Next Issue
Volume 3, March
Previous Issue
Volume 2, September
 
 

Meteorology, Volume 2, Issue 4 (December 2023) – 6 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
17 pages, 3066 KiB  
Article
Comparison Link Function from Summer Rainfall Network in Amazon Basin
by C. Arturo Sánchez P., Alan J. P. Calheiros, Sâmia R. Garcia and Elbert E. N. Macau
Meteorology 2023, 2(4), 530-546; https://doi.org/10.3390/meteorology2040030 - 13 Dec 2023
Viewed by 914
Abstract
The Amazon Basin is the largest rainforest in the world, and studying the rainfall in this region is crucial for understanding the functioning of the entire rainforest ecosystem and its role in regulating the regional and global climate. This work is part of [...] Read more.
The Amazon Basin is the largest rainforest in the world, and studying the rainfall in this region is crucial for understanding the functioning of the entire rainforest ecosystem and its role in regulating the regional and global climate. This work is part of the application of complex networks, which refer to a network modeled by graphs and are characterized by their high versatility, as well as the extraction of key information from the system under study. The main objective of this article is to examine the precipitation system in the Amazon basin during the austral summer. The networks are defined by nodes and connections, where each node represents a precipitation time series, while the connections can be represented by different similarity functions. For this study, three rainfall networks were created, which differ based on the correlation function used (Pearson, Spearman, and Kendall). By comparing these networks, we can identify the most effective method for analyzing the data and gain a better understanding of rainfall’s spatial structure, thereby enhancing our knowledge of its impact on different Amazon basin regions. The results reveal the presence of three important regions in the Amazon basin. Two areas were identified in the northeast and northwest, showing incursions of warm and humid winds from the oceans and favoring the occurrence of large mesoscale systems, such as squall lines. Additionally, the eastern part of the central Andes may indicate an outflow region from the basin with winds directed toward subtropical latitudes. The networks showed a high level of activity and participation in the center of the Amazon basin and east of the Andes. Regarding information transmission, the betweenness centrality identified the main pathways within a basin, and some of these are directly related to certain rivers, such as the Amazon, Purus, and Madeira. Indicating the relationship between rainfall and the presence of water bodies. Finally, it suggests that the Spearman and Kendall correlation produced the most promising results. Although they showed similar spatial patterns, the major difference was found in the identification of communities, this is due to the meridional differences in the network’s response. Overall, these findings highlight the importance of carefully selecting appropriate techniques and methods when analyzing complex networks. Full article
(This article belongs to the Special Issue Early Career Scientists' (ECS) Contributions to Meteorology (2023))
Show Figures

Figure 1

21 pages, 19735 KiB  
Article
CanStoc: A Hybrid Stochastic–GCM System for Monthly, Seasonal and Interannual Predictions
by Shaun Lovejoy and Lenin Del Rio Amador
Meteorology 2023, 2(4), 509-529; https://doi.org/10.3390/meteorology2040029 - 7 Dec 2023
Cited by 2 | Viewed by 763
Abstract
Beyond their deterministic predictability limits of ≈10 days and 6 months, the atmosphere and ocean become effectively stochastic. This has led to the development of stochastic models specifically for this macroweather regime. A particularly promising approach is based on the Fractional Energy Balance [...] Read more.
Beyond their deterministic predictability limits of ≈10 days and 6 months, the atmosphere and ocean become effectively stochastic. This has led to the development of stochastic models specifically for this macroweather regime. A particularly promising approach is based on the Fractional Energy Balance Equation (FEBE), an update of the classical Budyko–Sellers energy balance approach. The FEBE has scaling symmetries that imply long memories, and these are exploited in the Stochastic Seasonal and Interannual Prediction System (StocSIPS). Whereas classical long-range forecast systems are initial value problems based on spatial information, StocSIPS is a past value problem based on (long) series at each pixel. We show how to combine StocSIPS with a classical coupled GCM system (CanSIPS) into a hybrid system (CanStoc), the skill of which is better than either. We show that for one-month lead times, CanStoc’s skill is particularly enhanced over either CanSIPS or StocSIPS, whereas for 2–3-month lead times, CanSIPS provides little extra skill. As expected, the CanStoc skill is higher over ocean than over land with some seasonal dependence. From the classical point of view, CanStoc could be regarded as a post-processing technique. From the stochastic point of view, CanStoc could be regarded as a way of harnessing extra skill at the submonthly scales in which StocSIPS is not expected to apply. Full article
Show Figures

