Oxygen Vacancy Engineering and Its Impact on Resistive Switching of Oxide Thin Films for Memory and Neuromorphic Applications
Abstract
:1. Introduction
2. RS Switching Mode and Parameters
3. Resistive Switching Mechanism
4. Modulation of the Concentration of VOs in Metal Oxides
4.1. Doping
4.2. Magnetron Sputtering Technique
4.3. Thermal Treatment
4.4. Pulsed Laser Deposition (PLD)
4.5. Atomic Layer Deposition (ALD)
5. Oxygen Vacancy-Engineered Oxide Thin Films for Memristors
5.1. Memory Storage Applications
5.2. Neuromorphic Applications
6. Summary and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Chua, L. Memristor-the missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Chua, L. Everything you wish to know about memristors but are afraid to ask. In Handbook of Memristor Networks; Springer: Cham, Switzerland, 2019; pp. 89–157. [Google Scholar]
- Xiao, Y.; Jiang, B.; Zhang, Z.; Ke, S.; Jin, Y.; Wen, X. A review of memristor: Material and structure design, device performance, applications and prospects. Sci. Technol. Adv. Mater. 2023, 24, 2162323. [Google Scholar] [CrossRef] [PubMed]
- Hickmott, T.W. Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 1962, 33, 2669–2682. [Google Scholar] [CrossRef]
- Liu, S.; Wu, N.J.; Ignatiev, A. Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 2000, 76, 2749–2751. [Google Scholar] [CrossRef]
- Lee, M.-J.; Park, Y.; Kang, B.-S.; Ahn, S.-E.; Lee, C.; Kim, K.; Xianyu, W.; Stefanovich, G.; Lee, J.-H.; Chung, S.-J. 2-stack 1D-1R cross-point structure with oxide diodes as switch elements for high density resistance RAM applications. In Proceedings of the 2007 IEEE International Electron Devices Meeting, Washington, DC, USA, 10–12 December 2007; pp. 771–774. [Google Scholar]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef]
- Chevallier, C.J.; Siau, C.H.; Lim, S.F.; Namala, S.R.; Matsuoka, M.; Bateman, B.L.; Rinerson, D. A 0.13 µm 64 Mb multi-layered conductive metal-oxide memory. In Proceedings of the 2010 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 7–11 February 2010; pp. 260–261. [Google Scholar]
- Liu, T.-Y.; Yan, T.H.; Scheuerlein, R.; Chen, Y.; Lee, J.K.; Balakrishnan, G.; Yee, G.; Zhang, H.; Yap, A.; Ouyang, J. A 130.7 mm 2 2-layer 32 Gb ReRAM memory device in 24 nm technology. In Proceedings of the 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, USA, 17–21 February 2013. [Google Scholar]
- Fackenthal, R. A 16 GB ReRAM with 200 MB/s write and 1 GB/s read in 27 nm Technology. In Proceedings of the 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 9–13 February 2014. [Google Scholar]
- Luo, Q.; Xu, X.; Liu, H.; Lv, H.; Gong, T.; Long, S.; Liu, Q.; Sun, H.; Banerjee, W.; Li, L. Super non-linear RRAM with ultra-low power for 3D vertical nano-crossbar arrays. Nanoscale 2016, 8, 15629–15636. [Google Scholar] [CrossRef]
- Clarke, P. TSMC Offers 22 nm RRAM, Taking MRAM on to 16 nm. Available online: https://www.eenewseurope.com/en/tsmc-offers-22nm-rram-taking-mram-on-to-16nm/ (accessed on 25 August 2020).
- Nano, W. Weebit Nano Taped-Out Its First 22 nm Demo RRAM Chip. Available online: https://www.rram-info.com/weebit-nano-taped-out-its-first-22-nm-demo-rram-chip (accessed on 5 January 2023).
