Phytochemical Screening, Polyphenol and Flavonoid Contents, and Antioxidant and Antimicrobial Activities of Opilia amentacea Roxb. (Opiliaceae) Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Microbial Strains
2.3. Culture Media
2.4. Chemicals and Standards
2.5. Plant Extract Preparation
Fractionation
2.6. Phytochemical Screening
2.6.1. Characterization Reactions in Tubes
Preparation of Ethanolic Extract Solutions
Hydrolysis of Extract Solutions
Screening for Tannins
Screening for Flavonoids (Shibata or Cyanidin Reaction)
Screening for Leucoanthocyans
Screening for Anthracenosides/Anthraquinones (Bornträger Reaction)
Screening for Sterols and Terpenoids (Liebermann Burchard Reaction)
Screening for Coumarins and Derivatives (Feigl Reaction)
Screening for Saponosides by the Foam Test
Screening for Cardiotonic Heterosides
Screening for Reducing Compounds
Screening for Alkaloids
Thin-Layer Chromatography (TLC)
2.6.2. Quantitative Phytochemical Assessment
Determination of Total Phenolics: Folin–Ciocalteu Method
Determination of Total Flavonoids
2.7. Biological Properties
2.7.1. In Vitro Antimicrobial Assay
Disc Method in Agar Medium
Microdilution Method
Interpreting Antimicrobial Test Results
- -
- Bactericidal extracts: BMC/MIC ≤ 2;
- -
- Bacteriostatic extracts: BMC/MIC > 2;
- -
- Extracts with an inhibition diameter ≥ 10 mm (selected for more investigation).
2.7.2. Antioxidant Activity Assays
ABTS Radical Cation Scavenging Activity
DPPH Radical Scavenging Activity
FRAP Assay
2.8. Statistical Analysis
3. Results and Discussion
3.1. Phytochemical Screening
3.1.1. Qualitative Phytochemical Screening
3.1.2. Quantitative Phytochemical Assessment
3.2. Antimicrobial Activity
3.3. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kandil, A. Prévalence Des Dermatoses En Médecine Communautaire à Marrakech. Ph.D. Thesis, Université Cadi Ayyad, Marrakech, Morocco, 2021. [Google Scholar]
- Silva, S.; Negri, M.; Henriques, M.; Oliveira, R.; Williams, D.W.; Azeredo, J. Candida Glabrata, Candida Parapsilosis and Candida Tropicalis: Biology, Epidemiology, Pathogenicity and Antifungal Resistance. FEMS Microbiol. Rev. 2012, 36, 288–305. [Google Scholar] [CrossRef]
- Esposito, S.; Noviello, S.; Leone, S. Epidemiology and Microbiology of Skin and Soft Tissue Infections. Curr. Opin. Infect. Dis. 2016, 29, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Dione, H.; Bammo, M.; Lawson, A.T.D.; Seck, F.; Dioussé, P.; Guèye, N.; Faye, F.A.; Touré, P.S. Les Urgences Dermatologiques à l’hôpital Régional de Thiès/Sénégal: Une Série de 240 Cas. Rev. Afr. Med. Interne 2018, 5, 11–14. [Google Scholar]
- Villeneuve, D. Quelle Est l’épidémiologie de La Dermatoporose Dans Une Population de Médecine Générale En Île de France; Université Paris Descartes: Paris, France, 2017. [Google Scholar]
- Borda, L.J.; Louis, S.J.; Fethiere, M.; Dure, D.; Morrison, B.W. Prevalence of Skin Disease in Urban Haiti: A Cross-Sectional Study. Dermatology 2019, 235, 495–500. [Google Scholar] [CrossRef]
- Abdoulaye, O.; Laouali Harouna Amadou, M.; Amadou, O.; Adakal, O.; Magagi Larwanou, H.; Boubou, L.; Oumarou, D.; Abdoulaye, M.; Mamadou, S. Aspects Épidémiologiques et Bactériologiques Des Infections Du Site Opératoire (ISO) Dans Les Services de Chirurgie à l’Hôpital National de Niamey (HNN). Pan Afr. Med. J. 2018, 8688, 1–5. [Google Scholar] [CrossRef]
