Traffic Prediction with Data Fusion and Machine Learning
Abstract
:1. Introduction
- •
- We have systematically analyzed the correlation between various types of features (including geographic features, tourist attraction features, amenity features, and socio-emotional features) and traffic flow and ranked the importance of these features, which provides valuable insights into the key elements influencing traffic flow and contributes to improving the precision of traffic condition forecasts.
- •
- We have compared and analyzed the prediction accuracy of various machine learning methods, such as Support Vector Machines, Linear Regression, XGBoost Regression, and Random Forest Regression, in a multi-source data fusion task and provided insights into the performance of different variants of Multi-Layer Perceptron (MLP) in a traffic prediction task.
- •
- Through an ablation study, we have provided an in-depth analysis of the contributions of different features (e.g., amenities, traffic characteristics, and social mood) to traffic flow prediction, revealing the potential roles of these multimodal features in traffic flow modeling.
2. Related Work
3. Methodology
3.1. Data Collection and Preprocessing
3.1.1. Property Data Collection
3.1.2. Amenity Data Extraction
3.1.3. Emotional Feature Extraction
3.2. Feature Selection
3.3. Feature Correlation
3.4. Feature Importance
3.5. Prediction Model
- P represents property features, such as Year, Elvt, Lat, etc.
- A represents amenity features, such as RstNum, TspDst, AtrNum, etc.
- E represents emotion features, such as AgrPct, HppPct, etc.
3.6. Evaluation
4. Experiments
4.1. Feature Correlation
4.2. Feature Importance
4.3. Prediction Model
4.3.1. Machine Learning Models
4.3.2. Multi-Layer Perceptron Models
5. Ablation Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Security, P. Motor Vehicle Ownership Reaches 440 Million in China. Website. 2024. Available online: https://www.gov.cn/lianbo/bumen/202407/content_6961935.htm (accessed on 13 November 2024).
- Muthuramalingam, S.; Bharathi, A.; Rakesh Kumar, S.; Gayathri, N.; Sathiyaraj, R.; Balamurugan, B. IoT based intelligent transportation system (IoT-ITS) for global perspective: A case study. In Internet of Things and Big Data Analytics for Smart Generation; Springer: Berlin/Heidelberg, Germany, 2019; pp. 279–300. [Google Scholar]
- Lv, Z.; Shang, W. Impacts of intelligent transportation systems on energy conservation and emission reduction of transport systems: A comprehensive review. Green Technol. Sustain. 2023, 1, 100002. [Google Scholar] [CrossRef]
- Liu, J.; Chang, C.; Liu, J.; Wu, X.; Ma, L.; Qi, X. Mars3d: A plug-and-play motion-aware model for semantic segmentation on multi-scan 3d point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 9372–9381. [Google Scholar]
- Lai, X.; Chen, Y.; Lu, F.; Liu, J.; Jia, J. Spherical transformer for lidar-based 3d recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 17545–17555. [Google Scholar]
- Liu, J.; Chen, Y.; Ye, X.; Tian, Z.; Tan, X.; Qi, X. Spatial pruned sparse convolution for efficient 3d object detection. Adv. Neural Inf. Process. Syst. 2022, 35, 6735–6748. [Google Scholar]
- Yang, J.; Shi, S.; Wang, Z.; Li, H.; Qi, X. St3d: Self-training for unsupervised domain adaptation on 3d object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2021; pp. 10368–10378. [Google Scholar]
- Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium optimizer: A novel optimization algorithm. Knowl.-Based Syst. 2020, 191, 105190. [Google Scholar] [CrossRef]
- Popescu, M.C.; Balas, V.E.; Perescu-Popescu, L.; Mastorakis, N. Multilayer perceptron and neural networks. WSEAS Trans. Circuits Syst. 2009, 8, 579–588. [Google Scholar]
