Next Article in Journal
Association of Salty and Sweet Taste Recognition with Food Reward and Subjective Control of Eating Behavior
Next Article in Special Issue
The Influence of Intestinal Microbiota on BDNF Levels
Previous Article in Journal
Gut Microbiome Is Related to Cognitive Impairment in Peritoneal Dialysis Patients
Previous Article in Special Issue
The Antidiabetic Potential of Probiotics: A Review
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Exploration of the Muribaculaceae Family in the Gut Microbiota: Diversity, Metabolism, and Function

1
College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
2
Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
*
Author to whom correspondence should be addressed.
Nutrients 2024, 16(16), 2660; https://doi.org/10.3390/nu16162660
Submission received: 12 July 2024 / Revised: 6 August 2024 / Accepted: 7 August 2024 / Published: 12 August 2024

Abstract

:
The gut microbiota are mainly composed of Bacteroidetes and Firmicutes and are crucial for metabolism and immunity. Muribaculaceae are a family of bacteria within the order Bacteroidetes. Muribaculaceae produce short-chain fatty acids via endogenous (mucin glycans) and exogenous polysaccharides (dietary fibres). The family exhibits a cross-feeding relationship with probiotics, such as Bifidobacterium and Lactobacillus. The alleviating effects of a plant-based diet on inflammatory bowel disease, obesity, and type 2 diabetes are associated with an increased abundance of Muribaculaceae, a potential probiotic bacterial family. This study reviews the current findings related to Muribaculaceae and systematically introduces their diversity, metabolism, and function. Additionally, the mechanisms of Muribaculaceae in the alleviation of chronic diseases and the limitations in this field of research are introduced.

1. Introduction

The second genome of the gut microbiota encodes 100 times more genes than the human genome [1]. These microbiota can affect the digestion and absorption of dietary components, and the resulting metabolites help the host regulate the immune system, maintain intestinal mucosal barrier function, and resist pathogens [2,3]. Previous studies have shown that plant-based diet intake is inversely correlated with obesity, hypertension, type 2 diabetes, and cardiovascular disease [4,5]. A plant-based diet is rich in active biological ingredients such as dietary fibre and polyphenols [6]. The gut microbiota can interact with these ingredients, which in turn affects the body’s nutritional metabolism and immunity [7]. Therefore, elucidating the diversity, metabolism, and function of the gut microbiota is crucial for improving human health.
The word “probiotic” comes from the Greek word “biotikos,” which means “beneficial to life”. In 2001, the Food and Agriculture Organisation of the United Nations and the World Health Organisation redefined probiotics as living microorganisms that, when consumed in sufficient quantities, can have a positive effect on the health of the host [8]. The use of probiotics depends on their source, and different probiotics have different beneficial effects on health [9]. For example, Lactobacillus plantarum Shinshu N-07 isolated from fermented Brassica rapa L. has anti-obesity effects via decreasing serum triglycerides, inhibiting hepatic steatosis, and alleviating inflammatory cell infiltration in diet-induced obese mice [10]. Bacillus amyloliquefaciens TL106 isolated from Tibetan pig faeces can stabilise the gut microbiota and alleviate intestinal injury induced by enterohaemorrhagic Escherichia coli in mice [11]. Ideally, strains used in food should be of human origin and should be able to attach to intestinal epithelial cell membranes and make active substances that benefit host metabolism without affecting the normal microbial community.
In recent years, Muribaculaceae have attracted much attention because of their beneficial role in maintaining host health. Muribaculaceae can produce short-chain fatty acids and regulate intestinal barrier function and the immune response, and they are considered a promising “next generation probiotic” [12]. Several studies have focused on genomics to reveal the gene sequence and function of the Muribaculaceae family [13]. To date, few isolates have been obtained from Muribaculaceae, and the results obtained via 16S rRNA high-throughput sequencing technology represent norank_f_Muribaculaceae [14]. Although few studies have investigated Muribaculaceae, the potential effects on host physiology have yet to be clarified. Thus, the present study systematically summarises the current research achievements related to Muribaculaceae. By exploring the putative functional and probiotic mechanisms, we hope to understand Muribaculaceae comprehensively.

