This study introduces and evaluates stochastic models to describe Bitcoin price dynamics at different time scales, using daily data from January 2019 to December 2024 and intraday data from 20 January 2025. In the daily analysis, models based on are introduced to capture
[...] Read more.
This study introduces and evaluates stochastic models to describe Bitcoin price dynamics at different time scales, using daily data from January 2019 to December 2024 and intraday data from 20 January 2025. In the daily analysis, models based on are introduced to capture long memory, paired with both constant-volatility (CONST) and stochastic-volatility specifications via the Cox–Ingersoll–Ross (CIR) process. The novel family of models is based on Generalized Ornstein–Uhlenbeck processes with a fluctuating exponential trend (GOU-FE), which are modified to account for multiplicative fBm noise. Traditional Geometric Brownian Motion processes (GFBM) with either constant or stochastic volatilities are employed as benchmarks for comparative analysis, bringing the total number of evaluated models to four: GFBM-CONST, GFBM-CIR, GOUFE-CONST, and GOUFE-CIR models. Estimation by numerical optimization and evaluation through error metrics, information criteria (AIC, BIC, and EDC), and 95% Expected Shortfall (ES
95) indicated better fit for the stochastic-volatility models (GOUFE-CIR and GFBM-CIR) and the lowest tail-risk for GOUFE-CIR, although residual analysis revealed heteroscedasticity and non-normality. For intraday data, Exponential, Weibull, and Generalized Gamma Autoregressive Conditional Duration (ACD) models, with adjustments for intraday patterns, were applied to model the time between transactions. Results showed that the ACD models effectively capture duration clustering, with the Generalized Gamma version exhibiting superior fit according to the Cox–Snell residual-based analysis and other metrics (AIC, BIC, and mean-squared error). Overall, this work advances the modeling of Bitcoin prices by rigorously applying and comparing stochastic frameworks across temporal scales, highlighting the critical roles of long memory, stochastic volatility, and intraday dynamics in understanding the behavior of this digital asset.
Full article