- Wang, C.; Shi, G.; Qiao, F.; Lin, R.; Wu, S.; Hu, Z. Research progress in architecture and application of RRAM with computing-in-memory. Nanoscale Adv. 2023, 5, 1559–1573. [Google Scholar] [CrossRef]
- Gao, B.; Wu, H.; Wu, W.; Wang, X.; Yao, P.; Xi, Y.; Zhang, W.; Deng, N.; Huang, P.; Liu, X. Modeling disorder effect of the oxygen vacancy distribution in filamentary analog RRAM for neuromorphic computing. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; p. 4. [Google Scholar]
- Banerjee, W.; Liu, Q.; Hwang, H. Engineering of defects in resistive random access memory devices. J. Appl. Phys. 2020, 127, 051101. [Google Scholar] [CrossRef]
- Prakash, A.; Jana, D.; Maikap, S. TaOx-based resistive switching memories: Prospective and challenges. Nanoscale Res. Lett. 2013, 8, 418. [Google Scholar] [CrossRef]
- Asif, M.; Kumar, A. Resistive switching in emerging materials and their characteristics for neuromorphic computing. Mater. Today Electron. 2022, 1, 100004. [Google Scholar] [CrossRef]
- Lashkare, S.; Uddin, W.; Priyadarshi, K.; Ganguly, U. Emerging Memory Technologies for Data Storage and Brain—Inspired Computation: A Global View with Indian Research Insights with a Focus on Resistive Memories. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2023, 93, 459–476. [Google Scholar] [CrossRef]
- Kozicki, M.N.; Mitkova, M.; Valov, I. Electrochemical metallization memories. In Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications; Wiley: Weinheim, Germany, 2016; pp. 483–514. [Google Scholar]
- Ielmini, D.; Bruchhaus, R.; Waser, R. Thermochemical resistive switching: Materials, mechanisms, and scaling projections. Phase Transit. 2011, 84, 570–602. [Google Scholar] [CrossRef]
- Zhao, L.; Ryu, S.-W.; Hazeghi, A.; Duncan, D.; Magyari-Köpe, B.; Nishi, Y. Dopant selection rules for extrinsic tunability of HfO x RRAM characteristics: A systematic study. In Proceedings of the 2013 Symposium on VLSI Technology, Kyoto, Japan, 11–13 June 2013; pp. T106–T107. [Google Scholar]
- Yang, Y.; Lu, W.D. Progress in the characterizations and understanding of conducting filaments in resistive switching devices. IEEE Trans. Nanotechnol. 2016, 15, 465–472. [Google Scholar] [CrossRef]
- Jiang, H.; Stewart, D.A. Enhanced oxygen vacancy diffusion in Ta2O5 resistive memory devices due to infinitely adaptive crystal structure. J. Appl. Phys. 2016, 119, 134502. [Google Scholar] [CrossRef]
- Lee, J.; Schell, W.; Zhu, X.; Kioupakis, E.; Lu, W.D. Charge Transition of Oxygen Vacancies during Resistive Switching in Oxide-Based RRAM. ACS Appl. Mater. Interfaces 2019, 11, 11579–11586. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Stewart, D.A. Using dopants to tune oxygen vacancy formation in transition metal oxide resistive memory. ACS Appl. Mater. Interfaces 2017, 9, 16296–16304. [Google Scholar] [CrossRef] [PubMed]
- Kukli, K.; Kemell, M.; Vehkamäki, M.; Heikkilä, M.J.; Mizohata, K.; Kalam, K.; Ritala, M.; Leskelä, M.; Kundrata, I.; Fröhlich, K. Atomic layer deposition and properties of mixed Ta2O5 and ZrO2 films. AIP Adv. 2017, 7, 025001. [Google Scholar] [CrossRef]
- Zhu, X.; Zhuge, F.; Li, M.; Yin, K.; Liu, Y.; Zuo, Z.; Chen, B.; Li, R.-W. Microstructure dependence of leakage and resistive switching behaviours in Ce-doped BiFeO3 thin films. J. Phys. D Appl. Phys. 2011, 44, 415104. [Google Scholar] [CrossRef]
