Assessment of Elongation of the Mesocotyl-Coleoptile and Biomass in Parents and Crosses of Corn Seedlings of the High Valleys of Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. First Stage
2.3. Second Stage
2.4. Conditions of the Experiments
2.5. Variables and Statistical Analysis
3. Results and Discussion
3.1. Climatic Conditions during the Experiments
3.2. First Stage: Variation of Characteristics of Corn Seedlings Based on Seed Size of Genotypes
3.2.1. Speed and Percentage of Emergence in Genotypes
3.2.2. Lengths of the Mesocotyl and the Coleoptile in the Genotypes
3.2.3. Dry Weight of Mesocotyl, Coleoptile, Root and Aerial Part in the Genotypes
3.2.4. Correlation of Characteristics of Corn Seedlings Based on Seed Size of Genotypes
3.3. Second Stage: Variation of the Characteristics of Corn Seedlings Based on Parents and Their Crosses
Correlation of the Characteristics of Corn Seedlings Based on Parents and Their Crosses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sáenz, R.M.N.; Cassab, G.I. Primary root and mesocotyl elongation in maize seedlings: Two organs with antagonistic growth below the soil surface. Plants 2021, 10, 1274. [Google Scholar] [CrossRef]
- Sáenz, R.M.N.; Cassab, L.G.I. Assay system for mesocotyl elongation and hydrotropism of maize primary root in response to low moisture gradient. BioTechniques 2021, 71, 517–527. [Google Scholar] [CrossRef]
- Kutschera, U.; Wang, Y.Z. Growth-limiting proteins in maize coleoptiles and the auxin-brassinosteroid hypothesis of mesocotyl elongation. Protoplasma 2016, 253, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Hochholdinger, F.; Yu, P.; Marcon, C. Genetic control of root system development in maize. Trends Plant Sci. 2018, 20, 79–88. [Google Scholar] [CrossRef]
- Niu, L.; Hao, R.; Wu, X.; Wang, E. Maize mesocotyl: Role in response to stress and deep-sowing tolerance. Plant Breed. 2019, 139, 466–473. [Google Scholar] [CrossRef]
- Zhao, X.; Niu, Y.; Hossain, Z.; Zhao, B.; Bai, X.; Mao, T. New insights into light spectral quality inhibits the plasticity elongation of maize mesocotyl and coleoptile during seed germination. Front. Plant Sci. 2023, 14, 1–20. [Google Scholar] [CrossRef]
- Steffens, B.; Rasmussen, A. The Physiology of adventitious roots. Plant Physiol. 2016, 170, 603–617. [Google Scholar] [CrossRef]
- Szulc, P.; Ambroży, D.K.; Waligóra, H.; Mejza, I.; Grześ, S.; Zielewicz, W.; Wróbe, B. Dry matter yield of maize (Zea mays L.) as an indicator of mineral fertilizer efficiency. Plants 2021, 10, 535. [Google Scholar] [CrossRef]
- Bousselot, J.M.; Muenchrath, D.; Knapp, D.A.; Reeder, D.J. Emergence and seedling characteristics of maize native to the southwestern USA. Am. J. Llant Sci. 2017, 8, 1304–1318. [Google Scholar] [CrossRef]
- Basra, A.S. Influence of seed quality on crop establishment, growth, and yield. In Seed Quality: Basic Mechanisms and Agricultural Implications, 1st ed.; Basra, A.S., Ed.; Food Products Press: Preface, NY, USA, 1995; pp. 361–376. [Google Scholar]
- Liu, H.; Zhang, L.; Wang, J.; Li, C.; Zeng, X.; Xie, S.; Zhang, Y.; Liu, S.; Hu, S.; Wang, J.; et al. Quantitative trait locus analysis for deep-sowing germination ability in the maize IBM syn10 DH population. Front. Plant Sci. 2017, 8, 1–12. [Google Scholar] [CrossRef]
- Hallauer, A.R.; Carena, J.M.; Filho, J.B.M. Selection. In Theory: Quantitative Genetics in Maize Breeding, 2nd ed.; Hallauer, A.R., Carena, J.M., Filho, J.B.M., Eds.; Iowa State: University Press: Ames, IA, USA, 2010; pp. 1–31. [Google Scholar] [CrossRef]
- Eapen, D.; Martinez, J.J.; Cassab, I.G. Assays for root hydrotropism and response to water stress. In Plant Gravitropism: Methods and Protocols, Methods in Molecular Biology, 1st ed.; Elison, B.B., Ed.; Springer Science: New York, NY, USA, 2015; pp. 133–142. [Google Scholar] [CrossRef]
- Adebiyi, O.O.; Gbemavo, G.K.; Adewole, A.K. Genetic variability for mesocotyl length in maize. Biol. Life Sci. Forum 2021, 4, 26. [Google Scholar] [CrossRef]
- CIMMYT (International Corn and Wheat Improvement Center). Mexico and CIMMYT, 1st ed.; CIMMYT, Ed.; Agris. State of Mexico: Mexico, 2007; pp. 1–44. Available online: https://repository.cimmyt.org/xmlui/bitstream/handle/10883/657/90966.pdf (accessed on 29 August 2023).
