Vibration as a New Survey Method for Spiders
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Methods
2.2.1. Night Collections of Spiders
2.2.2. Pitfall Traps Collection of Spiders
2.2.3. Vibration-Based Collection of Spiders
2.3. Identification
2.4. Statistical Analyses
3. Results
4. Discussion
4.1. Methodology Efficiency
4.2. Species Richness and Diversity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Family | Genus and Species |
---|---|
Amaurobiidae | Dardurus Dar1 |
Ammoxenidae | Genus A Sp.1 |
Araneidae | Acroaspis acr1 |
Anepsion peltoides Araneus acuminatus Araneus albotriangularis Araneus ara1 Araneus ara1 Araneus ara11 Araneus ara12 Araneus ara2 Araneus ara3 Araneus ara4 Araneus ara5 Araneus ara6 Araneus ara7 Araneus ara8 Araneus ara9 Araneus arenaceus Araneus cytarachnoides Araneus dimidiatus Araneus lodiculus Araneus lutulentus Argiope keyserlingi Austracantha minax Celaenia cel1 Cyclosa cyc1 Cyclosa trilobata Cyrtobil darwini Cyrtophora hirta Dolophones dol1 Dolophones turrigera Eriophora eri1 Eriophora transmarina (has since moved to Hortophora transmarina) Larinia montagui Neoscona theisii Nephila edulis Ordgarius monstrosus Phonognatha graeffi Phonognatha wagneri Plebs eburnus Poltys pol1 | |
Arkyidae | Arkys walckenaeri |
Cheiracanthiidae | Cheiracanthium che1 |
Cheiracanthium che2 Cheiracanthium che3 | |
Clubionidae | Clubiona clu1 |
Clubiona clu2 Clubiona clu3 | |
Corinnidae | Battalus bat1 Iridonyssus formicans Iridonyssus iri1 Iridonyssus kohouti Iridonyssus leucostaurus Nucastia nuc1 Nyssus albopunctatus Nyssus coloripes Nyssus jaredwardeni Nyssus luteofinis Nyssus paradoxus Poecilipta janthina Poecilipta kgari Poecilipta kohouti Poecilipta poe1 |
Cycloctenidae | Cycloctenidae cyc1 |
Deinopidae | Deinopis subrufa |
Desidae | Badumna bad1 Badumna bad2 Badumna bad3 Barahna bar1 Corasoides australis |
Family 1 | Genus B sp.1 |
Gnaphosidae | Eilica Eil1 Eilica Eil2 Eilica Eil3 Encoptarthria enc1 Encoptarthria enc2 Encoptarthria enc3 Encoptarthria enc4 Encoptarthria enc5 Encoptarthria enc6 Genus C sp.1 Genus D sp.1 Genus E sp.1 Genus F sp.1 Genus G sp.1 Genus H sp.1 Hemicloea hem1 Myandra Mya1 Zelotes zel1 |
Hahniidae | Hahniidae hah1 Hahniidae hah2 |
Hersiliidae | Tamopsis tam1 |
Lamponidae | Asadipus asa1 Centrothele cen1 Genus I sp.1 Lamponata daviesae Pseudolampona brookfield Pseudolampona pse1 |
Linyphiidae | Laetesia lat1 Laperousea lap1 Laperousea lap2 |
Liocranidae | Orthobula ort1 |
Lycosidae | Allocosa palabunda Anomalosa ano1 Artoria art1 Genus J sp.1 Genus L sp.1 Genus M sp.1 Genus N sp.1 Genus O sp.1 Tasmanicosa godeffroyi Tasmanicosa tas1 Venatrix ven1 Venonia micarioides |
Malkaridae | Anarchaea ana1 |
Miturgidae | Argoctenus arg1 Argoctenus arg2 Genus P sp.1 Mituliodon tarantulinus Miturga gilva Mitzoruga insularis Nuliodon fishburni Thasyraea tha1 Tuxoctenus gloverae Zora zor1 |
Nicodamidae | Ambicodamus amb1 |
Oonopidae | Opopaea opo1 |
Oxyopidae | Oxyopes elegans Oxyopes oxy1 Oxyopes oxy2 Oxyopes oxy3 |
Philodromidae | Tibellus tenellus |
Pisauridae | Ornodolomedes orn1 |
Prodidomidae | Molycria mol1 |
Salticidae | Cytaea cyt1 Genus Q sp.1 Genus R sp.1 Genus R sp.3 Genus R sp.4 Genus S sp.1 Genus S sp.2 Genus S sp.3 Holoplatys hol1 Holoplatys hol2 Holoplatys hol3 Holoplatys hol4 Holoplatys hol5 Holoplatys planissima Maratus mar1 Maratus mar2 Maratus mar3 Maratus mar4 Maratus mar5 Maratus mar6 Maratus purcellae Myrmarachne myr1 Zenodorus orbiculatus Opisthoncus opi1 Opisthoncus opi2 Opisthoncus opi3 Opisthoncus opi4 Opisthoncus opi5 Prostheclina pro1 Sandalodes bipenicillatus Sandalodes san1 Sandalodes san2 Simaetha sim1 Zebraplatys zeb1 Zenodorus orbiculatus |
Sparassidae | Delena cancerides Delena del1 Isopedella flavida Neosparassus diana Pediana regina |
Tetragnathidae | Leucauge decorata Tetragnatha tet1 |
Theridiidae | Achaearanea ach1 Argyrodes antipodiana Ariamnes colubrinus Cryptachaea veruculata Dipoena dip1 Dipoena dip2 Episinus bicornis Euryopis elegans Euryopis eur1 Euryopis eur2 Euryopis eur3 Genus T sp.1 Genus U sp.1 Genus V sp.1 Genus V sp.2 Genus W sp.1 Janula bicornis Latrodectus hasselti Parasteatoda decorata Parasteatoda par1 Parasteatoda par2 Parasteatoda tepidariorum Phoroncidia pho1 Rhomphaea cometes Steatoda ste1 Theridion albostriata Theridion pyramidale Thwaitesia argentiopunctata Thwaitesia nigropunctata |
Thomisidae | Cymbacha saucia Genus X sp.1 Runcinia elongata Sidymella bicornis Sidymella sid1 Stephanopis scabra Tharrhalea multopunctata Tmarus tma1 Zygometis xanthogaster |
Trochanteriidae | Trachycosmus tra1 Trochanteriidae tro1 |
Uloboridae | Miagrammopes mia1 Philoponella congregabilis |
Zodariidae | Euasteron enterprise Habronestes hab1 Habronestes hab2 Habronestes hab3 Habronestes hab4 Hetaerica scenica Neostorena neo1 Notasteron lawlessi |
References
- Milano, F.; Blick, T.; Cardoso, P.; Chatzaki, M.; Fukushima, C.S.; Gajdoš, P.; Gibbons, A.T.; Henriques, S.; Macías-Hernández, N.; Mammola, S.; et al. Spider conservation in Europe: A review. Biol. Conserv. 2021, 256, 109020. [Google Scholar] [CrossRef]
- New, T.R. Invertebrate Conservation and Agricultural Ecosystems; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar]
- Pearce, J.L.; Venier, L.A. The use of ground beetles (Coleoptera: Carabidae) and spiders (Araneae) as bioindicators of sustainable forest management: A review. Ecol. Indic. 2006, 6, 780–793. [Google Scholar] [CrossRef]
- Nogueira, A.D.A.; Pinto-da-Rocha, R. The effects of habitat size and quality on the orb-weaving spider guild (Arachnida: Araneae) in an Atlantic Forest fragmented landscape. J. Arachnol. 2016, 44, 36–45. [Google Scholar] [CrossRef]
- Schwerdt, L.; Elena de Villalobos, A.; Miles, F.P. Spiders as potential bioindicators of mountain grasslands health: The Argentine tarantula Grammostola vachoni (Araneae, Theraphosidae). Wildl. Res. 2018, 45, 64–71. [Google Scholar] [CrossRef]
- Kim, H.; Sun, Y.; Kim, T.Y.; Moon, M.J. Biodiversity monitoring for selection of insect and spider bioindicators at local organic agricultural habitats in South Korea. Entomol. Res. 2020, 50, 493–505. [Google Scholar] [CrossRef]
- Churchill, T.B.; Arthur, J.M. Measuring spider richness: Effects of different sampling methods and spatial and temporal scales. J. Insect Conserv. 1999, 3, 287–295. [Google Scholar] [CrossRef]
- Kapoor, V. An assessment of spider sampling methods in tropical rainforest fragments of the Anamalai Hills, Western Ghats, India. Zoo’s Print J. 2006, 21, 2483–2488. [Google Scholar] [CrossRef]
- Norris, K.C. Quantifying change through time in spider assemblages: Sampling methods, indices and sources of error. J. Insect Conserv. 1999, 3, 309–325. [Google Scholar] [CrossRef]
- Brown, G.R.; Matthews, I.M. A review of extensive variation in the design of pitfall traps and a proposal for a standard pitfall trap design for monitoring ground-active arthropod biodiversity. Ecol. Evol. 2016, 6, 3953–3964. [Google Scholar] [CrossRef]
- Buchholz, S.; Hannig, K. Do covers influence the capture efficiency of pitfall traps? Eur. J. Entomol. 2009, 106, 667–671. [Google Scholar] [CrossRef]
- Oxbrough, A.; Gittings, T.; Kelly, T.C.; O’Halloran, J. Can malaise traps be used to sample spiders for biodiversity assessment? J. Insect Conserv. 2010, 14, 169–179. [Google Scholar] [CrossRef]
- Sabu, T.K.; Shiju, R.T.; Vinod, K.V.; Nithya, S. A comparison of the pitfall trap, winkler extractor and Berlese funnel for sampling ground-dwelling arthropods in tropical montane cloud forests. J. Insect Sci. 2011, 11, 28. [Google Scholar] [CrossRef]
- Curtis, K.M.; Paterson, A.M.; Malumbres-Olarte, J.; Vink, C.J.; Ross, J.G. Developing a future protocol for measuring spider biodiversity in pastures in New Zealand. N. Z. J. Zool. 2023, 50, 305–317. [Google Scholar] [CrossRef]
- Cardoso, P.; Pekár, S.; Jocqué, R.; Coddington, J.A. Global patterns of guild composition and functional diversity of spiders. PLoS ONE 2011, 6, e21710. [Google Scholar] [CrossRef]
- Seldon, D.S.; Beggs, J.R. The efficacy of baited and live capture pitfall traps in collecting large-bodied forest carabids. N. Z. Entomol. 2010, 33, 30–37. [Google Scholar] [CrossRef]
- Yekwayo, I.; Pryke, J.S.; Roets, F.; Samways, M.J. Conserving a variety of ancient forest patches maintains historic arthropod diversity. Biodivers. Conserv. 2016, 25, 887–903. [Google Scholar] [CrossRef]
- Hore, U.; Uniyal, V.P. Diversity and composition of spider assemblages in five vegetation types of the Terai Conservation Area, India. J. Arachnol. 2008, 36, 251–258. [Google Scholar] [CrossRef]
- Scott, A.G. The Role of Spiders (Araneae) as Indicators of the Biodiversity and Conservation Value of Peatlands in North-West England and Adjacent Areas. Ph.D. Thesis, University of Manchester, Manchester, UK, 2001. [Google Scholar]
- Lamarre, G.P.A.; Juin, Y.; Lapied, E.; Le Gall, P.; Nakamura, A. Using field-based entomological research to promote awareness about forest ecosystem conservation. Nat. Conserv. 2018, 29, 39–56. [Google Scholar] [CrossRef]
- Foelix, R.F. Biology of Spiders, 3rd ed.; Oxford University Press: New York, NY, USA, 2011. [Google Scholar]
- Ford, J. Stewartdale Nature Refuge Koala Habitat Restoration in South Ripley, South East Queensland. Available online: https://site.emrprojectsummaries.org/2016/03/05/stewartdale-nature-refuge-koala-habitat-restoration-in-south-ripley-south-east-queensland/ (accessed on 22 July 2021).
- Bureau of Meteroloogy. Greater Brisbane in September 2020: Below Average Rainfall, Some Warm Days. Available online: http://www.bom.gov.au/climate/current/month/qld/archive/202009.brisbane.shtml#:~:text=Greater%20Brisbane%20in%20September%202020,mm%20of%20rainfall%20on%20average (accessed on 2 January 2023).
- Seek. Ecologist Salary. Available online: https://www.seek.com.au/career-advice/role/ecologist/salary (accessed on 1 February 2023).
- Cardoso, P.; Scharff, N.; Gaspar, C.; Henriques, S.S.; Carvalho, R.; Castro, P.H.; Schmidt, J.B.; Silva, I.; Szüts, T.; De Castro, A.; et al. Rapid biodiversity assessment of spiders (Araneae) using semi-quantitative sampling: A case study in a Mediterranean forest. Insect Conserv. Divers. 2008, 1, 71–84. [Google Scholar] [CrossRef]
- Privet, K.; Vedel, V.; Fortunel, C.; Orivel, J.; Martinez, Q.; Cerdan, A.; Baraloto, C.; Pétillon, J. Relative Efficiency of Pitfall Trapping vs. Nocturnal Hand Collecting in Assessing Soil-Dwelling Spider Diversity along A Structural Gradient of Neotropical Habitats. Diversity 2020, 12, 81. [Google Scholar] [CrossRef]
- Azevedo, G.H.F.; Faleiro, B.T.; Magalhães, I.L.F.; Benedetti, A.R.; Oliveira, U.; Pena-Barbosa, J.P.P.; Santos, M.T.T.; Vilela, P.F.; de Maria, M.; Santos, A.J.; et al. Effectiveness of sampling methods and further sampling for accessing spider diversity: A case study in a Brazilian Atlantic rainforest fragment. Insect Conserv. Divers. 2014, 7, 381–391. [Google Scholar] [CrossRef]
- Tourinho, A.L.; Dias, S.C.; Lo-Man-Hung, N.F.; Pinto-da-Rocha, R.; Bonaldo, A.B.; Baccaro, F.B. Optimizing survey methods for spiders and harvestmen assemblages in an Amazonian upland forest. Pedobiologia 2018, 67, 35–44. [Google Scholar] [CrossRef]
- Uetz, G.W. Habitat structure and spider foraging. In Habitat Structure: The Physical Arrangement of Objects in Space; Bell, S.S., McCoy, E.D., Mushinsky, H.R., Eds.; Springer: Dordrecht, The Netherlands, 1991; pp. 325–348. [Google Scholar]
- Agnarsson, I. Morphological phylogeny of cobweb spiders and their relatives (Araneae, Araneoidea, Theridiidae). Zool. J. Linn. Soc. 2004, 141, 447–626. [Google Scholar] [CrossRef]
- Heiling, A.M.; Herberstein, M.E. The role of experience in web-building spiders (Araneidae). Anim. Cogn. 1999, 2, 171–177. [Google Scholar] [CrossRef]
- Scharff, N.; Coddington, J.A. A phylogenetic analysis of the orb-weaving spider family Araneidae (Arachnida, Araneae). Zool. J. Linn. Soc. 1997, 120, 355–434. [Google Scholar] [CrossRef]
- Topping, C.J.; Sunderland, K.D. Limitations to the use of pitfall traps in ecological studies exemplified by a study of spiders in a field of winter wheat. J. Appl. Ecol. 1992, 29, 485–491. [Google Scholar] [CrossRef]
- Jocqué, R.; Alderweireldt, M. Lycosidae: The grassland spiders. Acta Zool. Bulg. 2005, 1, 125–130. [Google Scholar]