- Lei, M.; He, H.; Yu, Q.; Chen, C.; Lu, Y.; Ye, Z. Optical properties of Na-doped ZnO nanorods grown by metalorganic chemical vapor deposition. Mater. Lett. 2015, 160, 547–549. [Google Scholar] [CrossRef]
- Chang, T.-J.; Li, C.-Y.; Chu, S.-Y. Ta2O5 doping effects on the property improvement of HfOx-based RRAMs using co-sputtering deposition method. Mater. Charact. 2023, 199, 112786. [Google Scholar] [CrossRef]
- Zhang, P.; Gao, C.; Lv, F.; Wei, Y.; Dong, C.; Jia, C.; Liu, Q.; Xue, D. Hydrothermal epitaxial growth and nonvolatile bipolar resistive switching behavior of LaFeO3-PbTiO3 films on Nb: SrTiO3 (001) substrate. Appl. Phys. Lett. 2014, 105, 15. [Google Scholar]
- Henning, R.A.; Leichtweiss, T.; Dorow-Gerspach, D.; Schmidt, R.; Wolff, N.; Schürmann, U.; Decker, Y.; Kienle, L.; Wuttig, M.; Janek, J. Phase formation and stability in TiOx and ZrOx thin films: Extremely sub-stoichiometric functional oxides for electrical and TCO applications. Z. Krist. Mater. 2017, 232, 161–183. [Google Scholar]
- Mundle, R.; Carvajal, C.; Pradhan, A.K. ZnO/Al: ZnO transparent resistive switching devices grown by atomic layer deposition for memristor applications. Langmuir 2016, 32, 4983–4995. [Google Scholar] [CrossRef] [PubMed]
- Deepa, S.; Kumari, K.P.; Thomas, B. Contribution of oxygen-vacancy defect-types in enhanced CO2 sensing of nanoparticulate Zn-doped SnO2 films. Ceram. Int. 2017, 43, 17128–17141. [Google Scholar] [CrossRef]
- Cai, Q.; Duan, Z.; Chen, J.; Wang, X.; Zhu, W.; Liu, S.; Xiao, P.; Yu, X. Tristable TaOx-based memristor by controlling oxygen vacancy transportion based on valence transition mechanism. Ceram. Int. 2024, in press. [Google Scholar] [CrossRef]
- Pan, X.; Yang, M.-Q.; Fu, X.; Zhang, N.; Xu, Y.-J. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 3601–3614. [Google Scholar] [CrossRef]
- Abbas, Y.; Han, I.S.; Sokolov, A.S.; Jeon, Y.R.; Choi, C. Rapid thermal annealing on the atomic layer-deposited zirconia thin film to enhance resistive switching characteristics. J. Mater. Sci. Mater. Electron. 2020, 31, 903–909. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, C.-C.; Cao, Y.-Q.; Wu, D.; Wang, P.; Li, A.-D. Optimization of oxygen vacancy concentration in HfO2/HfOx bilayer-structured ultrathin memristors by atomic layer deposition and their biological synaptic behavior. J. Mater. Chem. C 2020, 8, 12478–12484. [Google Scholar] [CrossRef]
- Sharath, S.U.; Bertaud, T.; Kurian, J.; Hildebrandt, E.; Walczyk, C.; Calka, P.; Zaumseil, P.; Sowinska, M.; Walczyk, D.; Gloskovskii, A.; et al. Towards forming-free resistive switching in oxygen engineered HfO2−x. Appl. Phys. Lett. 2014, 104, 063502. [Google Scholar] [CrossRef]
- Stevens, J.E.; Lohn, A.J.; Decker, S.A.; Doyle, B.L.; Mickel, P.R.; Marinella, M.J. Reactive sputtering of substoichiometric Ta2Ox for resistive memory applications. J. Vac. Sci. Technol. A Vac. Surf. Film. 2014, 32, 021501. [Google Scholar] [CrossRef]
- Sharath, S.U.; Joseph, M.J.; Vogel, S.; Hildebrandt, E.; Komissinskiy, P.; Kurian, J.; Schröder, T.; Alff, L. Impact of oxygen stoichiometry on electroforming and multiple switching modes in TiN/TaOx/Pt based ReRAM. Appl. Phys. Lett. 2016, 109, 173503. [Google Scholar] [CrossRef]
- Yang, J.J.; Strukov, D.B.; Stewart, D.R. Memristive devices for computing. Nat. Nanotechnol. 2013, 8, 13–24. [Google Scholar] [CrossRef]