- Smith, S.F.; Travisan, W.; McCunn, A.; Huffman, E.W. Global dependence on corn Belt Dent maize germplasm: Challenges and opportunities. Crop Sci. 2022, 62, 2039–2066. [Google Scholar] [CrossRef]
- SNICS (National Seed Inspection and Certification Service). National Catalog of Plant Varieties. Available online: https://www.gob.mx/snics (accessed on 29 August 2023).
- Donovan, J.; Rutsaert, P.; Domínguez, C.; Peña, M. Capacities of local maize seed enterprises in Mexico: Implications for seed systems development. Food Secur. 2022, 14, 509–529. [Google Scholar] [CrossRef]
- García, O.H.; Barajas, O.F.; Contreras, C.C.; Cid, S.M.A.; Córdova, E.J.; Centeno, C.F.; Mendoza, C.E.; Cicerón, A.I.; Flores, H.M.; Baca, P.; et al. The genomic landscape of Mexican indigenous populations brings insights into the peopling of the Americas. Nat. Commun. 2021, 12, 1–12. [Google Scholar] [CrossRef]
- Esquivel, E.G.; Castillo, G.F.; Hernández, C.J.M.; Santacruz, V.A.; García, S.G.; Acosta, G.J.A.; Ramírez, H.A. Combining ability and heterosis in early developmental stages of maize. Revest Mex. Phytotech. 2009, 32, 311–318. Available online: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-73802009000400010&lng=es (accessed on 29 August 2023).
- Espinosa, C.A.; Tadeo, R.M.; Lothrop, J.; Azpíroz, R.S.; Martinez, M.R.; Pérez, C.J.P.; Tut, C.C.; Bonilla, B.J.; Ramirez, A.M.; Salinas, M.Y. H-48, new maize hybrid for rainfed conditions in the high valleys of central Mexico. Tech. Agric. Mex. 2003, 29, 85–87. Available online: http://www.redalyc.org/articulo.oa?id=60829109 (accessed on 1 May 2022).
- Pérez, D.C.F.J.; Córdova, T.L.; Santacruz, V.A.; Castillo, G.F.; Cárdenas, S.E.; Delgado, A.A. Relationship between initial vigor, yield and its components in chalqueño maize populations. Tech. Agric. Mex. 2007, 33, 5–16. Available online: http://www.redalyc.org/articulo.oa?id=60833101 (accessed on 13 September 2022).
- INIFAP. National Institute for Forest, Agriculture and Livestock Research. INIFAP Station Networks. Mexico 2012. Available online: http://clima.inifap.gob.mx/redinifap (accessed on 31 January 2022).