Graphical abstract

20 pages, 5097 KiB  
Article
The Relationships between Adverse Weather, Traffic Mobility, and Driver Behavior
by Ayman Elyoussoufi, Curtis L. Walker, Alan W. Black and Gregory J. DeGirolamo
Meteorology 2023, 2(4), 489-508; https://doi.org/10.3390/meteorology2040028 - 19 Nov 2023
Viewed by 1323
Abstract
Adverse weather conditions impact mobility, safety, and the behavior of drivers on roads. In an average year, approximately 21% of U.S. highway crashes are weather-related. Collectively, these crashes result in over 5300 fatalities each year. As a proof-of-concept, analyzing weather information in the [...] Read more.
Adverse weather conditions impact mobility, safety, and the behavior of drivers on roads. In an average year, approximately 21% of U.S. highway crashes are weather-related. Collectively, these crashes result in over 5300 fatalities each year. As a proof-of-concept, analyzing weather information in the context of traffic mobility data can provide unique insights into driver behavior and actions transportation agencies can pursue to promote safety and efficiency. Using 2019 weather and traffic data along Colorado Highway 119 between Boulder and Longmont, this research analyzed the relationship between adverse weather and traffic conditions. The data were classified into distinct weather types, day of the week, and the direction of travel to capture commuter traffic flows. Novel traffic information crowdsourced from smartphones provided metrics such as volume, speed, trip length, trip duration, and the purpose of travel. The data showed that snow days had a smaller traffic volume than clear and rainy days, with an All Times volume of approximately 18,000 vehicles for each direction of travel, as opposed to 21,000 vehicles for both clear and wet conditions. From a trip purpose perspective, the data showed that the percentage of travel between home and work locations was 21.4% during a snow day compared to 20.6% for rain and 19.6% for clear days. The overall traffic volume reduction during snow days is likely due to drivers deciding to avoid commuting; however, the relative increase in the home–work travel percentage is likely attributable to less discretionary travel in lieu of essential work travel. In comparison, the increase in traffic volume during rainy days may be due to commuters being less likely to walk, bike, or take public transit during inclement weather. This study demonstrates the insight into human behavior by analyzing impact on traffic parameters during adverse weather travel. Full article
(This article belongs to the Special Issue Early Career Scientists' (ECS) Contributions to Meteorology (2023))
Show Figures

Figure 1

25 pages, 6080 KiB  
Article
Specific Features of the Land-Sea Contrast of Cloud Liquid Water Path in Northern Europe as Obtained from the Observations by the SEVIRI Instrument: Artefacts or Reality?
by Vladimir S. Kostsov and Dmitry V. Ionov
Meteorology 2023, 2(4), 464-488; https://doi.org/10.3390/meteorology2040027 - 11 Nov 2023
Viewed by 827
Abstract
Liquid water path (LWP) is one of the most important cloud parameters and is crucial for global and regional climate modelling, weather forecasting, and modelling of the hydrological cycle and interactions between different components of the climate system: the atmosphere, the hydrosphere, and [...] Read more.
Liquid water path (LWP) is one of the most important cloud parameters and is crucial for global and regional climate modelling, weather forecasting, and modelling of the hydrological cycle and interactions between different components of the climate system: the atmosphere, the hydrosphere, and the land surface. Space-borne observations by the SEVIRI instrument have already provided evidence of the systematic difference between the cloud LWP values derived over the land surface in Northern Europe and those derived over the Baltic Sea and major lakes during both cold and warm seasons. In the present study, the analysis of this LWP land-sea contrast for the period 2011–2017 reveals specific temporal and spatial variations, which, in some cases, seem to be artefacts rather than of natural origin. The geographical objects of investigation are water bodies and water areas located in Northern Europe that differ in size and other geophysical characteristics: the Gulf of Finland and the Gulf of Riga in the Baltic Sea and large and small lakes in the neighbouring region. The analysis of intra-seasonal features has detected anomalous conditions in the Gulf of Riga and the Gulf of Finland, which show up as very low values of the LWP land-sea contrast in August with respect to the values in June and July every year within the considered time period. This anomaly is likely an artefact caused by the LWP retrieval algorithm since the transition from large LWP contrast to very low contrast occurs sharply, synchronically, and at a certain date every year at different places in the Baltic Sea. Full article
Show Figures