- Landon, C.D.; Wilke, R.H.T.; Brumbach, M.T.; Brennecka, G.L.; Blea-Kirby, M.; Ihlefeld, J.F.; Marinella, M.J.; Beechem, T.E. Thermal transport in tantalum oxide films for memristive applications. Appl. Phys. Lett. 2015, 107, 023108. [Google Scholar] [CrossRef]
- Egorov, K.V.; Kuzmichev, D.S.; Chizhov, P.S.; Lebedinskii, Y.Y.; Hwang, C.S.; Markeev, A.M. In situ control of oxygen vacancies in TaO x thin films via plasma-enhanced atomic layer deposition for resistive switching memory applications. ACS Appl. Mater. Interfaces 2017, 9, 13286–13292. [Google Scholar] [CrossRef] [PubMed]
- Prakash, A.; Maikap, S.; Chiu, H.C.; Tien, T.C.; Lai, C.S. Enhanced resistive switching memory characteristics and mechanism using a Ti nanolayer at the W/TaOx interface. Nanoscale Res. Lett. 2013, 8, 125. [Google Scholar]
- Rudrapal, K.; Bhattacharya, G.; Adyam, V.; Chaudhuri, A.R. Forming-free, self-compliance, bipolar multi-level resistive switching in WO3–x based MIM device. Adv. Electron. Mater. 2022, 8, 2200250. [Google Scholar] [CrossRef]
- Rudrapal, K.; Biswas, M.; Jana, B.; Adyam, V.; Chaudhuri, A.R. Tuning resistive switching properties of WO3− x-memristors by oxygen vacancy engineering for neuromorphic and memory storage applications. J. Phys. D Appl. Phys. 2023, 56, 205302. [Google Scholar] [CrossRef]
- Ghenzi, N.; Rozenberg, M.J.; Llopis, R.; Levy, P.; Hueso, L.E.; Stoliar, P. Tuning the resistive switching properties of TiO2− x films. Appl. Phys. Lett. 2015, 106, 123509. [Google Scholar] [CrossRef]
- Li, C.-Y.; Lin, C.-C.; Chu, S.-Y.; Lin, J.-T.; Huang, C.-Y.; Hong, C.-S. Effects of Nb doping on switching-voltage stability of zinc oxide thin films. J. Appl. Phys. 2020, 128, 175308. [Google Scholar] [CrossRef]
- Li, H.; Chen, Q.; Chen, X.; Mao, Q.; Xi, J.; Ji, Z. Improvement of resistive switching in ZnO film by Ti doping. Thin Solid Film. 2013, 537, 279–284. [Google Scholar] [CrossRef]
- Xu, D.; Xiong, Y.; Tang, M.; Zeng, B. Coexistence of the bipolar and unipolar resistive switching behaviors in vanadium doped ZnO films. J. Alloys Compd. 2014, 584, 269–272. [Google Scholar] [CrossRef]
- Xu, D.L.; Xiong, Y.; Tang, M.H.; Zeng, B.W.; Xiao, Y.G. Bipolar and unipolar resistive switching modes in Pt/Zn0.99Zr0.01O/Pt structure for multi-bit resistance random access memory. Appl. Phys. Lett. 2014, 104, 183501. [Google Scholar] [CrossRef]
- Sedghi, N.; Li, H.; Brunell, I.F.; Dawson, K.; Potter, R.J.; Guo, Y.; Gibbon, J.T.; Dhanak, V.R.; Zhang, W.D.; Zhang, J.F. The role of nitrogen doping in ALD Ta2O5 and its influence on multilevel cell switching in RRAM. Appl. Phys. Lett. 2017, 110, 102902. [Google Scholar] [CrossRef]
- Rasool, A.; Amiruddin, R.; Mohamed, I.R.; Kumar, M.C.S. Fabrication and characterization of resistive random access memory (ReRAM) devices using molybdenum trioxide (MoO3) as switching layer. Superlattices Microstruct. 2020, 147, 106682. [Google Scholar] [CrossRef]
- Xu, J.; Wang, H.; Zhu, Y.; Liu, Y.; Zou, Z.; Li, G.; Xiong, R. Tunable digital-to-analog switching in Nb2O5-based resistance switching devices by oxygen vacancy engineering. Appl. Surf. Sci. 2022, 579, 152114. [Google Scholar] [CrossRef]
- Swathi, S.P.; Angappane, S. Enhanced resistive switching performance of hafnium oxide-based devices: Effects of growth and annealing temperatures. J. Alloys Compd. 2022, 913, 165251. [Google Scholar] [CrossRef]