- Githiori, J.B.; Höglund, J.; Waller, P.J.; Baker, R.L. Anthelmintic Activity of Preparations Derived from Myrsine africana and Rapanea melanophloeos against the Nematode Parasite, Haemonchus contortus, of Sheep. J. Ethnopharmacol. 2002, 80, 187–191. [Google Scholar] [CrossRef]
- Saad, B.; Azaizeh, H.; Abu-Hijleh, G.; Said, O. Safety of Traditional Arab Herbal Medicine. Evid.-Based Complement. Altern. Med. 2006, 3, 433–439. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [PubMed]
- Grønhaug, T.E.; Ghildyal, P.; Barsett, H.; Michaelsen, T.E.; Morris, G.; Diallo, D.; Inngjerdingen, M.; Paulsen, B.S. Bioactive Arabinogalactans from the Leaves of Opilia celtidifolia Endl. Ex Walp. (Opiliaceae). Glycobiology 2010, 20, 1654–1664. [Google Scholar] [CrossRef]
- Hoffmann, J.; Gendrisch, F.; Schempp, C.M.; Wölfle, U. New Herbal Biomedicines for the Topical Treatment of Dermatological Disorders. Biomedicines 2020, 8, 27. [Google Scholar] [CrossRef]
- Hernández-Rodríguez, P.; Baquero, L.P.; Larrota, H.R. Flavonoids: Potential Therapeutic Agents by Their Antioxidant Capacity. In Bioactive Compounds: Health Benefits and Potential Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 265–288. ISBN 9780128147757. [Google Scholar]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive Review of Antimicrobial Activities of Plant Flavonoids. Phytochem. Rev. 2019, 18, 241–272. [Google Scholar] [CrossRef]
- Zaid, H.; Silbermann, M.; Ben-Arye, E.; Saad, B. Greco-Arab and Islamic Herbal-Derived Anticancer Modalities: From Tradition to Molecular Mechanisms. Evid.-Based Complement. Altern. Med. 2012, 2012, 349040. [Google Scholar] [CrossRef] [PubMed]
- Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V.; Stefan, G. Plant Polyphenols as Antioxidant and Antibacterial Agents for Shelf-Life Extension of Meat and Meat Products: Classification, Structures, Sources, and Action Mechanisms. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1243–1268. [Google Scholar] [CrossRef] [PubMed]
- Sawadogo, W.R.; Lompo, M.; Guissou, I.P.; Nacoulma, O.G. Dosage Des Triterpènes et Steroïdes de Dicliptera Verticillata et Évaluation de Leur Activité Anti-Inflammatoire Topique. Med. Afr. Noire 2008, 4, 55–62. [Google Scholar]
- Bhat, S.G. Medicinal Plants and Its Pharmacological Values. In Natural Medicinal Plants; Intechopen: London, UK, 2021; Volume 34, pp. 57–67. [Google Scholar] [CrossRef]
- Nacoulma, O.G. Plantes Médicinales et Pratiques Médicinales Traditionnelles: Cas Du Plateau Central; Université de Ouagadougou: Ouagadougou, Burkina Faso, 1996. [Google Scholar]
- Le, C.T.; Liu, B.; Barrett, R.L.; Lu, L.M.; Wen, J.; Chen, Z.D. Phylogeny and a New Tribal Classification of Opiliaceae (Santalales) Based on Molecular and Morphological Evidence. J. Syst. Evol. 2018, 56, 56–66. [Google Scholar] [CrossRef]
- Malgras, D. Arbres et Arbustes Guérisseurs Des Savanes Maliennes; Karthala et ACCT: Paris, France, 1992; ISBN 2865373770. [Google Scholar]
- Togola, A.; Karabinta, K.; Denou, A.; Haidara, M.; Sanogo, R.; Diallo, D. Effet Protecteur Des Feuilles de Opilia celtidifolia Contre l’ulcère Induit Par l’éthanol Chez Le Rat. Int. J. Biol. Chem. Sci. 2014, 8, 2416. [Google Scholar] [CrossRef]
- Makan, S. Etude de l’activité Appétissante Du Décocté de Feuilles de Opilia celtidifolia Guill.et Perr (Opiliaceae) Chez Les Rats. Ph.D. Thesis, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali, 2012; pp. 1–85. [Google Scholar]
- Sombie, E.N.; Tibiri, A.; N’do, J.Y.-P.; Traore, T.K.; Ouedraogo, N.; Hilou, A.; Guissou, P.I.; Nacoulma, O.G. Ethnobotanical Study and Antioxidant Activity of Anti-Hepatitis Plants Extracts of the COMOE Province, Burkina Faso. Int. J. Biol. Chem. Sci. 2018, 12, 1308. [Google Scholar] [CrossRef]
- Guinnin, F.; Sacramento, T.; Sezan, A.; Ategbo, J. Etude Ethnobotanique Des Plantes Médicinales Utilisées Dans Le Traitement Traditionnel Des Hépatites Virales B et C Dans Quelques Départements Du Bénin. Int. J. Biol. Chem. Sci. 2015, 9, 1354. [Google Scholar] [CrossRef]
- Owolabi, M.S.; Omowonuola, A.A.; Lawal, O.A.; Dosoky, N.S.; Collins, J.T.; Ogungbe, I.V.; Setzer, W.N. Phytochemical and Bioactivity Screening of Six Nigerian Medicinal Plants. J. Pharmacogn. Phytochem. 2017, 6, 1430–1437. [Google Scholar]
- Bienvenu, G.; Morel, D.E.; Fidèle, A.M.; Huguette, A.B.; Toklo, P.M.; Djidénou, A.; Salomé, K.D.S.; Eléonore, L.Y.C.; Joachim, D. Phytochemical Study, Antioxidant and Anticonvulsant Activities of Aqueous Extract of Leaves of Opilia celtidifolia (Guill. Et Perr.) Endl. Ex Walp. Opiliaceae, from Benin. OSR J. Pharm. Biol. Sci. 2022, 17, 43–55. [Google Scholar]
- Shihata, I.M.; El-Gendi, A.Y.I.; Abd El–Malik, M.M. Pharmacochemical Studies on Saponin Fraction of Opilia celtidifolia. Planta Med. 1977, 31, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Togola, A.; Inngjerdingen, M.; Diallo, D.; Barsett, H.; Rolstad, B.; Michaelsen, T.E.; Smestad, B. Polysaccharides with Complement Fixing and Macrophage Stimulation Activity from Opilia celtidifolia, Isolation and Partial Characterisation. J. Ethno-Pharmacol. 2008, 115, 423–431. [Google Scholar] [CrossRef]
- Inngjerdingen, K.T.; Langerud, B.K.; Rasmussen, H.; Olsen, T.K.; Austarheim, I.; Grønhaug, T.E.; Aaberge, I.S.; Diallo, D.; Paulsen, B.S.; Michaelsen, T.E. Pectic Polysaccharides Isolated from Malian Medicinal Plants Protect against Streptococcus pneumoniae in a Mouse Pneumococcal Infection Model. Scand. J. Immunol. 2013, 77, 372–388. [Google Scholar] [CrossRef] [PubMed]
- Sangaré, D. Etude de La Prise En Charge Du Paludisme Par Les Thérapeutes Traditionnels Dans Les Aires de Santé de Kendie (Bandiagara) et de Finkolo AC (Sikasso); Université de Bamako: Bamako, Mali, 2003. [Google Scholar]
- Sanon, S.; Gansane, A.; Ouattara, L.P.; Traore, A.; Ouedraogo, I.N.; Tiono, A.; Taramelli, D.; Basilico, N.; Sirima, S.B. In Vitro Antiplasmodial and Cytotoxic Properties of Some Medicinal Plants from Western Burkina Faso. Afr. J. Lab. Med. 2013, 2, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Traore, M. Phytochemical Studies of Plants Used as Antimalarials in Burkina Faso; University of Copenhagen: Copenhagen, Denmark, 2008. [Google Scholar]
- Konaté, K.; Arsène, M.; Yomalan, K.; Sytar, O.; Souza, A.; Brestic, M.; Dicko, M.H. In Vitro Antioxidant and Anti-Inflammatory Profiles of Bioactive Fraction from Opilia celtidifolia (Guill. & Perr.) Endl. Ex Walp (Opiliaceae). World J. Pharm. Res. 2019, 8, 141–156. [Google Scholar]
- Ciulei, I. Methodology for Analysis of Vegetable Drugs. Practical Manual on the Industrial Utilisation of Medicinal and Aromatic Plants; Faculty of Pharmacy: Bucharest, Romania, 1982. [Google Scholar]
- Kouliga, K.B.; Serge, Y.R.; Ollo, D.; Sibidou, Y.; Magloire, N.H.; Georges Anicet, O.; Bosco, O.J.; Coulibaly Maminata, T. In Vivo Antimalarial Activity, Safety and Phytochemical Screening of Canthium Multiflorum (Schumach. &Thonn.) Hiern (Rubiaceae). J Med. Plants Res. 2020, 10, 196–204. [Google Scholar]
- Koala, M.; Kaboré, B.; Rimwagna Ouedraogo, C.W.; Belemnaba, L.; Nitiema, M.; Compaoré, S.; Ouedraogo, S.; Ouedraogo, N.; Dabiré, C.M.; Kini, F.B.; et al. High-Performance Thin-Layer Chromatography Phytochemical Profiling, Antioxidant Activities, and Acute Toxicity of Leaves Extracts of Lannea velutina A. Rich. J. Med. Chem. Sci. 2023, 6, 410–423. [Google Scholar] [CrossRef]
- Youl, O.; Yougbare, S.; Lompo, P.; Yaro, B.; Tahita, C.M.; Tinto, H.; Hilou, A.; Traore/Coulibaly, M. Preliminary Screening of the Antimicrobial Activity of Nine Medicinal Plant Species from Burkina Faso. J. Med. Plants Res. 2021, 15, 522–530. [Google Scholar] [CrossRef]
- Ponce, A.G.; Fritz, R.; Del Valle, C.; Roura, S.I. Antimicrobial Activity of Essential Oils on the Native Microflora of Organic Swiss Chard. LWT Food Sci. Technol. 2003, 36, 679–684. [Google Scholar] [CrossRef]
- Kuete, V. Potential of Cameroonian Plants and Derived Products against Microbial Infections: A Review. Planta Med. 2010, 76, 1479–1491. [Google Scholar] [CrossRef]
- Marmonier, A. Introduction Aux Techniques d’étude Des Antibiotiques. Bacteriol. Med. Tech. Usuelles 1990, 1, 227–236. [Google Scholar]
- Bance, A.; Sourabié, S.; Compaoré, S.; Compaoré, E.; Belem-Kabre, W.L.M.E.; Ouedraogo, V.; Rouamba, A.; Ouedraogo, N.; Kiendrebeogo, M. Therapeutic Properties of Aqueous Extracts of Leaves and Stems Bark of Prosopis africana (Guill. & Perr.) Taub. (Fabaceae) Used in the Management of Dental Caries. J. Drug Deliv. Ther. 2021, 11, 108–114. [Google Scholar] [CrossRef]
- Paré, D.; N’do, J.Y.P.; Hilou, A. Phytochemical and Biological Investigation of 5 Bioactive Fractions of Caralluma acutangula, a Medicinal Plant Used in Traditional Medicine in Northern of Burkina Faso. GSC Biol. Pharm. Sci. 2020, 11, 81–91. [Google Scholar] [CrossRef]
- Koumare, B.; Diallo, D.; Sanogo, R.; Diarra, B. Study of Phytochemistry and Appetizing Activity of Decocted Leaves of Opilia celtidifolia Guill. et Perr. (OPILIACEAE) in Rats. EasyChair, 2020; preprint. [Google Scholar]
- Konaté, K.; Yomalan, K.; Sytar, O.; Zerbo, P.; Brestic, M.; Patrick, V.D.; Gagniuc, P.; Barro, N. Free Radicals Scavenging Capacity, Antidiabetic and Antihypertensive Activities of Flavonoid-Rich Fractions from Leaves of Trichilia emetica and Opilia amentacea in an Animal Model of Type 2 Diabetes Mellitus. Evid.-Based Complement. Altern. Med. 2014, 2014, 867075. [Google Scholar] [CrossRef]
