Kale Seed Germination and Plant Growth Responses to Two Different Processed Biostimulants from Pyrolysis and Hydrothermal Carbonization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Materials
2.2. Chemical Analysis
2.3. Kale Seed Germination and Seedling Growth
2.4. Greenhouse Pot Experiment and Plant Growth
2.5. Morpho-Physiological Response
2.6. Biochemical and Quality Analysis
2.6.1. Chlorophyll a, Chlorophyll b, and Carotenoid Content
2.6.2. Ascorbate and Dehydroascorbate Content
2.6.3. Total Sugar Content
2.6.4. Total Protein Content
2.6.5. Total Phenolic Content
2.6.6. Total Flavonoid Content
2.7. Statistical Analysis
3. Results and Discussion
3.1. Chemical Properties of Liquids
3.2. Germination Test of Kale
3.3. Growth Test of Kale
3.4. Biochemical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Friel, S.; Dangour, A.D.; Garnett, T.; Lock, K.; Chalabi, Z.; Roberts, I.; Butler, A.; Butler, C.D.; Waage, J.; McMichael, A.J.; et al. Public health benefits of strategies to reduce greenhouse-gas emissions: Food and agriculture. Lancet 2009, 374, 2016–2025. [Google Scholar] [CrossRef]
- Norse, D.; Ju, X. Environmental costs of China’s food security. Agric. Ecosyst. Environ. 2015, 209, 5–14. [Google Scholar] [CrossRef]
- Westerman, P.W.; Bicudo, J.R. Management considerations for organic waste use in agriculture. Bioresour. Technol. 2005, 96, 215–221. [Google Scholar] [CrossRef]
- Zhao, J.; Ni, T.; Li, J.; Lu, Q.; Fang, Z.; Huang, Q.; Zhang, R.; Li, R.; Shen, B.; Shen, Q. Effects of organic–inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice–wheat cropping system. Appl. Soil Ecol. 2016, 99, 1–12. [Google Scholar] [CrossRef]
- Hou, D.; Bolan, N.S.; Tsang, D.C.W.; Kirkham, M.B.; O’Connor, D. Sustainable soil use and management: An interdisciplinary and systematic approach. Sci. Total Environ. 2020, 729, 138961. [Google Scholar] [CrossRef] [PubMed]
- Shanmugavel, D.; Rusyn, I.; Solorza-Feria, O.; Kamaraj, S.-K. Sustainable SMART fertilizers in agriculture systems: A review on fundamentals to in-field applications. Sci. Total Environ. 2023, 904, 166729. [Google Scholar] [CrossRef]
- Urra, J.; Alkorta, I.; Garbisu, C. Potential Benefits and Risks for Soil Health Derived From the Use of Organic Amendments in Agriculture. Agronomy 2019, 9, 542. [Google Scholar] [CrossRef]
- Mathew, S.; Zakaria, Z.A. Pyroligneous acid—The smoky acidic liquid from plant biomass. Appl. Microbiol. Biotechnol. 2015, 99, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Grewal, A.; Abbey, L.; Gunupuru, L.R. Production, prospects and potential application of pyroligneous acid in agriculture. J. Anal. Appl. Pyrolysis 2018, 135, 152–159. [Google Scholar] [CrossRef]
- Heidari, M.; Dutta, A.; Acharya, B.; Mahmud, S. A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion. J. Energy Inst. 2019, 92, 1779–1799. [Google Scholar] [CrossRef]
- Nakason, K.; Panyapinyopol, B.; Kanokkantapong, V.; Viriya-empikul, N.; Kraithong, W.; Pavasant, P. Characteristics of hydrochar and liquid fraction from hydrothermal carbonization of cassava rhizome. J. Energy Inst. 2018, 91, 184–193. [Google Scholar] [CrossRef]
- Kambo, H.S.; Dutta, A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew. Sustain. Energy Rev. 2015, 45, 359–378. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G. Composition, properties and challenges of algae biomass for biofuel application: An overview. Fuel 2016, 181, 1–33. [Google Scholar] [CrossRef]