- Loy, D.J.J.; Dananjaya, P.A.; Chakrabarti, S.; Tan, K.H.; Chow, S.C.W.; Toh, E.H.; Lew, W.S. Oxygen vacancy density dependence with a hopping conduction mechanism in multilevel switching behavior of HfO2-based resistive random access memory devices. ACS Appl. Electron. Mater. 2020, 2, 3160–3170. [Google Scholar] [CrossRef]
- Zhang, R.; Huang, H.; Xia, Q.; Ye, C.; Wei, X.; Wang, J.; Zhang, L.; Zhu, L.Q. Role of oxygen vacancies at the TiO2/HfO2 interface in flexible oxide-based resistive switching memory. Adv. Electron. Mater. 2019, 5, 1800833. [Google Scholar] [CrossRef]
- Banerjee, W.; Kashir, A.; Kamba, S. Hafnium oxide (HfO2)—A multifunctional oxide: A review on the prospect and challenges of hafnium oxide in resistive switching and ferroelectric memories. Small 2022, 18, 2107575. [Google Scholar] [CrossRef]
- Goux, L.; Fantini, A.; Kar, G.; Chen, Y.-Y.; Jossart, N.; Degraeve, R.; Clima, S.; Govoreanu, B.; Lorenzo, G.; Pourtois, G. Ultralow sub-500nA operating current high-performance TiN\Al2O3\HfO2\Hf\TiN bipolar RRAM achieved through understanding-based stack-engineering. In Proceedings of the 2012 Symposium on VLSI Technology (VLSIT), Honolulu, HI, USA, 12–14 June 2012; pp. 159–160. [Google Scholar]
- Wan, C.J.; Liu, Y.H.; Zhu, L.Q.; Feng, P.; Shi, Y.; Wan, Q. Short-term synaptic plasticity regulation in solution-gated indium–gallium–zinc-oxide electric-double-layer transistors. ACS Appl. Mater. Interfaces 2016, 8, 9762–9768. [Google Scholar] [CrossRef]
- He, Y.; Yang, Y.; Nie, S.; Liu, R.; Wan, Q. Electric-double-layer transistors for synaptic devices and neuromorphic systems. J. Mater. Chem. C 2018, 6, 5336–5352. [Google Scholar] [CrossRef]
- Abbas, Y.; Jeon, Y.-R.; Sokolov, A.S.; Kim, S.; Ku, B.; Choi, C. Compliance-free, digital SET and analog RESET synaptic characteristics of sub-tantalum oxide based neuromorphic device. Sci. Rep. 2018, 8, 1228. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yin, M.; Zhang, T.; Cai, Y.; Wang, Y.; Yang, Y.; Huang, R. Engineering incremental resistive switching in TaOx based memristors for brain-inspired computing. Nanoscale 2016, 8, 14015–14022. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Liu, L.; Kang, J. Investigation of the synaptic device based on the resistive switching behavior in hafnium oxide. Prog. Nat. Sci. 2015, 25, 47–50. [Google Scholar] [CrossRef]
- Gao, B.; Kang, J.F.; Chen, Y.S.; Zhang, F.F.; Chen, B.; Huang, P.; Liu, L.F.; Liu, X.Y.; Wang, Y.Y.; Tran, X.A. Oxide-based RRAM: Unified microscopic principle for both unipolar and bipolar switching. In Proceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011; pp. 14–17. [Google Scholar]
- Mohapatra, A.; Mhaskar, C.M.; Sahu, M.C.; Sahoo, S.; Chaudhuri, A.R. Neuromorphic Learning and Recognition in WO3-x Thin Film-based Forming-free Flexible Electronic Synapses. Nanotechnology 2024, 35, 455702. [Google Scholar] [CrossRef]
- Qin, F.; Zhang, Y.; Song, H.W.; Lee, S. Enhancing memristor fundamentals through instrumental characterization and understanding reliability issues. Mater. Adv. 2023, 4, 1850–1875. [Google Scholar] [CrossRef]
- Pérez, E.; Maldonado, D.; Acal, C.; Ruiz-Castro, J.E.; Alonso, F.J.; Aguilera, A.M.; Jiménez-Molinos, F.; Wenger, C.; Roldán, J.B. Analysis of the statistics of device-to-device and cycle-to-cycle variability in TiN/Ti/Al: HfO2/TiN RRAMs. Microelectron. Eng. 2019, 214, 104–109. [Google Scholar] [CrossRef]