2. Materials and Methods

We conducted a comprehensive search of research and reviews on the Muribaculaceae family in three databases: Google Scholar (https://scholar.google.com/), Web of Science (http://apps.webofknowledge.com), and PubMed (https://pubmed.ncbi.nlm.nih.gov/). The keywords searched included Muribaculaceae family, functional foods, inflammatory bowel disease, obesity, and type 2 diabetes between 2014 and 2024. To identify more relevant studies, we examined the reference lists of the studies included in the current review. On the basis of the title and abstract, we excluded some irrelevant citations and searched 105 articles for further evaluation.

3. Diversity of Muribaculaceae

The Gram-negative Bacteroidetes genus, including Muribaculaceae, Bacteroidaceae, Rikenellaceae, and Prevotellaceae, is one of the most abundant in the gut microbiota of mammals [1]. Muribaculaceae belong to Bacteroidia and Bacteroidales, which are predominantly present in the intestinal tracts of endotherms [15]. Muribaculaceae are highly abundant in the intestinal tract of mice, accounting for 54.99–83.44% of the total Bacteroides content [13]. Faeces from C57BL/6J mice constitute the primary source of Muribaculaceae [12], which were previously known as Candidatus homeothermaceae or family S24-7. In 2019, Ilias et al. reviewed the relevant data, reannotated and renamed this family Muribaculaceae, and used metagenomics to cluster 685 species [15]. To date, the isolates and gene sequences of this family have been identified. As shown in Table 1, 10 genera have been described in the family Muribaculaceae: Muribaculum [16], Duncaniella [17,18], Paramuribaculum, Sodaliphilus, Heminiphilus [19], Lepagella, Candidatus amulumruptor, Candidatus merdivivens, Candidatus homeothermus and Sangeribacter. Among these, Muribaculum and Duncaniella comprise the highest content [13].

4. Metabolism of Muribaculaceae

4.1. Polysaccharides

Muribaculaceae can metabolise endogenous and exogenous polysaccharides, including α-glucan, plant glycan, and host glycan [16]. As the dominant family of Bacteroidetes, Muribaculaceae encode a large number of enzymes that hydrolyse carbohydrates. These enzymes account for approximately 6% of the gene sequence and use starch as the basic source of energy [12]. Youn et al. used metagenomic and metatranscriptomic analyses and reported that the Muribaculum and Duncaniella genera have a high proportion of carbohydrate-metabolising genes [13]. At the species level, Muribaculaceae contain various enzymes that hydrolyse carbohydrates. For example, Muribaculum gordoncarteri, Duncaniella dubosii, and Duncaniella freteri present high activities of β-glucosidase, α-arabinase, and α-fucosidase [17,18], whereas Heminiphilus faecis presents α-arabinase activity and positive reactions in fermentation experiments involving mannan and L-arabinose [19]. The results of animal assays revealed that dietary fibres such as resistant starch and inulin significantly increase the abundance of Muribaculaceae in the gut microbiota (Table 2). Mammals do not have the enzymes to hydrolyse dietary fibre. Muribaculaceae can use dietary fibre as an energy source, which promote their colonisation in the gut.
The scarcity of dietary fibre in the host diet prompts Muribaculaceae to metabolise host glycan for usage [40]. Mucin, a highly glycosylated protein, is the primary major source of nutrients for the gut microbiota [41]. Lee et al. used Raman spectroscopy and metagenomics to analyse mucin-degrading bacteria in the mouse colon and reported that Muribaculaceae encode O-glycanases and sialidases [40]. O-glycanase is a critical enzyme for mucin degradation [42], whereas sialidase cleaves the terminal sialic acid and sulphate residues from mucin O-glycans [43]. Similarly, Pereira et al. used Raman-activated cell sorting, mini-metagenomics, and single-cell stable isotope probing and identified Muribaculaceae as major mucin monosaccharide foragers in the intestinal tract [44]. In recent years, Akkermansia muciniphila has been deemed a new generation of probiotics because of its ability to degrade mucin and regulate intestinal permeability and barrier integrity [45]. Muribaculaceae are also a mucin-degrading bacterium; however, their potential probiotic effects need to be explored further.

