Next Issue
Volume 2, December
Previous Issue
Volume 2, June
 
 

Muscles, Volume 2, Issue 3 (September 2023) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
18 pages, 5139 KiB  
Article
Degradative Signaling in ATG7-Deficient Skeletal Muscle Following Cardiotoxin Injury
by Fasih Ahmad Rahman, Troy Campbell, Darin Bloemberg, Sarah Chapman and Joe Quadrilatero
Muscles 2023, 2(3), 299-316; https://doi.org/10.3390/muscles2030023 - 15 Sep 2023
Cited by 2 | Viewed by 1386
Abstract
Skeletal muscle is a complex tissue comprising multinucleated and post-mitotic cells (i.e., myofibers). Given this, skeletal muscle must maintain a fine balance between growth and degradative signals. A major system regulating the remodeling of skeletal muscle is autophagy, where cellular quality control is [...] Read more.
Skeletal muscle is a complex tissue comprising multinucleated and post-mitotic cells (i.e., myofibers). Given this, skeletal muscle must maintain a fine balance between growth and degradative signals. A major system regulating the remodeling of skeletal muscle is autophagy, where cellular quality control is mediated by the degradation of damaged cellular components. The accumulation of damaged cellular material can result in elevated apoptotic signaling, which is particularly relevant in skeletal muscle given its post-mitotic nature. Luckily, skeletal muscle possesses the unique ability to regenerate in response to injury. It is unknown whether a relationship between autophagy and apoptotic signaling exists in injured skeletal muscle and how autophagy deficiency influences myofiber apoptosis and regeneration. In the present study, we demonstrate that an initial inducible muscle-specific autophagy deficiency does not alter apoptotic signaling following cardiotoxin injury. This finding is presumably due to the re-establishment of ATG7 levels following injury, which may be attributed to the contribution of a functional Atg7 gene from satellite cells. Furthermore, the re-expression of ATG7 resulted in virtually identical regenerative potential. Overall, our data demonstrate that catastrophic injury may “reset” muscle gene expression via the incorporation of nuclei from satellite cells. Full article
Show Figures

Figure 1

13 pages, 1117 KiB  
Article
W Prime: Evidence-Based Proposal for a New Predictor of Gait Speed in Older Women
by Gersiel Nascimento de Oliveira Júnior, Jairo de Freitas Rodrigues de Sousa, Marcelo Augusto da Silva Carneiro, Fernanda Maria Martins, Samarita Beraldo Santagnello, Rosekeila Simões Nomelini, Cláudio de Oliveira Assumpção, Markus Vinícius Campos Souza and Fábio Lera Orsatti
Muscles 2023, 2(3), 286-298; https://doi.org/10.3390/muscles2030022 - 24 Aug 2023
Cited by 1 | Viewed by 1181
Abstract
Background: The hyperbolic torque-duration curve depicts critical torque (CT) and W prime (W′), with the curve’s asymptote representing CT as the boundary between heavy- and severe-intensity domains. W′, the curvature constant, indicates cumulative work beyond CT. This study investigated age-related reductions in W′, [...] Read more.
Background: The hyperbolic torque-duration curve depicts critical torque (CT) and W prime (W′), with the curve’s asymptote representing CT as the boundary between heavy- and severe-intensity domains. W′, the curvature constant, indicates cumulative work beyond CT. This study investigated age-related reductions in W′, CT, and gait speed, and whether W′ and CT predict gait speed independently of muscle torque. Methods: three groups (adults, middle-aged, older) totaling 131 women were studied. W′ and CT were determined using 60 maximal isometric voluntary contractions of knee extensors. The fast gait speed was calculated in walking tests at 10 m, 400 m, and six minutes (6 MWT). Results: gait speed decreased (p < 0.05) with age, as did W′ and CT. Both W′ and CT correlated positively with gait speed at different distances (10 m, 400 m, 6 MWT). Adjusted for maximum muscle torque, only W′ maintained a positive association (p < 0.05) with all gait speed tests (10 m: β = 0.201, SE = 0.086; 400 m: β = 0.262, SE = 0.085; 6 MWT: β = 0.187, SE = 0.086). Conclusions: aging led to declines in W′, CT, and gait speed. W′, not CT, remained a significant predictor of gait speed, indicating its importance for older women’s mobility. Full article
Show Figures

Figure 1

12 pages, 866 KiB  
Article
Limb–Girdle Muscular Dystrophy D2 TNPO3-Related: A Quality of Life Study
by Alicia Aurora Rodríguez, Imanol Amayra, Irune García and Corrado Angelini
Muscles 2023, 2(3), 274-285; https://doi.org/10.3390/muscles2030021 - 24 Jul 2023
Viewed by 1758
Abstract
The present study is the first research that analyzes the quality of life (QoL) of people affected by a dominant form of limb–girdle muscular dystrophy, specifically limb–girdle muscular dystrophy D2 (LGMD-D2). Additionally, clinical forms of the individual cases of the six affected patients [...] Read more.
The present study is the first research that analyzes the quality of life (QoL) of people affected by a dominant form of limb–girdle muscular dystrophy, specifically limb–girdle muscular dystrophy D2 (LGMD-D2). Additionally, clinical forms of the individual cases of the six affected patients are presented. This study also aims to explore the differences between patients’ reports and caregivers’ reports, and between LGMD-D2 and recessive forms of LGMD. The instruments used were as follows: sociodemographic data, GSGC, and INQoL instrument. The sample consisted of six people affected by LGMD-D2: three caregivers of three affected people, and three patients with recessive LGMD. They came from associations of affected people and a hospital in Padua. Those affected have multiple symptoms that lead to disability, which ultimately leads to dependence on the assistance. The present study shows that LGMD-D2 has a greater impact on activities of daily living, fatigue, muscle pain, and independence than other LGMD pathologies or other neuromuscular diseases. It also appears that age could influence QoL, and that muscle weakness is a very disabling symptom in this variant. In the current context of constantly developing research for new treatments, it is essential to analyze which aspects are most affected. Finally, caregivers can play an essential role in symptom reporting, as certain psychological adjustment mechanisms in the patient may be interfering with the objectivity of the report. Full article
Show Figures

Figure 1

3 pages, 171 KiB  
Editorial
Clinical Advances in Neuromuscular Diseases: Neurometabolic Disorders
by Corrado Angelini and Daniela Tavian
Muscles 2023, 2(3), 271-273; https://doi.org/10.3390/muscles2030020 - 17 Jul 2023
Viewed by 1151
Abstract
Metabolic myopathies are characterized by the dysfunction of several metabolic pathways that results in a deficiency of fuels required to generate energy for muscle contractions [...] Full article
21 pages, 1009 KiB  
Article
Current Cut Points of Three Falls Risk Assessment Tools Are Inferior to Calculated Cut Points in Geriatric Evaluation and Management Units
by Vivian Lee, Linda Appiah-Kubi, Sara Vogrin, Jesse Zanker and Joanna Mitropoulos
Muscles 2023, 2(3), 250-270; https://doi.org/10.3390/muscles2030019 - 7 Jul 2023
Viewed by 1615
Abstract
Background: Falls risk assessment tools are used in hospital inpatient settings to identify patients at increased risk of falls to guide and target interventions for fall prevention. In 2022, Western Health, Melbourne, Australia, introduced a new falls risk assessment tool, the Western Health [...] Read more.
Background: Falls risk assessment tools are used in hospital inpatient settings to identify patients at increased risk of falls to guide and target interventions for fall prevention. In 2022, Western Health, Melbourne, Australia, introduced a new falls risk assessment tool, the Western Health St. Thomas’ Risk Assessment Tool (WH-STRATIFY), which adapted The Northern Hospital’s risk tool (TNH-STRATIFY) by adding non-English speaking background and falls-risk medication domains to reflect patient demographics. WH-STRATIFY replaced Peninsula Health Risk Screening Tool (PH-FRAT) previously in use at Western Health. This study compared the predictive accuracy of the three falls risk assessment tools in an older inpatient high-risk population. Aims: To determine the predictive accuracy of three falls risk assessment tools (PH-FRAT, TNH-STRATIFY, and WH-STRATIFY) on admission to Geriatric Evaluation Management (GEM) units (subacute inpatient wards where the most frail and older patients rehabilitate under a multi-disciplinary team). Method: A retrospective observational study was conducted on four GEM units. Data was collected on 54 consecutive patients who fell during admission and 62 randomly sampled patients who did not fall between December 2020 and June 2021. Participants were scored against three falls risk assessment tools. The event rate Youden (Youden IndexER) indices were calculated and compared using default and optimal cut points to determine which tool was most accurate for predicting falls. Results: Overall, all tools had low predictive accuracy for falls. Using default cut points to compare falls assessment tools, TNH-STRATIFY had the highest predictive accuracy (Youden IndexER = 0.20, 95% confidence interval CI = 0.07, 0.34). The PH-FRAT (Youden IndexER = 0.01 and 95% CI = −0.04, 0.05) and WH-STRATIFY (Youden IndexER = 0.00 and 95% CI = −0.04, 0.03) were statistically equivalent and not predictive of falls compared to TNH-STRATIFY. When calculated optimal cut points were applied, predictive accuracy improved for PH-FRAT (Cut point 17, Youden IndexER = 0.14 and 95% CI = 0.01, 0.29) and WH-STRATIFY (Cut point 7, Youden IndexER = 0.18 and 95% CI = 0.00, 0.35). Conclusions: TNH-STRATIFY had the highest predictive accuracy for falls. The predictive accuracy of WH-STRATIFY improved and was significant when the calculated optimal cut point was applied. The optimal cut points of falls risk assessment tools should be determined and validated in different clinical settings to optimise local predictive accuracy, enabling targeted fall risk mitigation strategies and resource allocation. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop