Previous Issue
Volume 4, September
 
 

J. Vasc. Dis., Volume 4, Issue 4 (December 2025) – 1 article

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
12 pages, 1876 KB  
Article
Hemodynamic Implications of Aortic Stenosis on Ascending Aortic Aneurysm Progression: A Patient-Specific CFD Study
by A B M Nazmus Salehin Nahid, Mashrur Muntasir Nuhash and Ruihang Zhang
J. Vasc. Dis. 2025, 4(4), 38; https://doi.org/10.3390/jvd4040038 - 3 Oct 2025
Abstract
An ascending aortic aneurysm is a localized dilation of the ascending aorta, which poses a high risk of aortic dissection or rupture, with surgery recommended at diameters > 5.5 cm. However, events also occur at smaller sizes, suggesting additional factors—such as stenosis—may significantly [...] Read more.
An ascending aortic aneurysm is a localized dilation of the ascending aorta, which poses a high risk of aortic dissection or rupture, with surgery recommended at diameters > 5.5 cm. However, events also occur at smaller sizes, suggesting additional factors—such as stenosis—may significantly influence aneurysm severity. To investigate this, a computational fluid dynamics (CFD) analysis was conducted using a patient-specific ascending aortic model (aneurysm diameter: 5.28 cm) under three aortic stenosis severities: mild, moderate, and severe. Results showed that the severe stenosis condition led to the formation of prominent recirculation zones and increased peak velocities, 2.36 m·s−1 compared to 1.53 m·s−1 for moderate stenosis and 1.37 m·s−1 for mild stenosis. A significantly increased pressure loss coefficient was observed for the severe case. Additionally, the wall shear stress (WSS) distribution exhibited higher values along the anterior region and lower values along the posterior region. Peak WSS values were recorded at 43.46 Pa in the severe stenosis model, compared to 21.98 Pa and 13.87 Pa for the moderate and mild cases, respectively. Velocity distribution and helicity analyses demonstrate that increasing stenosis severity amplifies jet-induced flow disturbances, contributing to larger recirculation zones and greater helicity heterogeneity in the ascending aorta. Meanwhile, WSS results indicate that greater stenosis severity is also associated with elevated WSS magnitude and heterogeneity in the ascending aorta, with severe cases exhibiting the highest value. These findings highlight the need to incorporate hemodynamic metrics, alongside traditional diameter-based criteria, into rupture risk assessment frameworks. Full article
(This article belongs to the Section Peripheral Vascular Diseases)
Show Figures

Figure 1

Previous Issue
Back to TopTop