973, 56, 1149–1153. [Google Scholar] [CrossRef]
- Moe, P.W.; Tyell, H.F.; Hooven, N.W. Physical form and energy value of corn grain. J. Dairy Sci. 1973, 56, 1298–1304. [Google Scholar] [CrossRef]
- Moe, P.W.; Tyrrell, H.F. Effects of feed intake and physical form on energy value of corn in Timothy hay diets for lactating cows. J. Dairy Sci. 1977, 60, 752–758. [Google Scholar] [CrossRef]
- Moe, P.W.; Tyrrell, H.F. Effect of endosperm type on incremental energy value of corn grain for dairy cows. J. Dairy Sci. 1979, 62, 447–454. [Google Scholar] [CrossRef]
- Waldo, D.R.; Tyrrell, H.F.; Capuco, A.V.; Rexroad, C.E. Components of growth in Holstein heifers fed either alfalfa or corn silage diets to produce two daily gains. J. Dairy Sci. 1997, 80, 1674–1684. [Google Scholar] [CrossRef]
- Hindrichsen, I.K.; Wettstein, H.R.; Machmüller, A.; Kreuzer, M. Methane emission, nutrient degradation and nitrogen turnover in dairy cows and their slurry at different milk production scenarios with and without concentrate supplementation. Agric. Ecosyst. Environ. 2006, 113, 150–161. [Google Scholar] [CrossRef]
- Moate, P.J.; Williams, S.R.O.; Grainger, C.; Hannah, M.C.; Ponnampalam, E.N.; Eckard, R.J. Influence of cold-pressed canola, brewers grains and hominy meal as dietary supplements suitable for reducing enteric methane emissions from lactating dairy cows. Anim. Feed Sci. Technol. 2011, 166–167, 254–264. [Google Scholar]
- Patel, M.; Wredle, E.; Börjesson, G.; Danielsson, R.; Iwaasa, A.D.; Spörndly, E.; Bertilsson, J. Enteric methane emissions from dairy cows fed different proportions of highly digestible grass silage. Acta Agric. Scand. Sect. A Anim. Sci. 2011, 61, 128–136. [Google Scholar] [CrossRef]
- Hassanat, F.; Gervais, R.; Julien, C.; Massé, D.I.; Lettat, A.; Chouinard, P.Y.; Petit, H.V.; Benchaar, C. Replacing alfalfa silage with corn silage in dairy cow diets: Effects on enteric methane production, ruminal fermentation, digestion, N balance, and milk production. J. Dairy Sci. 2013, 96, 4553–4567. [Google Scholar] [CrossRef]
- Hatew, B.; Podesta, S.C.; Van Laar, H.; Pellikaan, W.F.; Ellis, J.L.; Dijkstra, J.; Bannink, A. Effects of dietary starch content and rate of fermentation on methane production in lactating dairy cows. J. Dairy Sci. 2015, 98, 486–499. [Google Scholar] [CrossRef]
- Place, S.E.; Pan, Y.; Zhao, Y.; Mitloehner, F.M. Short-term dose effects of feeding monensin on methane emissions from lactating Holstein dairy cattle. In Energy and Protein Metabolism and Nutrition in Sustainable Animal Production; Oltjen, J.W., Kebreab, E., Lapierre, H., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013; Volume 134. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuervo, W.; Gomez-Lopez, C.; DiLorenzo, N. Methane Synthesis as a Source of Energy Loss Impacting Microbial Protein Synthesis in Beef Cattle—A Review. Methane 2025, 4, 10. https://doi.org/10.3390/methane4020010
Cuervo W, Gomez-Lopez C, DiLorenzo N. Methane Synthesis as a Source of Energy Loss Impacting Microbial Protein Synthesis in Beef Cattle—A Review. Methane. 2025; 4(2):10. https://doi.org/10.3390/methane4020010
Chicago/Turabian StyleCuervo, Wilmer, Camila Gomez-Lopez, and Nicolas DiLorenzo. 2025. "Methane Synthesis as a Source of Energy Loss Impacting Microbial Protein Synthesis in Beef Cattle—A Review" Methane 4, no. 2: 10. https://doi.org/10.3390/methane4020010
APA StyleCuervo, W., Gomez-Lopez, C., & DiLorenzo, N. (2025). Methane Synthesis as a Source of Energy Loss Impacting Microbial Protein Synthesis in Beef Cattle—A Review. Methane, 4(2), 10. https://doi.org/10.3390/methane4020010