- Amang, A.P.; Kodji, E.; Mezui, C.; Baane, M.P.; Siwe, G.T.; Kuissu, T.M.; Emakoua, J.; Tan, P.V. Hepatoprotective Effects of Aqueous Extract of Opilia celtidifolia (Opiliaceae) Leaves against Ethanol-Induced Liver Damage in Rats. Evid.-Based Complement. Altern. Med. 2020, 2020, 6297475. [Google Scholar] [CrossRef]
- Bhuvaneswari, D.S.; Subashini, G.; Renugadevi, B. Antimicrobial Activity and Phytochemical Analysis of Opilia amentaceae Medicinal Plant Extracts. J. Emerg. Technol. Innov. Res. 2019, 6, 346–354. [Google Scholar]
- Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis. Angew. Chem. Int. Ed. 2011, 50, 586–621. [Google Scholar] [CrossRef]
- Medini, F.; Fellah, H.; Ksouri, R.; Abdelly, C. Total Phenolic, Flavonoid and Tannin Contents and Antioxidant and Antimicrobial Activities of Organic Extracts of Shoots of the Plant. J. Taiba Univ. Sci. 2014, 8, 216–224. [Google Scholar] [CrossRef]
- Tadić, V.; Oliva, A.; Božović, M.; Cipolla, A.; De Angelis, M.; Vullo, V.; Garzoli, S.; Ragno, R. Chemical and Antimicrobial Analyses of Sideritis romana L. Subsp. purpurea (Tal. Ex Benth.) Heywood, an Endemic of the Western Balkan. Molecules 2017, 22, 1395. [Google Scholar] [CrossRef]
- Slobodníková, L.; Fialová, S.; Rendeková, K.; Kováč, J.; Mučaji, P. Antibiofilm Activity of Plant Polyphenols. Molecules 2016, 21, 1717. [Google Scholar] [CrossRef] [PubMed]
- Jaakola, L.; Määttä-Riihinen, K.; Kärenlampi, S.; Hohtola, A. Activation of Flavonoid Biosynthesis by Solar Radiation in Bilberry (Vaccinium myrtillus L.) Leaves. Planta 2004, 218, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Dubale, S.; Kebebe, D.; Zeynudin, A.; Abdissa, N.; Suleman, S. Phytochemical Screening and Antimicrobial Activity Evaluation of Selected Medicinal Plants in Ethiopia. J. Exp. Pharmacol. 2023, 15, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, R.; Ibrahim, S.A. Natural Products as Antimicrobial Agents. Food Control 2014, 46, 412–429. [Google Scholar] [CrossRef]
- Habbal, O.; Hasson, S.S.; El-Hag, A.H.; Al-Mahrooqi, Z.; Al-Hashmi, N.; Al-Bimani, Z.; Al-Balushi, M.S.; Al-Jabri, A.A. Antibacterial Activity of Lawsonia Inermis Linn (Henna) against Pseudomonas Aeruginosa. Asian Pac. J. Trop. Biomed. 2011, 1, 173–176. [Google Scholar] [CrossRef]
- Tagousop, C.N.; Tamokou, J.D.D.; Ekom, S.E.; Ngnokam, D.; Voutquenne-Nazabadioko, L. Antimicrobial Activities of Flavonoid Glycosides from Graptophyllum Grandulosum and Their Mechanism of Antibacterial Action. BMC Complement. Altern. Med. 2018, 18, 252. [Google Scholar] [CrossRef]
- Periferakis, A.; Periferakis, K.; Badarau, I.A.; Petran, E.M.; Popa, D.C.; Caruntu, A.; Costache, R.S.; Scheau, C.; Caruntu, C.; Costache, D.O. Kaempferol: Antimicrobial Properties, Sources, Clinical, and Traditional Applications. Int. J. Mol. Sci. 2022, 23, 15054. [Google Scholar] [CrossRef]
- Skenderidis, P.; Leontopoulos, S.; Petrotos, K.; Mitsagga, C.; Giavasis, I. The in Vitro and in Vivo Synergistic Antimicrobial Activity Assessment of Vacuum Microwave Assisted Aqueous Extracts from Pomegranate and Avocado Fruit Peels and Avocado Seeds Based on a Mixtures Design Model. Plants 2021, 10, 1757. [Google Scholar] [CrossRef]