- Levin, M.; Tsao, Y.D. On forecasting freeway occupancies and volumes (abridgment). Transp. Res. Rec. 1980, 773, 47–49. [Google Scholar]
- Bogaerts, T.; Masegosa, A.D.; Angarita-Zapata, J.S.; Onieva, E.; Hellinckx, P. A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data. Transp. Res. Part C Emerg. Technol. 2020, 112, 62–77. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Cook, A.R. Analysis of Freeway Traffic Time-Series Data by Using Box-Jenkins Techniques. Transp. Res. Rec. 1979, 722. [Google Scholar]
- Tedjopurnomo, D.A.; Bao, Z.; Zheng, B.; Choudhury, F.M.; Qin, A.K. A survey on modern deep neural network for traffic prediction: Trends, methods and challenges. IEEE Trans. Knowl. Data Eng. 2020, 34, 1544–1561. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, G.; Lam, E.Y. Cross-camera human motion transfer by time series analysis. In Proceedings of the ICASSP 2024–2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of Korea, 14–19 April 2024; pp. 4985–4989. [Google Scholar]
- Zhu, G.; Song, K.; Zhang, P.; Wang, L. A traffic flow state transition model for urban road network based on Hidden Markov Model. Neurocomputing 2016, 214, 567–574. [Google Scholar] [CrossRef]
- Qi, Y.; Ishak, S. A Hidden Markov Model for short term prediction of traffic conditions on freeways. Transp. Res. Part C Emerg. Technol. 2014, 43, 95–111. [Google Scholar] [CrossRef]
- Yin, H.; Wong, S.; Xu, J.; Wong, C. Urban traffic flow prediction using a fuzzy-neural approach. Transp. Res. Part C: Emerg. Technol. 2002, 10, 85–98. [Google Scholar] [CrossRef]
- Quek, C.; Pasquier, M.; Lim, B.B.S. POP-TRAFFIC: A novel fuzzy neural approach to road traffic analysis and prediction. IEEE Trans. Intell. Transp. Syst. 2006, 7, 133–146. [Google Scholar] [CrossRef]
- Tang, J.; Chen, X.; Hu, Z.; Zong, F.; Han, C.; Li, L. Traffic flow prediction based on combination of support vector machine and data denoising schemes. Phys. A Stat. Mech. Appl. 2019, 534, 120642. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y. Traffic forecasting using least squares support vector machines. Transportmetrica 2009, 5, 193–213. [Google Scholar] [CrossRef]
- Ma, X.; Tao, Z.; Wang, Y.; Yu, H.; Wang, Y. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp. Res. Part C Emerg. Technol. 2015, 54, 187–197. [Google Scholar] [CrossRef]
- Fu, R.; Zhang, Z.; Li, L. Using LSTM and GRU neural network methods for traffic flow prediction. In Proceedings of the 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China, 11–13 November 2016; pp. 324–328. [Google Scholar]
- Yu, B.; Yin, H.; Zhu, Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv 2017, arXiv:1709.04875. [Google Scholar]
- Vinayakumar, R.; Soman, K.; Poornachandran, P. Applying deep learning approaches for network traffic prediction. In Proceedings of the 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Udupi, India, 13–16 September 2017; pp. 2353–2358. [Google Scholar]
- Tian, Y.; Pan, L. Predicting short-term traffic flow by long short-term memory recurrent neural network. In Proceedings of the 2015 IEEE international conference on smart city/SocialCom/SustainCom (SmartCity), Chengdu, China, 19–21 December 2015; pp. 153–158. [Google Scholar]
- Pan, Z.; Liang, Y.; Wang, W.; Yu, Y.; Zheng, Y.; Zhang, J. Urban traffic prediction from spatio-temporal data using deep meta learning. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 1720–1730. [Google Scholar]
- Zhao, Y.; Wang, Z.; Lam, E.Y. Improving source localization by perturbing graph diffusion. In Proceedings of the IEEE International Conference on Data Science and Advanced Analytics (DSAA), Shenzhen, China, 13–16 October 2022; pp. 1–9. [Google Scholar]
- Zhao, S.; Zhong, R.Y.; Wang, J.; Xu, C.; Zhang, J. Unsupervised fabric defects detection based on spatial domain saliency and features clustering. Comput. Ind. Eng. 2023, 185, 109681. [Google Scholar] [CrossRef]
