An Upper Ocean Thermal Field Metrics Dataset
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Derived Metrics
3.1.1. Sea Surface Temperature
3.1.2. Ocean Heat Content Using 26 °C Isotherm (OHC26)
3.1.3. Ocean Heat Content Using 20 °C Isotherm (OHC20)
3.1.4. Average Temperature to 100 m (T100)
3.1.5. Average Temperature to Temperature Difference Mixed Layer Depth (Td_ΔT_0.5)
3.1.6. Average Temperature to Potential Density Difference Mixed Layer Depth (Td_ρθ_0.15)
3.1.7. Average Temperature to Level of Maximum Stability (Td_MaxE)
- E > 0 Stable
- E = 0 Neutral Stability
- E < 0 Unstable
3.2. Tropical Cyclone Applications Using Upper Ocean Thermal Metrics
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kara, A.B.; Rochford, P.A.; Hurlburt, H.E. An optimal definition for ocean mixed layer depth. J. Geophys. Res. 2000, 105, 16803–16821. [Google Scholar] [CrossRef]
- Price, J.F. Metrics of hurricane-ocean interaction: Vertically-integrated or vertically-averaged ocean temperature? Ocean Sci. 2009, 5, 351–368. [Google Scholar] [CrossRef]
- Cummings, J.A. Operational multivariate ocean data assimilation. Quart. J. R. Met. Soc. 2005, 131, 3583–3604. [Google Scholar] [CrossRef]
- Cummings, J.A. Ocean data quality control. In Operational Oceanography in the 21st Century; Schiler, A., Brassington, G.B., Eds.; Springer: New York, NY, USA, 2011; pp. 91–121. [Google Scholar] [CrossRef]
- Cummings, J.A.; Smedstad, O.M. Variational data assimilation for the global ocean. In Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications; Park, S.K., Xu, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 2, pp. 303–343. [Google Scholar] [CrossRef]
- Fox, D.N.; Teague, W.J.; Barron, C.N.; Carnes, M.R.; Lee, C.M. The Modular Ocean Data Assimilation System (MODAS). J. Atmos. Ocean. Technol. 2002, 19, 240–252. [Google Scholar] [CrossRef]
- Merrill, R.T. An experiment in statistical prediction of tropical cyclone intensity change. In NOAA Tech Memo NWS NHC-34; National Hurricane Center: Miami, FL, USA, 1987; 34p. Available online: https://www.nhc.noaa.gov/pdf/NWS-NHC-1987-34.pdf (accessed on 22 August 2022).
- DeMaria, M.; Kaplan, J. Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. J. Clim. 1994, 7, 1324–1334. [Google Scholar] [CrossRef]
- Whitney, L.D.; Hobgood, J.S. The relationship between sea surface temperatures and maximum intensities of tropical cyclones in the eastern North Pacific Ocean. J. Clim. 1997, 10, 2921–2930. [Google Scholar] [CrossRef]
- Knaff, J.A.; Sampson CRDeMaria, M. An operational statistical typhoon intensity prediction scheme for the western North Pacific. Wea. Forecast. 2005, 20, 688–699. [Google Scholar] [CrossRef]
- Knaff, J.A.; Sampson, C.R. Southern Hemisphere tropical cyclone intensity forecast methods used at the Joint Typhoon Warning Center, Part II: Statistical—Dynamical forecasts. Aust. Meteorol. Oceanogr. J. 2009, 58, 9–18. [Google Scholar] [CrossRef]
- Miller, B.I. On the maximum intensity of hurricanes. J. Meteor. 1958, 15, 184–195. [Google Scholar] [CrossRef]
- Emanuel, K.A. An air–sea interaction theory for tropical cyclones. Part 1: Steady-state maintenance. J. Atmos. Sci. 1986, 43, 585–604. [Google Scholar] [CrossRef]
- Emanuel, K.A. The theory of hurricanes. Annu. Rev. Fluid Mech. 1991, 23, 179–196. [Google Scholar] [CrossRef]
- Holland, G.J. The maximum potential intensity of tropical cyclones. J. Atmos. Sci. 1997, 54, 2519–2541. [Google Scholar] [CrossRef]
- Leipper, D.; Volgenau, D. Upper ocean heat content of the Gulf of Mexico. J. Phys. Oceanogr. 1972, 2, 218–224. [Google Scholar] [CrossRef]
- Levitus, S. Climatological Atlas of the World Ocean, NOAA Professional Paper 13; U.S. Department of Commerce, National Oceanic and Atmospheric Administration: Rockville, MD, USA, 2013; p. 173.