Figure 1

0 pages, 3090 KiB  
Review
Air Temperature Intermittency and Photofragment Excitation
by Adrian F. Tuck
Meteorology 2023, 2(4), 445-463; https://doi.org/10.3390/meteorology2040026 - 14 Oct 2023
Cited by 2 | Viewed by 899
Abstract
Four observational results: the intermittency of air temperature; its correlation with ozone photodissociation rate; the diurnal variation of ozone in the upper stratosphere; and the cold bias of meteorological analyses compared to observations, are reviewed. The excitation of photofragments and their persistence of [...] Read more.
Four observational results: the intermittency of air temperature; its correlation with ozone photodissociation rate; the diurnal variation of ozone in the upper stratosphere; and the cold bias of meteorological analyses compared to observations, are reviewed. The excitation of photofragments and their persistence of velocity after collision is appealed to as a possible explanation. Consequences are discussed, including the interpretation of the Langevin equation and fluctuation–dissipation in the atmosphere, the role of scale invariance and statistical multifractality, and what the results might mean for the distribution of isotopes among atmospheric molecules. An adjunct of the analysis is an exponent characterizing jet streams. Observational tests are suggested. Full article
Show Figures

Figure 1

24 pages, 4091 KiB  
Article
Espresso: A Global Deep Learning Model to Estimate Precipitation from Satellite Observations
by Léa Berthomier and Laurent Perier
Meteorology 2023, 2(4), 421-444; https://doi.org/10.3390/meteorology2040025 - 26 Sep 2023
Cited by 1 | Viewed by 1820
Abstract
Estimating precipitation is of critical importance to climate systems and decision-making processes. This paper presents Espresso, a deep learning model designed for estimating precipitation from satellite observations on a global scale. Conventional methods, like ground-based radars, are limited in terms of spatial coverage. [...] Read more.
Estimating precipitation is of critical importance to climate systems and decision-making processes. This paper presents Espresso, a deep learning model designed for estimating precipitation from satellite observations on a global scale. Conventional methods, like ground-based radars, are limited in terms of spatial coverage. Satellite observations, on the other hand, allow global coverage. Combined with deep learning methods, these observations offer the opportunity to address the challenge of estimating precipitation on a global scale. This research paper presents the development of a deep learning model using geostationary satellite data as input and generating instantaneous rainfall rates, calibrated using data from the Global Precipitation Measurement Core Observatory (GPMCO). The performance impact of various input data configurations on Espresso was investigated. These configurations include a sequence of four images from geostationary satellites and the optimal selection of channels. Additional descriptive features were explored to enhance the model’s robustness for global applications. When evaluated against the GPMCO test set, Espresso demonstrated highly accurate precipitation estimation, especially within equatorial regions. A comparison against six other operational products using multiple metrics indicated its competitive performance. The model’s superior storm localization and intensity estimation were further confirmed through visual comparisons in case studies. Espresso has been incorporated as an operational product at Météo-France, delivering high-quality, real-time global precipitation estimates every 30 min. Full article
(This article belongs to the Special Issue Early Career Scientists' (ECS) Contributions to Meteorology (2023))
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop