Previous Issue
Volume 4, September
 
 

Agrochemicals, Volume 4, Issue 4 (December 2025) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
10 pages, 733 KB  
Article
Effects of Selected Biopesticides on Two Arthropod Pests of Cannabis sativa L. in Northeastern Oregon
by Tiziana Oppedisano, Silvia I. Rondon and Daniel I. Thompson
Agrochemicals 2025, 4(4), 19; https://doi.org/10.3390/agrochemicals4040019 - 26 Oct 2025
Viewed by 91
Abstract
Hemp (Cannabis sativa L.) cultivation in the United States has expanded rapidly over the past decade. Due to federal and state regulations, only a limited number of studies have examined the chemical options available for controlling pests on C. sativa. In [...] Read more.
Hemp (Cannabis sativa L.) cultivation in the United States has expanded rapidly over the past decade. Due to federal and state regulations, only a limited number of studies have examined the chemical options available for controlling pests on C. sativa. In the U.S., two of the most important species of arthropod pests affecting C. sativa are the beet leafhopper Circulifer tenellus Baker (Hemiptera: Cicadellidae) and the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae). This study evaluated the effects of four biopesticides, Chromobacterium subtsugae, Burkholderia spp., Chenopodium ambrosioides, and azadirachtin, under greenhouse conditions against C. tenellus adults and nymphs and T. urticae adults. Biopesticides were applied to foliage using a calibrated hand sprayer. To evaluate the biopesticides’ potency, C. tenellus adults, nymphs, and mites were released 1 h after treatment; to evaluate the residual efficacy, they were released 7 days after treatment (DAT). In both experiments, C. tenellus adults, nymphs, and mites were counted 1, 3, and 7 days after release. Our results indicate that Burkholderia spp. exhibited the highest efficacy against C. tenellus adults at 7 DAT, whereas C. ambrosioides and azadirachtin caused the greatest nymphal mortality at 1 and 3 DAT, respectively. Our results show that Burkholderia spp. had the greatest potency against C. tenellus adults 7 DAT, while C. ambrosioides and azadirachtin highly affect the mortality of nymphs at 1 and 3 DAT, respectively. Treatments with C. subtsugae and C. ambrosioides showed high potency against T. urticae. Finally, C. subtsugae showed the lowest residual effect against the mite pest. The data presented in this article will add to the arsenal of information to improve the current management strategies used against these two hemp pests. Full article
(This article belongs to the Topic Natural Products in Crop Pest Management)
Show Figures

Figure 1

18 pages, 1221 KB  
Review
The Fungal Biorevolution: A Trifecta of Genome Mining, Synthetic Biology, and RNAi for Next-Generation Fungicides
by Víctor Coca-Ruiz
Agrochemicals 2025, 4(4), 18; https://doi.org/10.3390/agrochemicals4040018 - 14 Oct 2025
Viewed by 404
Abstract
Modern agriculture faces a critical challenge from escalating fungicide resistance and the ecological impact of conventional agrochemicals. A paradigm shift is required, moving beyond simple product substitution toward an integrated technological platform. This review outlines such a platform, built on the synergy of [...] Read more.
Modern agriculture faces a critical challenge from escalating fungicide resistance and the ecological impact of conventional agrochemicals. A paradigm shift is required, moving beyond simple product substitution toward an integrated technological platform. This review outlines such a platform, built on the synergy of three technologies: genome mining for rational discovery of novel antifungal compounds, synthetic biology for their scalable and cost-effective production, and RNA interference (RNAi) for highly specific pathogen control and resistance management. We argue that the integration of this trifecta—discovery, production, and targeted application—creates an adaptable pipeline for developing next-generation biofungicides. This approach transforms crop protection from a static defense to a dynamic, sustainable system capable of co-evolving with pathogens, ensuring future food security while minimizing environmental impact. Full article
(This article belongs to the Section Fungicides and Bactericides)
Show Figures

Graphical abstract

Previous Issue
Back to TopTop