- Lavaud, R.; Guyondet, T.; Filgueira, R.; Tremblay, R.; Comeau, L.A. Modelling bivalve culture—Eutrophication interactions in shallow coastal ecosystems. Mar. Pollut. Bull. 2020, 157, 111282. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, A.; Acharya, B.; Farooque, A.A. Study of hydrochar and process water from hydrothermal carbonization of sea lettuce. Renew. Energy 2021, 163, 589–598. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Ofoe, R.; Gunupuru, L.R.; Wang-Pruski, G.; Fofana, B.; Thomas, R.H.; Abbey, L. Seed priming with pyroligneous acid mitigates aluminum stress, and promotes tomato seed germination and seedling growth. Plant Stress 2022, 4, 100083. [Google Scholar] [CrossRef]
- Sujeeth, N.; Petrov, V.; Guinan, K.J.; Rasul, F.; O’Sullivan, J.T.; Gechev, T.S. Current Insights into the Molecular Mode of Action of Seaweed-Based Biostimulants and the Sustainability of Seaweeds as Raw Material Resources. Int. J. Mol. Sci. 2022, 23, 7654. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, L.; Song, Q.; Wang, S.; Wang, Y.; Ge, Y. Root Proteomics Reveals the Effects of Wood Vinegar on Wheat Growth and Subsequent Tolerance to Drought Stress. Int. J. Mol. Sci. 2019, 20, 943. [Google Scholar] [CrossRef]
- Luutu, H.; Rose, M.T.; McIntosh, S.; Van Zwieten, L.; Rose, T. Plant growth responses to soil-applied hydrothermally-carbonised waste amendments: A meta-analysis. Plant Soil 2022, 472, 1–15. [Google Scholar] [CrossRef]
- Zhou, B.; Feng, Y.; Wang, Y.; Yang, L.; Xue, L.; Xing, B. Impact of hydrochar on rice paddy CH4 and N2O emissions: A comparative study with pyrochar. Chemosphere 2018, 204, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Satheesh, N.; Workneh Fanta, S. Kale: Review on nutritional composition, bio-active compounds, anti-nutritional factors, health beneficial properties and value-added products. Cogent Food Agric. 2020, 6, 1811048. [Google Scholar] [CrossRef]
- He, Y.; He, Q.; Pruski, K.; Acharya, B.; Abbey, L. Seed Germination and Seedling Growth Responses to Different Sources and Application Rates of Hydrothermal Carbonization Processed Liquid. Sustain. Agric. Res. 2021, 10, 1–12. [Google Scholar] [CrossRef]
- Hajare, S.N.; Saxena, S.; Kumar, S.; Wadhawan, S.; More, V.; Mishra, B.B.; Narayan Parte, M.; Gautam, S.; Sharma, A. Quality profile of litchi (Litchi chinensis) cultivars from India and effect of radiation processing. Radiat. Phys. Chem. 2010, 79, 994–1004. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1987; Volume 148, pp. 350–382. [Google Scholar]
- Ma, Y.-H.; Ma, F.-W.; Zhang, J.-K.; Li, M.-J.; Wang, Y.-H.; Liang, D. Effects of high temperature on activities and gene expression of enzymes involved in ascorbate–glutathione cycle in apple leaves. Plant Sci. 2008, 175, 761–766. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of total flavonoid content in propolis by two complementary colometric methods. J. Food Drug Anal. 2002, 10, 3. [Google Scholar] [CrossRef]
- Yang, J.-F.; Yang, C.-H.; Liang, M.-T.; Gao, Z.-J.; Wu, Y.-W.; Chuang, L.-Y. Chemical Composition, Antioxidant, and Antibacterial Activity of Wood Vinegar from Litchi chinensis. Molecules 2016, 21, 1150. [Google Scholar] [CrossRef]
- Hernández-Herrera, R.M.; Santacruz-Ruvalcaba, F.; Ruiz-López, M.A.; Norrie, J.; Hernández-Carmona, G. Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). J. Appl. Phycol. 2014, 26, 619–628. [Google Scholar] [CrossRef]
- Van Staden, J.; Sparg, S.G.; Kulkarni, M.G.; Light, M.E. Post-germination effects of the smoke-derived compound 3-methyl-2H-furo [2, 3-c] pyran-2-one, and its potential as a preconditioning agent. Field Crops Res. 2006, 98, 98–105. [Google Scholar] [CrossRef]