4.2. Short-Chain Fatty Acids

Short-chain fatty acids are produced through the glycolysis pathway of dietary fibre in intestinal microorganisms, and the core metabolic ability of the Muribaculaceae family is the degradation of various complex polysaccharides [46]. Byron et al. reported that the Muribaculaceae family produces propionic acid [14], whereas Kate et al. reported that it produces acetic acid, propionic acid, and succinate [12]. Table 2 shows that some dietary fibre interventions, such as inulin, resistant starch, and soluble fibre, increased the abundance of the Muribaculaceae family in the intestinal tract of mice. Moreover, the abundances of Muribaculum, Paramuribaculum, and Duncaniella and the contents of acetic, propionic, and butyric acids increased markedly. In addition, potato [34] and lotus seeds [31] have high contents of resistant starch, and black cherry powder [35] is rich in pectin. A similar phenomenon was observed in animal intervention assays on these plant-based foods rich in dietary fibre. These results suggest that Muribaculaceae can produce short-chain fatty acids by metabolising dietary fibre (Figure 1). Lactobacilli intake increased the abundance of the intestinal microbiota of the Muribaculaceae family and short-chain fatty acids simultaneously. For example, Lactobacillus delbrueckii and Streptococcus thermophilus 1131 increased the content of propionic and butyric acids [36], whereas Lactobacillus plantarum Y44 increased the levels of acetic, propionic, butyric, and valeric acids [37]. Some studies have shown that Lactobacillus only encodes genes that produce lactic acid, which can be used by microorganisms that decompose polysaccharides to produce butyric acid [47]. Therefore, it can be inferred that the Muribaculaceae family can produce short-chain fatty acids and cross-feed with other bacteria to produce short-chain fatty acids.

4.3. Probiotics

Positive and negative interspecific relationships have been established between various populations of intestinal microbes, among which positive relationships include co-operation, symbiosis and cross-feeding [48]. Bacteroidetes are among the most abundant intestinal microbiota that interact strongly with other species. For example, Bacteroidetes has many outer membrane vesicles that share glycan metabolites with other microbiota [1]. The Muribaculaceae family is a vital member of Bacteroidetes that can tolerate and reduce low intestinal oxygen levels. It can adapt to and improve the intestinal environment and can coexist with other species. Table 3 shows that the ingestion of Bifidobacterium bifidum NK175, Bifidobacterium lactis XLTG11, and Bifidobacterium longum BR-108 increased the abundance of the Muribaculaceae family in the intestinal tract of mice. However, the relationship between Muribaculaceae and Bifidobacterium has rarely been reported. Previous studies have shown that Bacteroides and Bifidobacterium metabolise endogenous and exogenous glycans as symbionts [49]. Specifically, Bifidobacterium uses oligosaccharides, whereas Bacteroides breaks down polysaccharides into oligosaccharides that can be fed to Bifidobacterium. Since Muribaculaceae are active users of polysaccharides in the gut, we speculated that there is an interspecific cross-feeding relationship between Muribaculaceae and Bifidobacterium. In addition, Lactobacillus plantarum Shinshu N-07, Lactobacillus paracasei NL41, Saccharomyces boulardii BR14, Streptococcus thermophilus 1131, and Faecalibacterium prausnitzii significantly increased the Muribaculaceae content in the gut of mice (Table 3). Overall, Muribaculaceae are strongly correlated with probiotics, such as Bifidobacterium and Lactobacillus, and exhibit a cross-feeding or co-operative symbiotic association.