- Wolff, J.O.; Gorb, S.N. Comparative morphology of pretarsal scopulae in eleven spider families. Arthropod Struct. Dev. 2012, 41, 419–433. [Google Scholar] [CrossRef]
Survey Method | Shannon Diversity Index | Simpson Diversity Index | Species Richness | No. Species |
---|---|---|---|---|
Night Collection | 5.84 a | 0.976 a | 92.7 a | 181 |
Pitfall Traps | 4.37 a | 0.945 ab | 30.2 b | 68 |
Vibration-based site A | 3.88 b | 0.904 b | 29.2 b | 70 |
Pooled SEM | 0.223 | 0.014 | 7.5 | |
Confidence Level | 0.95 | 0.95 | 0.95 |
Survey Method | Shannon Diversity Index | Simpson Diversity Index | Species Richness | No. Species |
---|---|---|---|---|
Vibration-based site A | 3.88 | 0.904 | 29.2 | 70 |
Vibration-based site B | 3.81 | 0.924 | 20.0 | 43 |
Pooled SEM | 0.167 | 0.018 | 6.8 | |
Confidence Level | 0.95 | 0.95 | 0.95 |
Parameter | Night Collection | Pitfall Traps (6) | Vibration-Based |
---|---|---|---|
Preparation time | 1 h | 4 h | 2 h |
Put ethanol in specimen containers | Buy materials and construct pitfall traps and lids | Put ethanol in specimen containers | |
Put labels in specimen containers | Dig the pitfall holes and set the pitfall traps | Labeled specimen containers in labeled bags | |
Specimen containers in labeled bags | Moving between each trap | Clearing of ground for tractor | |
Collection time | 1 h and 15 min | 1 h | 1 h and 15 min |
Collection of spiders and moving between sites | Filter out the pitfall contents into separate containers | Collection of spiders and transit time between locations with tractor | |
Refill pitfall traps, moving between sites | |||
Total cost of material | AUD 47–AUD 127 | AUD 70 | AUD 47 |
AUD 20 specimen containers | AUD 30 propylene glycol | AUD 20 specimen containers | |
AUD 2 labels | AUD 10 containers | AUD 2 labels | |
AUD 10 pooter | AUD 30 accessories | AUD 10 pooter | |
AUD 80 head torch (one off cost) | AUD 10 tractor fuel | ||
AUD 15 ethanol | AUD 15 ethanol | ||
Labor | Intensive | Short intensive | Short intensive |
Labor (h) | 2.25 | 5 | 3.25 |
OH&S risk | High | Low | Low |
Walking through the bush at night | |||
Field Ecologist (AU AUD 43/h) | AUD 96.75/person | AUD 215/person | AUD 139.75/person |
Total cost in AUAUD | AUD 143.75–223.75 | AUD 285 | AUD 186.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harris, R.; Raven, R.; Maxwell, A.; Murray, P.J. Vibration as a New Survey Method for Spiders. Animals 2024, 14, 2307. https://doi.org/10.3390/ani14162307
Harris R, Raven R, Maxwell A, Murray PJ. Vibration as a New Survey Method for Spiders. Animals. 2024; 14(16):2307. https://doi.org/10.3390/ani14162307
Chicago/Turabian StyleHarris, Rachael, Robert Raven, Andrew Maxwell, and Peter J. Murray. 2024. "Vibration as a New Survey Method for Spiders" Animals 14, no. 16: 2307. https://doi.org/10.3390/ani14162307
APA StyleHarris, R., Raven, R., Maxwell, A., & Murray, P. J. (2024). Vibration as a New Survey Method for Spiders. Animals, 14(16), 2307. https://doi.org/10.3390/ani14162307