- Dixon, K.W.; Merritt, D.J.; Flematti, G.R.; Ghisalberti, E.L. Karrikinolide—A phytoreactive compound derived from smoke with applications in horticulture, ecological restoration and agriculture. Acta Hortic. 2009, 813, 155–170. [Google Scholar] [CrossRef]
- Fregolente, L.G.; Miguel, T.B.A.R.; de Castro Miguel, E.; de Almeida Melo, C.; Moreira, A.B.; Ferreira, O.P.; Bisinoti, M.C. Toxicity evaluation of process water from hydrothermal carbonization of sugarcane industry by-products. Environ. Sci. Pollut. Res. 2019, 26, 27579–27589. [Google Scholar] [CrossRef]
- Vozhdayev, G.V.; Spokas, K.A.; Molde, J.S.; Heilmann, S.M.; Wood, B.M.; Valentas, K.J. Response of maize germination and growth to hydrothermal carbonization filtrate type and amount. Plant Soil 2015, 396, 127–136. [Google Scholar] [CrossRef]
- Zhu, K.; Gu, S.; Liu, J.; Luo, T.; Khan, Z.; Zhang, K.; Hu, L. Wood Vinegar as a Complex Growth Regulator Promotes the Growth, Yield, and Quality of Rapeseed. Agronomy 2021, 11, 510. [Google Scholar] [CrossRef]
- Ofoe, R.; Qin, D.; Gunupuru, L.R.; Thomas, R.H.; Abbey, L. Effect of Pyroligneous Acid on the Productivity and Nutritional Quality of Greenhouse Tomato. Plants 2022, 11, 1650. [Google Scholar] [CrossRef]
- Haile, A.; Ayalew, T. Comparative study on the effect of bio-slurry and inorganic N-fertilizer on growth and yield of kale (Brassica oleracea L.). Afr. J. Plant Sci. 2018, 12, 81–87. [Google Scholar]
- Zhang, L.; García-Pérez, P.; Arikan, B.; Elbasan, F.; Nur Alp, F.; Balci, M.; Zengin, G.; Yildiztugay, E.; Lucini, L. The exogenous application of wood vinegar induces a tissue- and dose-dependent elicitation of phenolics and functional traits in onion (Allium cepa L.). Food Chem. 2023, 405, 134926. [Google Scholar] [CrossRef]
- Loo, A.Y.; Jain, K.; Darah, I. Antioxidant and radical scavenging activities of the pyroligneous acid from a mangrove plant, Rhizophora apiculata. Food Chem. 2007, 104, 300–307. [Google Scholar] [CrossRef]
- Begum, M.; Sarmah, B.; Kandali, G.G.; Baruah, V.J.; Borkotoki, B.; Talukdar, L.; Barua, H.J. Foliar Application of Microbial and Plant-Based Biostimulants on Plant Nutrition. In Biostimulants: Exploring Sources and Applications; Ramawat, N., Bhardwaj, V., Eds.; Springer Nature: Singapore, 2022; pp. 193–220. [Google Scholar]
- Zagoskina, N.V.; Zubova, M.Y.; Nechaeva, T.L.; Kazantseva, V.V.; Goncharuk, E.A.; Katanskaya, V.M.; Baranova, E.N.; Aksenova, M.A. Polyphenols in Plants: Structure, Biosynthesis, Abiotic Stress Regulation, and Practical Applications (Review). Int. J. Mol. Sci. 2023, 24, 13874. [Google Scholar] [CrossRef] [PubMed]
Treatment | pH | TDS (mg/L) | EC (μS) | Salinity (mg/L) |
---|---|---|---|---|
Control | 5.94a | 22.87g | 39.77g | 47.40g |
0.01%PA | 4.27b | 39.50f | 56.23f | 54.30f |
0.1% PA | 3.59c | 84.00e | 101.93e | 96.47e |
0.25% PA | 3.31d | 108.33d | 137.93d | 137.10d |
0.5% PA | 3.14e | 133.67c | 196.43c | 178.37c |
1% PA | 2.97f | 171.67b | 263.67b | 235.50b |
2% PA | 2.82g | 217.00a | 345.67a | 320.00a |
p-value | <0.001 | <0.001 | <0.001 | <0.001 |
Treatment | pH | TDS (mg/L) | EC (μS) | Salinity (mg/L) |
---|---|---|---|---|
Control | 6.46e | 17.70g | 39.77g | 35.53g |
0.01% SL | 6.72d | 23.43f | 51.03f | 46.10f |
0.1% SL | 6.78d | 30.10e | 65.33e | 58.40e |
0.25% SL | 7.01c | 42.37d | 93.07d | 83.27d |
0.5% SL | 7.13bc | 63.43c | 136.43c | 122.37c |
1% SL | 7.19b | 99.33b | 218.00b | 195.00b |
2% SL | 7.36a | 172.00a | 369.33a | 332.67a |
p-value | <0.001 | <0.001 | <0.001 | <0.001 |
Elements | PA (µg/L) | SL (µg/L) |
---|---|---|