- Virgen, V.J.; Zepeda, B.R.; Ávila, P.M.A.; Espinosa, C.A.; Arellano, V.J.L.; Gámez, V.A.J.; Gámez, V.A.J. Seed production of maize parental lines: Population density and interaction. Agron. Mesoamerican 2014, 25, 323–335. [Google Scholar] [CrossRef]
- Aquino, M.J.G.; Sánchez, F.A.; González, H.A.; Sánchez, P.J.R. Resistance of varieties and hybrids of corn (Zea mays L.) to sporisorium reilianum and grain yield. Revest Mex. Phytopathol. 2011, 29, 39–49. [Google Scholar]
- Ahammad, K.U.; Rahman, M.; Ahmed, M. Effect of osmopriming on the emergence of maize (Zea mays L.) seedling. Bangladesh J. Agric. Res. 2014, 39, 427–435. [Google Scholar] [CrossRef]
- Maguire, D.J. Speed of germination: Aid in selection and evaluation for seedling emergence and vigor. Crop Sci. 1962, 2, 176–177. [Google Scholar] [CrossRef]
- SAS. The SAS System Release for Windows 9.0; SAS Institute Inc.: Cary, NC, USA, 2002. [Google Scholar]
- Labroo, M.R.; Studer, A.J.; Rutkoski, J.E. Heterosis and hybrid crop breeding: A multidisciplinary review. Front. Genet. 2021, 12, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Kimmelshue, C.L.; Goggi, A.S.; Moore, K.J. Single-plant grain yield in corn (Zea mays L.) based on emergence date, seed size, sowing depth, and plant to plant distance. Crops 2022, 2, 62–86. [Google Scholar] [CrossRef]
- El-Abady, M.I. Influence of maize seed size/shape, planted at different depths and temperatures on seed emergence and seedling vigor. Res. J. Seed Sci. 2015, 8, 1–11. [Google Scholar] [CrossRef]
- Holá, D.; Kočová, M.; Rothová, O.; Wilhelmová, N.; Benešová, M. Recovery of maize (Zea mays L.) inbreds and hybrids from chilling stress of various duration: Photosynthesis and antioxidant enzymes. J. Plant Physiol. 2007, 164, 868–877. [Google Scholar] [CrossRef] [PubMed]
- Sowinski, P.; Rudzinska, L.A.; Adamczyk, J.; Kubica, I.; Fronk, J. Recovery of maize seedling growth, development and photosynthetic efficiency after initial growth at low temperature. J. Plant Physiol. 2005, 162, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, H.O.; Vasconcellos, C.C.R.; De Pauli, B.; Pires, M.O.R.; Pereira, M.E.; Tirelli, V.G.; Pinho, V.R.V.E. Effect of soil temperature in the emergence of maize seeds. J. Agric. Sci. 2019, 11, 479–484. [Google Scholar] [CrossRef]
- Reyes, M.J.; Rueda, L.R.; Martín, M.D.; Lima, V.D.G. Maize phenotypic variation. Revest Iberoam. Sci. 2017, 4, 50–59. Available online: http://www.reibci.org/publicados/2017/abr/2200103.pdf (accessed on 13 September 2022).
- Markelz, H.N.; Costich, E.D.; Brutnell, P.T. Photomorphogenic responses in maize seedling development. Plant Physiol. 2003, 133, 1578–1591. [Google Scholar] [CrossRef]
- Lafond, G.P.; Baker, R.J. Effects of genotype and seed size on speed of emergence and seedling vigor in nine spring wheat cultivars. Crop Sci. 1986, 26, 341–346. [Google Scholar] [CrossRef]
- Nemergut, T.K.; Thomison, R.P.; Carter, R.P.; Lindsey, J.A. Planting depth affects corn emergence, growth and development, and yield. Agron. J. 2021, 113, 3351–3360. [Google Scholar] [CrossRef]
- Yue, Y.; Yu, T.M.; Yang, Y.L.; Lyle, D.; Dong, D.L.; Ping, X.W.; Jia, L.X.; Si, H.Z.; Jia, W.L.; Yun, L.P.; et al. Dissecting the genetic basis of maize deep-sowing tolerance by combining association mapping and gene expression analysis. J. Integr. Agric. 2022, 21, 1266–1277. [Google Scholar] [CrossRef]
- Yuan, Z.; Xiaoqiang, Z.; Wenli, L.; Dan, Z.; Wenqi, Z. Heterosis and genetic effects analysis of deep-seeding traits in maize under different sowing environments. J. Nucl. Agric. Sci. 2021, 35, 556–566. [Google Scholar] [CrossRef]