- Akinaga, H.; Shima, H. Resistive random access memory (ReRAM) based on metal oxides. Proc. IEEE 2010, 98, 2237–2251. [Google Scholar] [CrossRef]
- Fadeev, A.V.; Rudenko, K.V. To the issue of the memristor’s hrs and lrs states degradation and data retention time. Russ. Microelectron 2021, 50, 311–325. [Google Scholar] [CrossRef]
- Ravi, V. Review of memristor based neuromorphic computation: Opportunities, challenges and applications. Eng. Res. Express 2024, 6, 032203. [Google Scholar]
- Wang, S.; Song, L.; Chen, W.; Wang, G.; Hao, E.; Li, C.; Hu, Y.; Pan, Y.; Nathan, A.; Hu, G. Memristor-Based Intelligent Human-Like Neural Computing. Adv. Electron. Mater. 2023, 9, 2200877. [Google Scholar] [CrossRef]
ZnO-Based Memristor | Doping Concentration (Atomic %) | Set Voltage (V) | Cv (Set) (%) | Reset Voltage (V) | Cv (Reset) (%) | Ref. |
---|---|---|---|---|---|---|
Pt/ZnO/Pt | 0 | 1.24 | 25.00 | 0.54 | 22.22 | [49] |
Pt/ZnO:Ti/n+-Si | 2 | 2.80 | 17.86 | 1.60 | 31.25 | [50] |
Pt/ZnO:V/Pt | 1 | 2.50 | 10.34 | 0.65 | 4.29 | [51] |
Pt/ZnO:Zr/Pt | 1 | 2.05 | 10.13 | 0.95 | 5.85 | [52] |
Pt/ZnO:Nb/Pt | 0.2 | 1.59 | 16.35 | 0.55 | 12.73 | [49] |
Pt/ZnO:Nb/Pt | 0.5 | 1.83 | 2.73 | 0.57 | 7.02 | |
Pt/ZnO:Nb/Pt | 0.8 | 2.18 | 16.51 | 0.58 | 10.34 |
Device Structure | Deposition Technique | Concentration of VOs (Atomic %) | Set/Reset Voltages (V) | Endurance (Cycles) | Memory Window | Retention (s) | Set/Reset Time (ns) | Ref. |
---|---|---|---|---|---|---|---|---|
Ag/MoO3/ITO | Spray pyrolysis | 29.3 | +8/−8 | 25 | 1.28 | - | - | [54] |
Cu/Nb2O5/Pt | PLD | 10.64 | +1.5/−0.35 | 3 × 102 | ~100 | ~5 × 103 | 143/- | [55] |
10.80 | +0.65/−0.31 | 3 × 102 | ~10 | ~5 × 103 | 193/- | |||
12.70 | +0.25/−0.50 | 3 × 102 | ~10 | ~5 × 103 | 237/- | |||
26.58 | +0.5/−0.59 | 3 × 102 | ~200 | ~3 × 103 | 280/- | |||
Pt/HfO2/HfOx/TiN | ALD | 8.2 | −1.6/+1.5 | 30 | 1500 | - | 345/78 | [38] |
12.10 | −1.6/+1.1 | 30 | 1000 | - | 260/70 | |||
14.3 | −1.6/+1.5 | 30 | 750 | - | 95/85 | |||
Al/HfOx/FTO | Magnetron sputtering | 18 | +1.0/−1.0 | 103 | ~10 | 104 | - | [56] |
26 | +1.1/−0.9 | 103 | ~102 | 104 | - | |||
32 | +0.5/−0.5 | 103 | ~103 | 104 | - | |||
Pt/HfO2/Ti | Magnetron sputtering | 4.79 | +0.6/−1.3 | 5 × 105 | ~50 | 10 years@125 °C | - | [57] |
Pt/HfO2/TiO2/ITO | Magnetron sputtering | 27 | +1.6/−1.5 | 5 × 102 | ~10 | 104@85 °C | - | [58] |
TiN/Al2O3/HfO2/Hf | ALD | Not quantified | +2/−0.6 | 107 | 102 | 104@250 °C | 10 | [59,60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jana, B.; Roy Chaudhuri, A. Oxygen Vacancy Engineering and Its Impact on Resistive Switching of Oxide Thin Films for Memory and Neuromorphic Applications. Chips 2024, 3, 235-257. https://doi.org/10.3390/chips3030012
Jana B, Roy Chaudhuri A. Oxygen Vacancy Engineering and Its Impact on Resistive Switching of Oxide Thin Films for Memory and Neuromorphic Applications. Chips. 2024; 3(3):235-257. https://doi.org/10.3390/chips3030012
Chicago/Turabian StyleJana, Biswajit, and Ayan Roy Chaudhuri. 2024. "Oxygen Vacancy Engineering and Its Impact on Resistive Switching of Oxide Thin Films for Memory and Neuromorphic Applications" Chips 3, no. 3: 235-257. https://doi.org/10.3390/chips3030012
APA StyleJana, B., & Roy Chaudhuri, A. (2024). Oxygen Vacancy Engineering and Its Impact on Resistive Switching of Oxide Thin Films for Memory and Neuromorphic Applications. Chips, 3(3), 235-257. https://doi.org/10.3390/chips3030012