Previous Issue
Volume 3, September
 
 

Waste, Volume 3, Issue 4 (December 2025) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
12 pages, 1596 KB  
Article
Impact on the Rheological Properties and Amino Acid Compositions of the Industrial Evaporation of Waste Vinasse in the Production of Nutritional Supplements for Livestock
by Nayeli Gutiérrez-Casiano, Cesar Antonio Ortíz-Sánchez, Karla Díaz-Castellanos, Luis Antonio Velázquez-Herrera, Solmaría Mandi Pérez-Guzmán and Eduardo Hernández-Aguilar
Waste 2025, 3(4), 34; https://doi.org/10.3390/waste3040034 - 2 Oct 2025
Viewed by 265
Abstract
Vinasse a byproduct of ethanol manufacturing, is a challenge for ethanol producers which possesses a high organic content that presents a considerable environmental threat. This complicates its management and treatment utilizing standard technologies like anaerobic digestion. This residue contains a substantial quantity of [...] Read more.
Vinasse a byproduct of ethanol manufacturing, is a challenge for ethanol producers which possesses a high organic content that presents a considerable environmental threat. This complicates its management and treatment utilizing standard technologies like anaerobic digestion. This residue contains a substantial quantity of dead and lysed yeast cells, which can function as a protein source for livestock’s nutritional needs. The application of multi-effect evaporation enhances the characteristics of this residue by increasing protein concentration, reducing volume, and minimizing water content. This study examines the impact of the five-effect evaporation procedure on vinasse waste, focusing on its rheological properties and the concentrations of proteins, amino acids, RNA, and DNA. This study aims to assess the thermal impacts linked to the evaporation process. The findings of the one-way statistical analysis demonstrate that the five evaporation effects are relevant in the utilization of waste as feed for livestock. The substance has a viscosity of 0.933 Pa s, comprising 6.3 g/100 g of crude protein, 4.08 g/100 g of amino acids, 0.1158 g/L of DNA, and 0.1031 g/L of RNA. Full article
Show Figures

Figure 1

22 pages, 3763 KB  
Article
Industrial Food Waste Screening in Emilia-Romagna and the Conceptual Design of a Novel Process for Biomethane Production
by Antonio Conversano, Samuele Alemanno, Davide Sogni and Daniele Di Bona
Waste 2025, 3(4), 33; https://doi.org/10.3390/waste3040033 - 30 Sep 2025
Viewed by 190
Abstract
The REPowerEU plan is aimed at a target of 35 bcm of biomethane annually by 2030, up from 4 bcm in 2023, requiring about EUR 37 billion in investment. Food waste is identified as a key feedstock, characterized by discrete homogeneity, although its [...] Read more.
The REPowerEU plan is aimed at a target of 35 bcm of biomethane annually by 2030, up from 4 bcm in 2023, requiring about EUR 37 billion in investment. Food waste is identified as a key feedstock, characterized by discrete homogeneity, although its availability may vary seasonally. In Italy, the Emilia-Romagna region generates approximately 450 kt/y of industrial waste from the food and beverage sector, primarily originating from meat processing (NACE 10.1), fruit and vegetable processing (NACE 10.3), and the manufacture of vegetable and animal oils and fats (NACE 10.4). Of this amount, food and beverage processing waste (EWC 02) accounts for about 302 kt from NACE 10 (food, year 2019) and 14 kt from NACE 11 (beverage, year 2019). This study provides a comprehensive screening of waste streams generated by the local food and beverage industry in Emilia-Romagna, evaluating the number of enterprises, their value added, and recorded waste production. The screening led to the identification of suitable streams for further valorization strategies: a total of ~93 kt/y was selected for the preliminary conceptual design of an integrated process combining anaerobic digestion with hydrothermal treatment, aimed at supporting national biomethane production targets while maximizing material recovery through hydrochar production. Preliminary estimations indicate that the proposed process may achieve a biochemical methane potential of approximately 0.23 Nm3/kgVS, along with a hydrochar yield of about 130 kg/twaste. Full article
(This article belongs to the Special Issue New Trends in Liquid and Solid Effluent Treatment)
Show Figures

Figure 1

15 pages, 694 KB  
Article
Mechanical Performance and Durability of Concretes with Partial Replacement of Natural Aggregates by Construction and Demolition Waste
by Thamires Alves da Silveira, Rafaella dos Passos Nörnberg, Marcelo Subtil Santi, Renata Rabassa Morales, Alessandra Buss Tessaro, Hebert Luis Rosseto, Rafael de Avila Delucis and Guilherme Hoehr Trindade
Waste 2025, 3(4), 32; https://doi.org/10.3390/waste3040032 - 30 Sep 2025
Viewed by 232
Abstract
This study investigated the mechanical performance and durability of concretes produced with varying proportions of recycled coarse aggregate from construction and demolition waste (CDW), ranging from 0% to 100% replacement of natural coarse aggregate, using recycled aggregates derived from crushed concrete and mortar [...] Read more.
This study investigated the mechanical performance and durability of concretes produced with varying proportions of recycled coarse aggregate from construction and demolition waste (CDW), ranging from 0% to 100% replacement of natural coarse aggregate, using recycled aggregates derived from crushed concrete and mortar debris, characterized by lower density and high water absorption (~9%) compared to natural aggregates. A key contribution of this research lies in the inclusion of intermediate replacement levels (20%, 25%, 45%, 50%, and 65%), which are less explored in the literature and allow a more refined identification of performance thresholds. Fresh-state parameters (slump), axial compressive strength (7 and 28 days), total immersion water absorption, sorptivity, and chloride ion penetration depth (after 90 days of immersion in a 3.5% NaCl solution) were evaluated. The results indicate that, up to 50% CDW content, the concrete maintains slump (≥94 mm), characteristic strength (≥37.2 MPa at 28 days), and chloride penetration (≤14.1 mm) within the limits for moderate exposure conditions, in accordance with ABNT: NBR 6118. Water absorption doubled from 4.5% (0% CDW) to 9.5% (100% CDW), reflecting the higher porosity and adhered mortar on the recycled aggregate, which necessitates adjustments to the water–cement ratio and SSD pre-conditioning to preserve workability and minimize sorptivity. Concretes with more than 65% CDW exhibited chloride penetration depths exceeding 15 mm, potentially compromising durability without additional mitigation. The judicious incorporation of CDW, combined with optimized mix design practices and the use of supplementary cementitious materials (SCMs), demonstrates technical viability for reducing environmental impacts without significantly impairing the structural performance or service life of the concrete. Full article
(This article belongs to the Special Issue Use of Waste Materials in Construction Industry)
Show Figures