Kjeldahl Nitrogen | 460,000 | 53,000 |
Nitrate + Nitrite | 100,000 | <50 |
Potassium (K) | 180 | 8600 |
Magnesium (Mg) | <10 | 10,500 |
Calcium (Ca) | 100 | 1300 |
Iron (Fe) | <20 | 100 |
Manganese (Mn) | 1 | 213 |
Zinc (Zn) | 10 | 7 |
Boron (B) | <1 | 31 |
Selenium (Se) | <1 | <5 |
Barium (Ba) | <1 | <5 |
Cobalt (Co) | <0.1 | <0.5 |
Molybdenum (Mo) | <0.1 | <0.5 |
Treatment | PA | SL | ||||
---|---|---|---|---|---|---|
TL (cm) | TSA (cm2) | RV (cm3) | TL (cm) | TSA (cm2) | RV (cm3) | |
Control | 12.4a | 5.96a | 0.045a | 12.4a | 5.96a | 0.045a |
0.01% | 14.7a | 6.95a | 0.027ab | 13.7a | 6.68a | 0.050a |
0.10% | 14.2a | 6.72a | 0.040ab | 13.8a | 7.17a | 0.050a |
0.50% | 4.0b | 2.46b | 0.021b | 14.9a | 7.16a | 0.041a |
1% | 1.1b | 1.25b | 0.019b | 14.1a | 6.59a | 0.041a |
2% | / | / | / | 13.6a | 6.07a | 0.034a |
p-value | <0.001 | <0.001 | 0.001 | 0.910 | 0.533 | 0.620 |
Treatment | SPAD | L* | a* | b* | c* | h* |
---|---|---|---|---|---|---|
Control | 40.1b | 41.87b | −11.80a | 15.46a | 19.44a | 127.45b |
PA 0.25% | 45.3a | 44.37a | −11.10a | 12.75a | 16.99a | 132.23a |
PA 0.5% | 44.9a | 44.20a | −10.93a | 12.19a | 16.41a | 132.23a |
PA 1% | 45.1a | 42.81ab | −10.91a | 14.24a | 17.98a | 128.78ab |
p-value | <0.001 | 0.011 | 0.193 | 0.056 | 0.101 | 0.013 |
Control | 40.2b | 41.87b | −11.80b | 15.46a | 19.44a | 127.45b |
SL 0.25% | 44.4a | 43.14ab | −10.94ab | 12.79ab | 16.88ab | 131.87b |
SL 0.5% | 44.7a | 44.22a | −10.54a | 11.41b | 15.31b | 134.50a |
SL 1% | 44.2a | 41.77b | −10.08a | 11.38b | 15.25b | 132.23a |
p-value | 0.001 | 0.008 | 0.001 | 0.001 | <0.001 | 0.002 |
Treatment | Fo | Fm | Fv/Fm | Fv/Fo | Ci | E | gs | A |
---|---|---|---|---|---|---|---|---|
Control | 178.3a | 954.9a | 0.81b | 4.37b | 437.13a | 1.13b | 0.08b | 0.22b |
PA 0.25% | 157.5b | 916.4a | 0.83a | 4.91a | 335.90b | 2.60a | 0.13ab | 4.05a |
PA 0.5% | 156.3b | 937.8a | 0.83a | 5.01a | 347.07b | 2.88a | 0.12ab | 3.98a |
PA 1% | 162.7b | 936.8a | 0.83ab | 4.77ab | 366.80b | 3.44a | 0.16a | 2.47a |
p-value | 0.001 | 0.140 | 0.002 | 0.001 | <0.001 | <0.001 | 0.056 | <0.001 |
Control | 178.3a | 954.9a | 0.81b | 4.37b | 437.13a | 1.13b | 0.08a | 0.22b |
SL 0.25% | 157.1b | 961.4a | 0.84a | 5.14a | 363.00b | 1.73ab | 0.11a | 3.33a |
SL 0.5% | 158.1b | 942.3a | 0.83a | 5.00a | 384.20b | 1.63ab | 0.10a | 1.94ab |
SL 1% | 157.1b | 944.4a | 0.83a | 5.03a | 382.60b | 2.29a | 0.14a | 3.02a |
p-value | <0.001 | 0.659 | <0.001 | <0.001 | <0.001 | 0.017 | 0.131 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Ofoe, R.; Gunupuru, L.R.; Qin, D.; Abbey, L. Kale Seed Germination and Plant Growth Responses to Two Different Processed Biostimulants from Pyrolysis and Hydrothermal Carbonization. Seeds 2025, 4, 13. https://doi.org/10.3390/seeds4010013
Tang Y, Ofoe R, Gunupuru LR, Qin D, Abbey L. Kale Seed Germination and Plant Growth Responses to Two Different Processed Biostimulants from Pyrolysis and Hydrothermal Carbonization. Seeds. 2025; 4(1):13. https://doi.org/10.3390/seeds4010013
Chicago/Turabian StyleTang, Yuxuan, Raphael Ofoe, Lokanadha R. Gunupuru, Dengge Qin, and Lord Abbey. 2025. "Kale Seed Germination and Plant Growth Responses to Two Different Processed Biostimulants from Pyrolysis and Hydrothermal Carbonization" Seeds 4, no. 1: 13. https://doi.org/10.3390/seeds4010013
APA StyleTang, Y., Ofoe, R., Gunupuru, L. R., Qin, D., & Abbey, L. (2025). Kale Seed Germination and Plant Growth Responses to Two Different Processed Biostimulants from Pyrolysis and Hydrothermal Carbonization. Seeds, 4(1), 13. https://doi.org/10.3390/seeds4010013