4.4. Others

The Muribaculaceae family produces vitamins for the host, including B1 (thiamine), B2 (riboflavin), B3 (niacin), B5 (pantothenic acid), B7 (biotin), and B9 (folate). This phenomenon could be attributed to the ability of the Muribaculaceae family to encode genes encoding vitamin transporters [12]. In terms of amino acid metabolism, metagenomics predicted that 75–100% of the species in the Muribaculaceae family synthesise aspartate, glutamine, glutamic acid, glycine, methionine, valine, leucine, and isoleucine [13]. In addition, Muribaculaceae also produce some rare enzymes in Bacteroidetes, such as genes encoding ureases, IgA-degrading peptidases, and oxalate-degrading enzymes [40]. Importantly, the Muribaculaceae family produces oxaloyl CoA decarboxylase and formyl CoA transferase for the degradation of oxalic acid [60]. Most plant-based foods contain oxalic acid, which might underscore the plant-based diet-promoted growth of Muribaculaceae in the gut.

5. Functions of Muribaculaceae

5.1. Inflammatory Bowel Disease (IBD)

A complete mucus barrier is the first line of defence that protects intestinal health, and impaired mucus barrier function is one of the major signs of IBD [61]. The structure and function of mucus depend mainly on mucin, which moistens and lubricates the intestinal wall. These properties protect intestinal epithelial cells from mechanical stress and exert immune effects, enhancing intestinal homeostasis [43]. The Muribaculaceae family is attached to the mucous layer and is a symbiotic user of myxoglycan in the intestine, showing a strong correlation with IBD [40]. Strikingly, IBD decreases the abundance of the Muribaculaceae family in the intestinal microbiota. Volk et al. reported that the abundance of the Muribaculaceae family was significantly lower in the mucous layer of Nlrp6−/− and IL18−/− deficient mice than in an intact mucous layer [62]. A similar phenomenon has been observed in animal models of IBD, such as following the administration of dextran sulphate sodium (DSS), lipopolysaccharide (LPS), and excessive antibiotics [63,64], because IBD destroys the structural integrity of the mucous layer, which is the attachment site and a major nutrient source of the Muribaculaceae family [65]. Some plant foods (ginger and cranberry bean) and plant-derived active substances, such as dietary fibre (garlic and fucoidan polysaccharides), polyphenols (Sophora flavescens extract, oryzanol), oligosaccharides (galactose oligosaccharide and 2′-fucosyllactose), saponins (Pulsatilla saponin), and terpenoids (total diterpenoids), alleviate the symptoms of IBD (Table 4). Concurrently, these interventions increase the abundance of Muribaculaceae and improve intestinal barrier function. The role of Muribaculaceae in IBD remission may be affected via the following three mechanisms: (1) Increased gene expression levels and regeneration of mucin alleviate colon tissue injury and reduce intestinal permeability [41]. (2) The metabolism of polysaccharides produces short-chain fatty acids that stimulate the release of mucus and activate the signalling pathway to exert anti-inflammatory effects [66]. (3) The species competes with pathogens for the ecological niche and nutrients in the intestinal mucus layer and resists the colonisation of intestinal pathogens [44]. In summary, IBD destroys the mucous layer of the intestinal tract of mice, decreasing the number of ecological sites of intestinal symbiotic bacteria and the abundance of Muribaculaceae. Consequently, the expression of mucin decreases, which damages the mucous layer, resulting in a vicious cycle. Effective intervention substances for alleviating IBD are beneficial for the colonisation of Muribaculaceae and the recovery of the mucus layer.