Graphical abstract

17 pages, 810 KB  
Article
Characterisation and Fertiliser Potential of Mechanically Dewatered Faecal Sludge from Anaerobic Digestion
by Dennis Ofori-Amanfo, Eugene Appiah-Effah, Barbara Gyapong-Korsah, Esi Awuah, Helen M. K. Essandoh, Miriam Appiah-Brempong and Issahaku Ahmed
Waste 2025, 3(4), 31; https://doi.org/10.3390/waste3040031 - 29 Sep 2025
Viewed by 279
Abstract
While mechanical dewatering is widely used in faecal sludge treatment, the agricultural potential of mechanically dewatered faecal sludge (MDFS) combined with anaerobic digestion (AD) remains underexplored, particularly in sub-Saharan Africa where nutrient recovery is critical for food security. This study provides the first [...] Read more.
While mechanical dewatering is widely used in faecal sludge treatment, the agricultural potential of mechanically dewatered faecal sludge (MDFS) combined with anaerobic digestion (AD) remains underexplored, particularly in sub-Saharan Africa where nutrient recovery is critical for food security. This study provides the first comprehensive characterisation of MDFS from Ghana’s largest treatment facility and evaluates anaerobic digestion effectiveness for agricultural application. Over six months, 182 composite MDFS samples from Lavender Hill Faecal Treatment Plant were analysed for physicochemical properties, nutrients, heavy metals, and microbial contaminants before and after AD treatment. MDFS demonstrated exceptional nutrient density, with total nitrogen (2141.05 mg/kg), phosphorus (190.08 mg/kg), and potassium (4434.88 mg/kg) concentrations comparable to commercial organic fertilisers. AD achieved significant pathogen reduction, decreasing total coliforms from 148,808.70 to 493.33 cfu/100 g (p < 0.001) and Ascaris lumbricoides eggs from 12.08 to 3.33 eggs/L, while maintaining nutrient integrity and keeping heavy metals within safe agricultural limits. Statistical modelling revealed a significant correlation between treatment duration and pathogen reduction efficiency. Despite substantial improvements, treated MDFS still exceeded some regulatory thresholds, indicating a need for complementary post-treatment strategies. This research establishes AD as an effective primary treatment for converting MDFS into a nutrient-rich organic fertiliser, supporting circular economy principles in urban sanitation systems and providing a sustainable pathway for agricultural nutrient recovery in resource-constrained settings. Full article
Show Figures

Figure 1

16 pages, 1260 KB  
Article
Trichoderma harzianum Enzyme Production in Stirred Solid-State Bioreactors as a Strategy for Valorizing Water Hyacinth
by Nohemi López-Ramírez, Ernesto Favela-Torres, Tania Volke-Sepúlveda and Fernando Méndez-González
Waste 2025, 3(4), 30; https://doi.org/10.3390/waste3040030 - 25 Sep 2025
Viewed by 285
Abstract
Water hyacinth is an invasive weed that can valorize through the production of hydrolytic enzymes via solid-state culture. This study explores the application of Trichoderma harzianum in producing xylanases and endoglucanases on water hyacinth beds. Laboratory-scale packed-bed column bioreactors (PBCBs) with a capacity [...] Read more.
Water hyacinth is an invasive weed that can valorize through the production of hydrolytic enzymes via solid-state culture. This study explores the application of Trichoderma harzianum in producing xylanases and endoglucanases on water hyacinth beds. Laboratory-scale packed-bed column bioreactors (PBCBs) with a capacity of 8 grams of dry mass (gdm) were used to evaluate the effects of temperature (28–36 °C) and initial moisture content (65–80%) on microbial growth and enzyme production. High yields of biomass and enzymes were produced at 30 °C. Moreover, xylanase activity was enhanced in cultures with a moisture content of 65% (~71.24 U/gdm), and endoglucanase activity at 75–80% moisture (~20.13 U/gdm). The operational conditions identified for xylanase production were applied to 6 L bench-scale cross-flow internally stirred bioreactors, packed to 40% capacity with 450 gdm. Two stirring regimes were tested: intermittent and continuous. The results showed that continuous stirring promotes both microbial growth and xylanase activity. In fact, xylanase activity in continuous stirring conditions was comparable to that achieved in PBCBs. Consequently, continuous stirring enables a 56-fold increase in bioreactor capacity without compromising xylanase production. The approaches developed in this study can support the design of large-scale bioprocesses for the valorization of water hyacinth. Full article
Show Figures

Graphical abstract

Previous Issue
Back to TopTop