- Zhang, H.; Tsao, R. Dietary Polyphenols, Oxidative Stress and Antioxidant and Anti-Inflammatory Effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Magid, A.A.; Abdellah, A.; Pecher, V.; Pasquier, L.; Harakat, D.; Voutquenne-Nazabadioko, L. Flavonol Glycosides and Lignans from the Leaves of Opilia amentacea. Phytochem. Lett. 2017, 21, 84–89. [Google Scholar] [CrossRef]
- Parikh, B.; Patel, V.H. Quantification of Phenolic Compounds and Antioxidant Capacity of an Underutilized Indian Fruit: Rayan [Manilkara Hexandra (Roxb.) Dubard]. Food Sci. Hum. Wellness 2017, 6, 10–19. [Google Scholar] [CrossRef]
- Kada, S. Recherche D’extraits de Plantes Médicinales Doués d’activités Biologiques; Université Ferhat Abbas Sétif 1: Setif, Algeria, 2018. [Google Scholar]
- Beddou, M.F. Etude Phytochimique et Activités Biologiques de Deux Plantes Médicinales Sahariennes Rumex Vesicarius L. et Anvillea Radiata Coss. & Dur; Université Abou Bekr Belkaid: Tlemcen, Algeria, 2015. [Google Scholar]
- Huang, S.W.; Qiao, J.W.; Sun, X.; Gao, P.Y.; Li, L.Z.; Liu, Q.B.; Sun, B.; Wu, D.L.; Song, S.J. Secoiridoids and Lignans from the Leaves of Diospyros kaki Thunb. with Antioxidant and Neuroprotective Activities. J. Funct. Foods 2016, 24, 183–195. [Google Scholar] [CrossRef]
- Załuski, D.; Kuźniewski, R.; Janeczko, Z. HPTLC-Profiling of Eleutherosides, Mechanism of Antioxidative Action of Eleutheroside E1, the PAMPA Test with LC/MS Detection and the Structure–Activity Relationship. Saudi J. Biol. Sci. 2018, 25, 520–528. [Google Scholar] [CrossRef]
- Meng, Q.; Yang, Z.; Jie, G.; Gao, Y.; Zhang, X.; Li, W.; Li, B.; Tu, Y. Evaluation of Antioxidant Activity of Tea Polyphenols by a Quantum Chemistry Calculation Method—PM6. J. Food Nutr. Res. 2014, 2, 965–972. [Google Scholar] [CrossRef]
Microbial Groups | Strains | Incubation |
---|---|---|
Gram-negative bacilli | Escherichia coli ATCC 25922 | Incubation of inoculated agar plates for 24 h at 37 °C |
Pseudomonas aeruginosa ATCC 27653 | ||
Gram-positive cocci | Staphylococcus aureus ATCC 25923 | |
Streptococcus pyogenes ATCC 19615 | The inoculated agar plates were initially placed in moist, CO2-rich jars and incubated for 24–48 h at 37 °C | |
Streptococcus agalactiae ATCC 13813 | ||
Fungi | Candida albicans ATCC 90028 | Incubation for 48 h at 25 °C |
Candida tropicalis ATCC 750 |
Sample Phytochemical Groups | OCFe | OCET | OCER |
---|---|---|---|
Steroidal and triterpenic glycosides (saponosides) | (+) | (+) | (+) |
Anthraquinones | (+) | (−) | (+) |
Anthocyans | (−) | (−) | (−) |
Alkaloids | (−) | (−) | (−) |
Flavonoids | (+) | + | (+) |
Coumarins and derivatives | (+) | (−) | (+) |
Tannins | (+) | (+) | (+) |
Reducing compounds | (+) | (+) | (+) |
Cardenolids | (−) | (−) | (−) |
Strains Extracts | Pa | Ec | Sa | Sp | Sag | Ca | Ct |
---|---|---|---|---|---|---|---|
NC | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
PC | 27.33 ± 0.57 | 35.67 ± 0.57 | 31.33 ± 1.15 | 35.67 ± 0.57 | 37.67 ± 0.57 | 20.67 ± 0.57 | 21 ± 1 |
FHFe | 0 | 0 | 0 | 0 | 0 | 9 ±0.3 | 13 ± 0.67 |
FHET | 0 | 0 | 0 | 0 | 8 ± 0 | 8 ± 0 | 11.5 ± 0 |
FHER | 0 | 0 | 0 | 0 | 9 ±0 | 8 ± 0 | 10 ± 0 |
FDFe | 0 | 0 | 12 ± 0 | 15.2 ± 0.33 | 15.33 ± 1 | 0 | 0 |
FDET | 0 | 0 | 0 | 14 ± 1.12 | 15 ± 1.67 | 0 | 0 |