- Shay, L.K.; Goni, G.J.; Black, P.G. Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev. 2000, 128, 1366–1383. [Google Scholar] [CrossRef]
- Shay, L.K.; Brewster, J.K. Oceanic heat content variability in the eastern Pacific Ocean for hurricane intensity forecasting. Mon. Weather Rev. 2010, 138, 2110–2131. [Google Scholar] [CrossRef]
- Lin, I.-I.; Black, P.; Price, J.F.; Yang, C.-Y.; Chen, S.S.; Lien, C.-C.; Harr, P.; Chi, N.-H.; Wu, C.-C.; C’Asaro, E.A. An ocean coupling potential intensity index for tropical cyclones. Geophys. Res. Lett. 2013, 40, 1878–1882. [Google Scholar] [CrossRef]
- Balaguru, K.; Foltz, G.R.; Leung, L.R.; Hagos, S.M.; Judi, D.R. On the use of ocean dynamic temperature for hurricane intensity forecasting. Weather Forecast. 2018, 33, 411–418. [Google Scholar] [CrossRef]
- Kaplan, J.; Rozoff, C.M.; DeMaria, M.; Sampson, C.R.; Kossin, J.P.; Velden, C.S.; Cione, J.J.; Dunion, J.P.; Knaff, J.A.; Zhang, J.A.; et al. Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models. Weather Forecast. 2015, 30, 1374–1396. [Google Scholar] [CrossRef]
- Knaff, J.A.; Sampson, C.R.; Strahl, B.R. A tropical cyclone rapid intensification prediction aid for the Joint Typhoon Warning Center’s areas of responsibility. Weather Forecast. 2020, 35, 1173–1185. [Google Scholar] [CrossRef]
- DeMaria, M.; Mainelli, M.; Shay, L.K.; Knaff, J.A.; Kaplan, J. Further improvement to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Weather Forecast. 2005, 20, 531–543. [Google Scholar] [CrossRef]
- DeMaria, M. A simplified dynamical system for tropical cyclone intensity prediction. Mon. Weather Rev. 2009, 137, 68–82. [Google Scholar] [CrossRef]
- Lee, C.Y.; Tippett, M.; Sobel, A.; Camargo, S.J. Rapid intensification and the bimodal distribution of tropical cyclone intensity. Nat Commun. 2016, 7, 10625. [Google Scholar] [CrossRef] [PubMed]
- Knaff, J.A.; Sampson, C.R.; Musgrave, K.D. An operational rapid intensification prediction aid for the western North Pacific. Weather Forecast. 2018, 33, 799–811. [Google Scholar] [CrossRef]
- Slocum, C.J. What Can We Learn from Random Forest in the Context of the Tropical Cyclone Rapid Intensification Problem? In 2nd NOAA AI Workshop; 2021. Available online: https://www.star.nesdis.noaa.gov/star/meeting_2020AIWorkshop_agenda.php (accessed on 8 January 2021).
- Knaff, J.A.; DeMaria, M.; Sampson, C.R.; Peak, J.E.; Cummings, J.; Schubert, W.H. Upper oceanic energy response to tropical cyclone passage. J. Clim. 2013, 26, 2631–2650. [Google Scholar] [CrossRef]
- Metzger, E.J.; Smedstad, O.M.; Thoppil, P.G.; Hurlburt, H.E.; Cummings, J.A.; Wallcraft, A.J.; Zamudio, L.; Franklin, D.S.; Posey, P.G.; Phelps, M.W.; et al. US Navy Operational Global Ocean and Arctic Ice Prediction Systems. Oceanography 2014, 27, 32–43. Available online: http://www.jstor.org/stable/24862187 (accessed on 22 August 2022). [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sampson, C.R.; Cummings, J.; Knaff, J.A.; DeMaria, M.; Serra, E.A. An Upper Ocean Thermal Field Metrics Dataset. Meteorology 2022, 1, 327-340. https://doi.org/10.3390/meteorology1030021
Sampson CR, Cummings J, Knaff JA, DeMaria M, Serra EA. An Upper Ocean Thermal Field Metrics Dataset. Meteorology. 2022; 1(3):327-340. https://doi.org/10.3390/meteorology1030021
Chicago/Turabian StyleSampson, Charles R., James Cummings, John A. Knaff, Mark DeMaria, and Efren A. Serra. 2022. "An Upper Ocean Thermal Field Metrics Dataset" Meteorology 1, no. 3: 327-340. https://doi.org/10.3390/meteorology1030021
APA StyleSampson, C. R., Cummings, J., Knaff, J. A., DeMaria, M., & Serra, E. A. (2022). An Upper Ocean Thermal Field Metrics Dataset. Meteorology, 1(3), 327-340. https://doi.org/10.3390/meteorology1030021