On Strong Approximation in Generalized Hölder and Zygmund Spaces †
Abstract
:1. Introduction
2. Preliminaries
- (i)
- ,
- (ii)
- (iii)
3. Results
- (i)
- (ii)
- (i)
- (ii)
- (i)
- (ii)
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hyslop, J.M. Note on the strong summability of series. Proc. Glasg. Math. Assoc. 1952, 1, 16–20. [Google Scholar] [CrossRef]
- Mittal, M.L.; Kumar, R. A note on strong Nörlund summability. J. Math. Anal. Appl. 1996, 199, 312–322. [Google Scholar] [CrossRef]
- Devore, R.A.; Lorentz, G.G. Constructive Approximation; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Das, G.; Ghosh, T.; Ray, B.K. Degree of approximation of functions by their Fourier series in the generalized Hölder metric. Proc. Indian Acad. Sci. Sect. A 1996, 106, 139–153. [Google Scholar] [CrossRef]
- Das, G.; Nath, A.; Ray, B.K. An estimate of the rate of convergence of Fourier series in the generalized Hölder metric. In Analysis and Applications; Dikshit, H.P., Jain, P.K., Eds.; Narosa: New Delhi, India, 2002; pp. 43–60. [Google Scholar]
- Bachmann, G.; Beckenstein, E.; Narici, L. Fourier and Wavelet Analysis; Springer: New York, NY, USA, 2002. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, B.; Singh, U. On Strong Approximation in Generalized Hölder and Zygmund Spaces. Comput. Sci. Math. Forum 2023, 7, 9. https://doi.org/10.3390/IOCMA2023-14433
Singh B, Singh U. On Strong Approximation in Generalized Hölder and Zygmund Spaces. Computer Sciences & Mathematics Forum. 2023; 7(1):9. https://doi.org/10.3390/IOCMA2023-14433
Chicago/Turabian StyleSingh, Birendra, and Uaday Singh. 2023. "On Strong Approximation in Generalized Hölder and Zygmund Spaces" Computer Sciences & Mathematics Forum 7, no. 1: 9. https://doi.org/10.3390/IOCMA2023-14433
APA StyleSingh, B., & Singh, U. (2023). On Strong Approximation in Generalized Hölder and Zygmund Spaces. Computer Sciences & Mathematics Forum, 7(1), 9. https://doi.org/10.3390/IOCMA2023-14433