- Zhou, B.; Liu, J.; Cui, S.; Zhao, Y. Large-scale traffic congestion prediction based on multimodal fusion and representation mapping. In Proceedings of the IEEE International Conference on Data Science and Advanced Analytics (DSAA), Shenzhen, China, 13–16 October 2022; pp. 1–9. [Google Scholar]
- Yan, Y.; Cui, S.; Liu, J.; Zhao, Y.; Zhou, B.; Kuo, Y.H. Multimodal fusion for large-scale traffic prediction with heterogeneous retentive networks. Inf. Fusion 2025, 114, 102695. [Google Scholar] [CrossRef]
- Zhou, B.; Liu, J.; Cui, S.; Zhao, Y. A large-scale spatio-temporal multimodal fusion framework for traffic prediction. Big Data Min. Anal. 2024, 7, 621–636. [Google Scholar] [CrossRef]
- Yang, H.; Du, L.; Zhang, G.; Ma, T. A traffic flow dependency and dynamics based deep learning aided approach for network-wide traffic speed propagation prediction. Transp. Res. Part B Methodol. 2023, 167, 99–117. [Google Scholar] [CrossRef]
- Crawford, F.; Watling, D.; Connors, R. A statistical method for estimating predictable differences between daily traffic flow profiles. Transp. Res. Part B Methodol. 2017, 95, 196–213. [Google Scholar] [CrossRef]
- Xu, C.; Li, Z.; Wang, W. Short-term traffic flow prediction using a methodology based on autoregressive integrated moving average and genetic programming. Transport 2016, 31, 343–358. [Google Scholar] [CrossRef]
- Xu, D.W.; Wang, Y.D.; Jia, L.M.; Qin, Y.; Dong, H.H. Real-time road traffic state prediction based on ARIMA and Kalman filter. Front. Inf. Technol. Electron. Eng. 2017, 18, 287–302. [Google Scholar] [CrossRef]
- Lv, Y.; Duan, Y.; Kang, W.; Li, Z.; Wang, F.Y. Traffic flow prediction with big data: A deep learning approach. Ieee Trans. Intell. Transp. Syst. 2014, 16, 865–873. [Google Scholar] [CrossRef]
- Polson, N.G.; Sokolov, V.O. Deep learning for short-term traffic flow prediction. Transp. Res. Part C Emerg. Technol. 2017, 79, 1–17. [Google Scholar] [CrossRef]
- Li, Y.; Yu, R.; Shahabi, C.; Liu, Y. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv 2017, arXiv:1707.01926. [Google Scholar]
- Wang, X.; Chen, C.; Min, Y.; He, J.; Yang, B.; Zhang, Y. Efficient metropolitan traffic prediction based on graph recurrent neural network. arXiv 2018, arXiv:1811.00740. [Google Scholar]
- Zhang, K.; Zheng, L.; Liu, Z.; Jia, N. A deep learning based multitask model for network-wide traffic speed prediction. Neurocomputing 2020, 396, 438–450. [Google Scholar] [CrossRef]
- Nguyen, T.; Nguyen, G.; Nguyen, B.M. EO-CNN: An enhanced CNN model trained by equilibrium optimization for traffic transportation prediction. Procedia Comput. Sci. 2020, 176, 800–809. [Google Scholar] [CrossRef]
- Yang, D.; Li, S.; Peng, Z.; Wang, P.; Wang, J.; Yang, H. MF-CNN: Traffic flow prediction using convolutional neural network and multi-features fusion. IEICE Trans. Inf. Syst. 2019, 102, 1526–1536. [Google Scholar] [CrossRef]
- Mehdi, M.Z.; Kammoun, H.M.; Benayed, N.G.; Sellami, D.; Masmoudi, A.D. Entropy-based traffic flow labeling for CNN-based traffic congestion prediction from meta-parameters. IEEE Access 2022, 10, 16123–16133. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, S.; Xu, C.; Zhang, J.; Zhong, R. Brain-inspired interpretable network pruning for smart vision-based defect detection equipment. IEEE Trans. Ind. Inform. 2022, 19, 1666–1673. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.; Shao, Q.; Feng, J.; Li, B.; Lv, Y.; Piao, X.; Yin, B. BjTT: A large-scale multimodal dataset for traffic prediction. IEEE Trans. Intell. Transp. Syst. 2024, 25, 18992–19003. [Google Scholar] [CrossRef]
- Zhang, D.; Yan, J.; Polat, K.; Alhudhaif, A.; Li, J. Multimodal joint prediction of traffic spatial-temporal data with graph sparse attention mechanism and bidirectional temporal convolutional network. Adv. Eng. Inform. 2024, 62, 102533. [Google Scholar] [CrossRef]
- Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. Their Appl. 1998, 13, 18–28. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, J.; Lam, E.Y. House price prediction: A multi-source data fusion perspective. Big Data Min. Anal. 2024, 7, 603–620. [Google Scholar] [CrossRef]
- Zhao, Y.; Shi, S.; Ravi, R.; Wang, Z.; Lam, E.Y.; Zhao, J. H4M: Heterogeneous, multi-source, multi-modal, multi-view and multi-distributional dataset for socioeconomic analytics in the case of beijing. In Proceedings of the IEEE International Conference on Data Science and Advanced Analytics (DSAA), Shenzhen, China, 13–16 October 2022; pp. 1–10. [Google Scholar]
- Fan, R.; Zhao, J.; Chen, Y.; Xu, K. Anger is more influential than joy: Sentiment correlation in Weibo. PLoS ONE 2014, 9, e110184. [Google Scholar] [CrossRef]
- Cohen, I.; Huang, Y.; Chen, J.; Benesty, J.; Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. Noise Reduct. Speech Process. 2009, 2, 1–4. [Google Scholar]
- Zhao, Y.; Ravi, R.; Shi, S.; Wang, Z.; Lam, E.Y.; Zhao, J. Pate: Property, amenities, traffic and emotions coming together for real estate price prediction. In Proceedings of the 2022 IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA), Shenzhen, China, 13–16 October 2022; pp. 1–10. [Google Scholar]
- De Nadai, M.; Lepri, B. The economic value of neighborhoods: Predicting real estate prices from the urban environment. In Proceedings of the 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), Turin, Italy, 1–3 October 2018; pp. 323–330. [Google Scholar]
- Riedmiller, M. Advanced supervised learning in multi-layer perceptrons—from backpropagation to adaptive learning algorithms. Comput. Stand. Interfaces 1994, 16, 265–278. [Google Scholar] [CrossRef]
- Taud, H.; Mas, J.F. Multilayer perceptron (MLP). In Geomatic Approaches for Modeling Land Change Scenarios; Springer: Berlin/Heidelberg, Germany, 2017; pp. 451–455. [Google Scholar]
- Oliveira, D.D.; Rampinelli, M.; Tozatto, G.Z.; Andreao, R.V.; Müller, S.M. Forecasting vehicular traffic flow using MLP and LSTM. Neural Comput. Appl. 2021, 33, 17245–17256. [Google Scholar] [CrossRef]
Category | Feature | Description |
---|---|---|
Property | Year | The year the building was constructed. |
Elvt | Indicates the presence of an elevator. | |
RmNum | The number of bedrooms. | |
HllNum | The number of living and dining rooms. | |
KchNum | The number of kitchens. | |
BthNum | The number of bathrooms. | |
Lat | The latitude coordinate of the property. | |
Lng | The longitude coordinate of the property. | |
Amenity | TspNum | The number of nearby transportation facilities. |
TspDst | The average distance to transportation facilities. | |
AtrNum | The number of tourist attractions nearby. | |
AtrDst | The average distance to tourist attractions. | |
EdcNum | The number of nearby educational institutions. | |
EdcDst | The average distance to educational institutions. | |
HthNum | The number of nearby healthcare facilities. | |
HthDst | The average distance to healthcare facilities. | |
RstNum | The number of nearby restaurants. | |
RstDst | The average distance to restaurants. | |
RtlNum | The number of nearby retail facilities. | |
RtlDst | The average distance to retail facilities. | |
Emotions | AgrPct | The percentage of anger. |
DstPct | The percentage of detestation. | |
HppPct | The percentage of happiness. | |
SadPct | The percentage of sadness. | |
FeaPct | The percentage of fear. | |
Price | Price | The price per square meter in RMB (RMB a). |
Model | Adjusted | MAE | MSE | RMSE | |
---|---|---|---|---|---|
SVM | 0.0291 | 0.0262 | 6.7222 | 218.8753 | 14.7944 |