FDER | 0 | 0 | 0 | 11 ± 0 | 12 ± 0.33 | 0 | 0 |
FaqER | 0 | 0 | 12.66 ± 0.28 | 14.5 ±0.5 | 14.5 ±0.5 | 0 | 0 |
Extracts | MIC (mg/mL) | MBC (mg/mL) | MBC/MIC | Interpretation |
---|---|---|---|---|
S. aureus ATCC 25923 | ||||
FDFe | 4.64 ± 0 | 9.28 ± 0 | 2 | Bactericidal |
FaqER | 12.51 ± 2.02 | 25.03 ± 3.1 | 2 | Bactericidal |
S. agalactiae ATCC 13813 | ||||
FDFe | 2.03 ± 0 | 2.03 ± 0 | 1 | Bactericidal |
FDET | 0.96 ± 0 | 0.96 ± 0 | 1 | Bactericidal |
FaqER | 5.04 ± 0.9 | 10.08 ± 0.9 | 2 | Bactericidal |
S. pyogenes ATCC 19615 | ||||
FDFe | 2.03 ± 0 | 2.03 ± 0 | 1 | Bactericidal |
FDET | 0.96 ± 0 | 0.96 ± 0 | 1 | Bactericidal |
FaqER | 5.04 ± 0.9 | 10.08 ± 0.9 | 2 | Bactericidal |
C. tropicalis ATCC 90028 | ||||
FHFe | 0.23 ± 0 | 0.23 ± 0 | 1 | Bactericidal |
FHER | 0.43 ± 0 | 0.43 ± 0 | 1 | Bactericidal |
Extracts | ABTS | DPPH |
---|---|---|
IC50 (μg/mL) | IC50 (μg/mL) | |
OCFe | 23.87 a ± 0.21 | 715.88 c ± 0.6 |
OCET | 69.81 d ± 0.31 | 990.33 d ± 0.57 |
OCER | 76.14 e ± 0.79 | >1000 d |
FHFe | >1000 h | >1000 d |
FHET | >853.69 g ± 0.01 | >1000 d |
FHER | >1000 h | >1000 d |
FDFe | 88.40 f ± 0.30 | 463.33 b ± 0.32 |
FDET | 36.85 b ± 0.52 | 383.33 a ± 0.4 |
FDER | 41.54 c ± 0.18 | >1000 d |
Trolox | 3.78 *** ± 0.0027 | 6.34 *** ± 0.004 |
P | CPT | CFT | IC50 ABTS | IC50 DPPH | IC50 FRAP |
---|---|---|---|---|---|
CPT | 1 | 0.749 * | −0.534 | −0.458 | 0.919 ** |
CFT | 1 | −0.959 ** | −0.931 ** | 0.932 ** | |
IC50 ABTS | 1 | 0.503 ** | −0.798 ** | ||
IC50 DPPH | 1 | −0.630 ** | |||
IC50 FRAP | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youl, O.; Moné-Bassavé, B.R.H.; Yougbaré, S.; Yaro, B.; Traoré, T.K.; Boly, R.; Yaméogo, J.B.G.; Koala, M.; Ouedraogo, N.; Kabré, E.; et al. Phytochemical Screening, Polyphenol and Flavonoid Contents, and Antioxidant and Antimicrobial Activities of Opilia amentacea Roxb. (Opiliaceae) Extracts. Appl. Biosci. 2023, 2, 493-512. https://doi.org/10.3390/applbiosci2030031
Youl O, Moné-Bassavé BRH, Yougbaré S, Yaro B, Traoré TK, Boly R, Yaméogo JBG, Koala M, Ouedraogo N, Kabré E, et al. Phytochemical Screening, Polyphenol and Flavonoid Contents, and Antioxidant and Antimicrobial Activities of Opilia amentacea Roxb. (Opiliaceae) Extracts. Applied Biosciences. 2023; 2(3):493-512. https://doi.org/10.3390/applbiosci2030031
Chicago/Turabian StyleYoul, Ollo, Belinda Ramata Hafouo Moné-Bassavé, Sibidou Yougbaré, Boubacar Yaro, Tata Kadiatou Traoré, Rainatou Boly, Josias B. Gérard Yaméogo, Moumouni Koala, Noufou Ouedraogo, Elie Kabré, and et al. 2023. "Phytochemical Screening, Polyphenol and Flavonoid Contents, and Antioxidant and Antimicrobial Activities of Opilia amentacea Roxb. (Opiliaceae) Extracts" Applied Biosciences 2, no. 3: 493-512. https://doi.org/10.3390/applbiosci2030031
APA StyleYoul, O., Moné-Bassavé, B. R. H., Yougbaré, S., Yaro, B., Traoré, T. K., Boly, R., Yaméogo, J. B. G., Koala, M., Ouedraogo, N., Kabré, E., Tinto, H., Traoré-Coulibaly, M., & Hilou, A. (2023). Phytochemical Screening, Polyphenol and Flavonoid Contents, and Antioxidant and Antimicrobial Activities of Opilia amentacea Roxb. (Opiliaceae) Extracts. Applied Biosciences, 2(3), 493-512. https://doi.org/10.3390/applbiosci2030031