- McLean, R.F.D.; Costich, D.E.; Camacho, V.T.C.; Pe, E.M.; Acqua, D.M. Genetic diversity and selection signatures in maize landraces compared across 50 years of in situ and ex situ conservation. Heredity 2021, 126, 913–928. [Google Scholar] [CrossRef] [PubMed]
- Benowicz, A.; Stoehr, M.; Hamann, A.; Yanchuk, D.A. Estimation of the F2 generation segregation variance and relationships among growth, frost damage, and bud break in coastal Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) wide-crosses. Ann. For. Sci. 2020, 77, 1–13. [Google Scholar] [CrossRef]
- Elmyhun, M.; Liyew, C.; Shita, A.; Andualem, M. Combining ability performance and heterotic grouping of maize (Zea mays) inbred lines in testcross formation in Western Amhara, North West Ethiopia. Cogent Food Agric. 2020, 6, 1–13. [Google Scholar] [CrossRef]
- Abreu, V.M.; Von, P.E.; Pedroso, M.R.; Balestre, M.; Caroline, L.A.; Oliveira, S.H.; Von, P.G.R. Combining ability and heterosis of maize genotypes under water stress during seed germination and seedling emergence. Crop Sci. 2019, 58, 1–11. [Google Scholar] [CrossRef]
- González, D.M.R.; Navarro, G.H.; Ortega, P.R.; Flores, S.D.; González, S.V. Peasant strategies for the use and conservation of native corn in Juchitepec, Estado de México. Agro Product. 2022, 15, 129–143. [Google Scholar] [CrossRef]
- Reed, R.C.; Bradford, J.F.; Khanday, I. Seed germination and vigor: Ensuring crop sustainability in a changing climate. Heredity 2022, 128, 450–459. [Google Scholar] [CrossRef]
- Wan, J.; Wang, Q.; Zhao, J.; Zhang, X.; Guo, Z.; Hu, D.; Meng, S.; Lin, Y.; Qiu, X.; Mu, L.; et al. Gene expression variation explains maize seed germination heterosis. BMC Plan Biol. 2022, 22, 301. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Liu, X.; Song, J.; Li, H.; Sui, Z.; Zhang, M.; Fang, S.; Chu, J.; Xin, M.; et al. Up-regulating the abscisic acid inactivation gene ZmABA8ox1b contributes to seed germination heterosis by promoting cell expansion. J. Exp. Bot. 2016, 67, 2889–2900. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Jin, X.; Ding, D.; Li, Y.; Fu, Z.; Tang, J. Proteomic analysis of heterosis during maize seed germination. Proteomics 2011, 11, 1462–1472. [Google Scholar] [CrossRef] [PubMed]
- Leng, B.; Li, M.; Mu, C.; Yan, Z.; Yao, G.; Kong, X.; Ma, C.; Zhang, F.; Liu, X. Molecular mechanism of gibberellins in mesocotyl elongation response to deep-sowing stress in sweet maize. Curr. Issues Mol. Biol. 2023, 45, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhong, Y.; Zhou, W. Molecular mechanisms of mesocotyl elongation induced by brassinosteroid in maize under deep-seeding stress by RNA-sequencing, microstructure observation, and physiological metabolism. Genomics 2021, 113, 3565–3581. [Google Scholar] [CrossRef]
- Koevoets, I.T.; Venema, H.J.; Elzenga, J.T.M.; Testerink, C. Roots withstanding their environment: Exploiting root system architecture responses to abiotic stress to improve crop tolerance. Front. Plant Sci. 2016, 7, 1–19. [Google Scholar] [CrossRef]
- Walne, C.H.; Reddy, K.R. Temperature effects on the shoot and root growth, development, and biomass accumulation of corn (Zea mays L.). Agriculture 2022, 12, 443. [Google Scholar] [CrossRef]
- Jasso, M.M.; Soria, R.J.; Némiga, X.A. Loss of cultivated areas of rainfed corn due to frosts in the Toluca valley. Rev. Mex. Agric. Sci. 2022, 13, 207–222. [Google Scholar] [CrossRef]
- Finch, S.W.E.; Bassel, G.W. Seed vigour and crop establishment: Extending performance beyond adaptation. J. Exp. Bot. 2016, 67, 567–591. [Google Scholar] [CrossRef]
- Tabakovic, M.; Simic, M.; Stanisavljevic, R.; Milivojevic, M.; Secanski, M.; Postic, D. Effects of shape and size of hybrid maize seed on germination and vigour of different genotypes. Chil. J. Agric. 2020, 80, 381–392. [Google Scholar] [CrossRef]