5.2. Type 2 Diabetes (T2D)

T2D is a metabolic disorder characterised by hyperglycaemia and insulin resistance [79]. The gut microbiota are involved in the progression of T2D via host energy homeostasis, glucose and lipid metabolism, insulin sensitivity, and the inflammatory response [80]. The intake of plant-derived dietary fibres, such as Sargassum, Konjac glucomannan, wakame polysaccharide, moutan cortex polysaccharide, and black seed polysaccharide, alleviates insulin resistance, glucose tolerance, dyslipidaemia, and liver and kidney damage in diabetic animal models; together, these features are related to an increased presence of the Muribaculaceae family in the intestinal microbiota (Table 5). Notably, polysaccharides from Sargassum, wakame polysaccharides, and black seed polysaccharides increase the abundance of Muribaculaceae and activated the insulin receptor/phosphatidylinositol-3-kinase/protein kinase B (IRS/PI3K/Akt) signalling pathway. These phenomena regulate the insulin signal transduction and glucose metabolism pathways, in turn increasing glucose uptake and glycogen synthesis [6,81]. Mannan plays a synergistic role with metformin in the treatment of C57BL/6J diabetic mice; this therapeutic effect is related to the increased abundance of Akkermansia muciniphila in the Muribaculaceae family [82]. Additionally, acarbose treats diabetes by preventing the breakdown of starch in the small intestine and altering the composition of the gut microbiota. Byron et al. used metagenomics and reported that the nine most responsive bacteria under the intervention of acarbose are classified in the Muribaculaceae family [14]. Although further investigation is needed on other bacterial genera/species that improve blood glucose metabolism and insulin resistance, these findings suggest that an increase in Muribaculaceae could help exert the anti-diabetic properties of hypoglycaemic drugs.

5.3. Obesity

Obesity underlies the disruption of the intestinal microbiota, and an increase in the Firmicutes/Bacteroides ratio is considered one of the indicators of obesity [89]. The Muribaculaceae family is a major member of Bacteroides, and a significant negative correlation has been established between Muribaculaceae and the risk of obesity (Table 6). A population investigation revealed a high content of the Muribaculaceae family in the gut of the Yanomami people, who consumed a plant-based diet dominated by fruits and grains [90]. Osborne et al. analysed the intestinal microbiota of 248 subjects in Bangladesh and reported that the Muribaculaceae family was negatively correlated with body weight, hip circumference, waist circumference, and other physical indicators [91]. In a dietary survey of 29 Chinese people, Qian et al. reported a lower content of Muribaculaceae in the intestines of people with a high-fat diet and a higher content in those with a diet dominated by plant foods [92]. Similarly, Muribaculaceae abundance significantly decreased in a high-fat-diet-fed mouse model. Some functional components of plant sources, such as dietary fibre (resistant starch and asparagus soluble fibre), polyphenols (naringin), and pomegranate acid, improve the symptoms of obesity and reverse the intestinal microbiota disturbance caused by a high-fat diet, increasing the abundance of Muribaculaceae (Table 6). Moreover, the Muribaculaceae family is also involved in anti-inflammatory reactions in the gut. For example, high-amylose resistant starch increases serum adiponectin and decreases the level of the inflammatory factor IL-17; these phenomena are related to increased Muribaculaceae family content [93]. Muhomah et al. reported that the decreased level of secretory immunoglobulin A in mice fed a high-fat diet is related to reduced Muribaculaceae, acetic acid, and butyric acid contents [94]. Together, these studies reveal the relevant role of the gut microbiota in regulating metabolic disorders and immune inflammation, suggesting that probiotics, especially Muribaculaceae, could be used as a therapeutic tool for obesity.