Linear Regression | 0.2022 | 0.1997 | 10.1823 | 179.8612 | 13.4112 |
Random Forest | 0.9244 | 0.9242 | 1.4605 | 17.0376 | 4.1276 |
XGBoost | 0.8896 | 0.8892 | 2.6739 | 24.8939 | 4.9894 |
15-layer MLP | 0.2590 | 0.2567 | 8.5714 | 167.0596 | 12.9252 |
Model | Adjusted | MAE | MSE | RMSE | |
---|---|---|---|---|---|
3-layer MLP | 0.1906 | 0.1881 | 10.2777 | 182.4695 | 13.5081 |
5-layer MLP | 0.1175 | 0.1149 | 11.9208 | 198.9362 | 14.1045 |
7-layer MLP | 0.2158 | 0.2134 | 9.6018 | 176.7830 | 13.2960 |
9-layer MLP | 0.2298 | 0.2274 | 9.5818 | 173.7830 | 13.2260 |
11-layer MLP | 0.2340 | 0.2318 | 9.3071 | 172.6663 | 13.1403 |
13-layer MLP | 0.2171 | 0.2147 | 10.7309 | 176.4935 | 13.2850 |
15-layer MLP | 0.2590 | 0.2567 | 8.5714 | 167.0596 | 12.9252 |
Data | Method | ↑ | Adjusted ↑ | MAE ↓ | MSE ↓ | RMSE ↓ |
---|---|---|---|---|---|---|
Training set | SVM without P | −0.280 | −0.280 | 8.037 | 280.643 | 16.752 |
SVM without A | −0.150 | −0.150 | 7.854 | 252.032 | 15.876 | |
SVM without E | 0.022 | 0.021 | 6.569 | 214.454 | 14.644 | |
SVM with PAE | 0.0349 | 0.0336 | 6.518 | 211.598 | 14.546 | |
Linear Regression without P | 0.081 | 0.080 | 11.169 | 201.485 | 14.195 | |
Linear Regression without A | 0.120 | 0.119 | 11.032 | 193.017 | 13.893 | |
Linear Regression without E | 0.185 | 0.184 | 10.053 | 178.609 | 13.364 | |
Linear Regression with PAE | 0.197 | 0.196 | 10.05fi3 | 176.068 | 13.269 | |
XGBoost Regression without P | 0.891 | 0.891 | 2.935 | 23.882 | 4.887 | |
XGBoost Regression without A | 0.914 | 0.914 | 2.578 | 18.917 | 4.349 | |
XGBoost Regression without E | 0.958 | 0.958 | 1.761 | 9.165 | 3.027 | |
XGBoost Regression with PAE | 0.968 | 0.968 | 1.741 | 9.062 | 3.000 | |
Random Forest without P | 0.985 | 0.985 | 0.768 | 3.396 | 1.843 | |
Random Forest without A | 0.985 | 0.985 | 0.715 | 3.187 | 1.785 | |
Random Forest without E | 0.990 | 0.990 | 0.513 | 2.183 | 1.477 | |
Random Forest with PAE | 0.998 | 0.998 | 0.500 | 2.081 | 1.460 | |
Testing set | SVM without P | −0.293 | −0.294 | 8.317 | 291.387 | 17.070 |
SVM without A | −0.161 | −0.162 | 8.130 | 261.638 | 16.175 | |
SVM without E | 0.017 | 0.015 | 6.769 | 221.606 | 14.886 | |
SVM with PAE | 0.0291 | 0.0262 | 6.7222 | 218.875 | 14.794 | |
Linear Regression without P | 0.078 | 0.077 | 11.334 | 207.764 | 14.414 | |
Linear Regression without A | 0.119 | 0.118 | 11.203 | 198.603 | 14.093 | |
Linear Regression without E | 0.191 | 0.189 | 10.152 | 182.421 | 13.506 | |
Linear Regression with PAE | 0.202 | 0.198 | 10.082 | 179.861 | 13.411 | |
XGBoost Regression without P | 0.807 | 0.807 | 3.870 | 43.533 | 6.598 | |
XGBoost Regression without A | 0.835 | 0.835 | 3.494 | 37.153 | 6.096 | |
XGBoost Regression without E | 0.891 | 0.891 | 2.627 | 24.609 | 4.961 | |
XGBoost Regression with PAE | 0.900 | 0.900 | 2.574 | 24.594 | 4.989 | |
Random Forest without P | 0.888 | 0.888 | 2.166 | 25.257 | 5.026 | |
Random Forest without A | 0.897 | 0.897 | 1.987 | 23.259 | 4.823 | |
Random Forest without E | 0.927 | 0.926 | 1.469 | 16.549 | 4.068 | |
Random Forest with PAE | 0.934 | 0.934 | 1.460 | 16.038 | 4.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, J.; Zhao, Y. Traffic Prediction with Data Fusion and Machine Learning. Analytics 2025, 4, 12. https://doi.org/10.3390/analytics4020012
Qiu J, Zhao Y. Traffic Prediction with Data Fusion and Machine Learning. Analytics. 2025; 4(2):12. https://doi.org/10.3390/analytics4020012
Chicago/Turabian StyleQiu, Juntao, and Yaping Zhao. 2025. "Traffic Prediction with Data Fusion and Machine Learning" Analytics 4, no. 2: 12. https://doi.org/10.3390/analytics4020012
APA StyleQiu, J., & Zhao, Y. (2025). Traffic Prediction with Data Fusion and Machine Learning. Analytics, 4(2), 12. https://doi.org/10.3390/analytics4020012