SV | DF | SE | PE | LOM | LOC | DWM | DWC | DWR | DWAP | DWT |
---|---|---|---|---|---|---|---|---|---|---|
SS | 1 | 13.6 * | 23,501.9 * | 9.7 * | 21.6 * | 543.5 * | 7950.2 * | 28,769.3 * | 15,064.5 * | 164,077.9 * |
R/SS | 6 | 0.1 * | 222.3 * | 0.66 ns | 3.4 * | 57.5 * | 79.6 ns | 151.3 * | 559.0 * | 1038.1 * |
G | 21 | 1.5 * | 3894.5 * | 35.9 * | 8.7 * | 119.1 * | 452.6 * | 369.5 * | 472.6 * | 4099.3 * |
G × SS | 21 | 0.18 * | 284.9 * | 0.4 ns | 0.5 ns | 15.5 ns | 84.7 * | 110.3 * | 113.8 * | 900.1 * |
Error | 126 | 0.03 | 75.8 | 1.5 | 0.78 | 19.8 | 49.0 | 42.9 | 46.5 | 346.1 |
Total | 175 | |||||||||
C.V. (%) | 26.0 | 25.0 | 12.2 | 16.2 | 17.4 | 20.5 | 24.1 | 25.1 | 16.4 | |
G and SG | 21 | 1.2 * | 2585.7 * | 18.2 * | 5.9 * | 73.0 * | 351.4 * | 339.3 * | 409.4 * | 3612.8 * |
Error | 63 | 0.06 | 135.9 | 2.0 | 0.8 | 19.7 | 39.4 | 49.5 | 75.7 | 265.4 |
Total | 87 | |||||||||
C.V. (%) | 25.4 | 25.7 | 13.9 | 16.2 | 16.2 | 15.3 | 17.4 | 20.0 | 11.3 | |
G and SP | 21 | 0.47 * | 1593.8 * | 18.1 * | 3.4 * | 61.5 * | 185.8 * | 116.5 * | 169.7 * | 1386.5 * |
Error | 63 | 21.2 | 17.8 | 10.1 | 16.0 | 18.8 | 19.0 | 21.0 | 22.1 | 19.7 |
Total | 87 | |||||||||
C.V. (%) | 21.2 | 17.8 | 10.1 | 16.0 | 18.8 | 19.0 | 21.0 | 22.1 | 19.7 |
Seed Size | Groups of Genotypes | SE (sd-1) | PE (%) | LOM (cm) | LOC (cm) | DWM (mg) | DWC (mg) | DWR (mg) | DWAP (mg) | DWT (mg) |
---|---|---|---|---|---|---|---|---|---|---|
Large | Varieties | 0.8 b 1 | 36.3 b | 9.9 b | 5.6 a | 26.5 a | 40.7 a | 38.9 a | 39.7 a | 145.6 a |
Hybrids | 1.1 a | 50.6 a | 11.4 a | 6.0 a | 28.5 a | 40.9 a | 40.1 a | 35.2 b | 144.6 a | |
Small | Varieties | 0.3 b | 13.6 b | 9.0 b | 5.1 a | 23.7 a | 33.4 a | 18.6 a | 23.0 a | 98.8 a |
Hybrids | 0.5 a | 26.7 a | 10.2 a | 5.2 a | 24.6 a | 25.9 b | 14.6 b | 16.9 b | 82.1 b |
SV | DF | SE | PE | LOM | LOC | DWM | DWC | DWR | DWAP | DWT |
---|---|---|---|---|---|---|---|---|---|---|
Cross (F1) | 53 | 1.2 * | 2567.5 * | 26.9 * | 3.6 * | 204.3 * | 44.2 * | 38.4 * | 255.9 * | 1149.1 * |
Error | 159 | 0.08 | 20.9 | 2.8 | 0.7 | 31.0 | 8.5 | 6.9 | 39.8 | 103.5 |
Total | 215 | |||||||||
C.V. (%) | 14.3 | 16.3 | 13.6 | 21.6 | 16.7 | 18.5 | 22.2 | 25.5 | 12.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villalobos González, A.; Benítez Riquelme, I.; Castillo González, F.; Mendoza Castillo, M.d.C.; Espinosa Calderón, A. Assessment of Elongation of the Mesocotyl-Coleoptile and Biomass in Parents and Crosses of Corn Seedlings of the High Valleys of Mexico. Seeds 2023, 2, 449-473. https://doi.org/10.3390/seeds2040034
Villalobos González A, Benítez Riquelme I, Castillo González F, Mendoza Castillo MdC, Espinosa Calderón A. Assessment of Elongation of the Mesocotyl-Coleoptile and Biomass in Parents and Crosses of Corn Seedlings of the High Valleys of Mexico. Seeds. 2023; 2(4):449-473. https://doi.org/10.3390/seeds2040034
Chicago/Turabian StyleVillalobos González, Antonio, Ignacio Benítez Riquelme, Fernando Castillo González, Ma. del Carmen Mendoza Castillo, and Alejandro Espinosa Calderón. 2023. "Assessment of Elongation of the Mesocotyl-Coleoptile and Biomass in Parents and Crosses of Corn Seedlings of the High Valleys of Mexico" Seeds 2, no. 4: 449-473. https://doi.org/10.3390/seeds2040034
APA StyleVillalobos González, A., Benítez Riquelme, I., Castillo González, F., Mendoza Castillo, M. d. C., & Espinosa Calderón, A. (2023). Assessment of Elongation of the Mesocotyl-Coleoptile and Biomass in Parents and Crosses of Corn Seedlings of the High Valleys of Mexico. Seeds, 2(4), 449-473. https://doi.org/10.3390/seeds2040034