6. Conclusions

In summary, we conducted a comprehensive review of studies related to the Muribaculaceae family to find evidence of associations between Muribaculaceae and plant foods, functional components, and various diseases. The results showed that Muribaculaceae had a strong capacity to metabolise endogenous (mucin glycans) and exogenous (dietary fibre) polysaccharides, could produce short-chain fatty acids, and had cross-feeding relationships with Bifidobacterium and Lactobacillus. Additionally, IBD, obesity, and T2D cause intestinal microbiota imbalance and decrease the abundance of the Muribaculaceae family. The intake of plant-derived foods (cereals, fruits, and tea), plant-derived active functional components (polysaccharides, polyphenols, and saponins), and probiotics (Lactobacillus, Bifidobacterium, and yeast) is conducive to the intestinal colonisation of the Muribaculaceae family. However, several issues related to the Muribaculaceae family need to be investigated: (1) The functional identification of Muribaculaceae isolates has been based mainly on mouse faeces, whereas that in the human gut has rarely been studied. (2) The reasons for the decline in Muribaculaceae in disease models of IBD, obesity, and T2D, as well as the molecular mechanisms of disease alleviation, remain to be explored. (3) The cross-feeding relationship between Muribaculaceae and probiotics such as Bifidobacterium and Lactobacillus needs to be substantiated by in vitro fermentation culture.

Author Contributions

Conceptualization, Y.Z. (Yiqing Zhu); methodology, X.Z.; software, M.T.A.; formal analysis, T.W.; investigation, Y.Z. (Yiyun Zhang); data curation, L.Z.; writing—original draft preparation, Y.Z. (Yiqing Zhu) and B.C.; writing—review and editing, Q.S.; funding acquisition, Q.S. All authors have read and agreed to the published version of the manuscript.

Funding

This study was financially supported by the China Agriculture Research System (CARS-06–14.5).

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Wexler, A.G.; Goodman, A.L. An insider’s perspective: Bacteroides as a window into the microbiome. Nat. Microbiol. 2017, 2, 17026. [Google Scholar] [CrossRef] [PubMed]
  2. Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef] [PubMed]
  3. Zhao, T.; Zhang, Y.; Nan, L.; Zhu, Q.; Wang, S.; Xie, Y.; Dong, X.; Cao, C.; Lin, X.; Lu, Y. Impact of structurally diverse polysaccharides on colonic mucin O-glycosylation and gut microbiota. NPJ Biofilms Microbiomes 2023, 9, 97. [Google Scholar] [CrossRef] [PubMed]
  4. Kim, H.; Caulfield, L.E.; Garcia-Larsen, V.; Steffen, L.M.; Coresh, J.; Rebholz, C.M. Plant-based diets are associated with a lower risk of incident cardiovascular disease, cardiovascular disease mortality, and all-cause mortality in a general population of middle-aged adults. J. Am. Heart Assoc. 2019, 8, e012865. [Google Scholar] [CrossRef] [PubMed]
  5. Zhao, R.; Shen, G.X. Impact of anthocyanin component and metabolite of Saskatoon berry on gut microbiome and relationship with fecal short chain fatty acids in diet-induced insulin resistant mice. J. Nutr. Biochem. 2023, 111, 109201. [Google Scholar] [CrossRef] [PubMed]
  6. Li, Z.-R.; Jia, R.-B.; Wu, J.; Lin, L.; Ou, Z.-R.; Liao, B.; Zhang, L.; Zhang, X.; Song, G.; Zhao, M. Sargassum fusiforme polysaccharide partly replaces acarbose against type 2 diabetes in rats. Int. J. Biol. Macromol. 2021, 170, 447–458. [Google Scholar] [CrossRef]
  7. Chen, Q.; Luo, Y.; Shen, Y.; Li, X.; Yang, H.; Li, J.; Wang, J.; Xiao, Y. Fructose corn syrup induces inflammatory injury and obesity by altering gut microbiota and gut microbiota-related arachidonic acid metabolism. J. Nutr. Biochem. 2024, 124, 109527. [Google Scholar] [CrossRef] [PubMed]
  8. Makioka, Y.; Tsukahara, T.; Ijichi, T.; Inoue, R. Oral supplementation of Bifidobacterium longum strain BR-108 alters cecal microbiota by stimulating gut immune system in mice irrespectively of viability. Biosci. Biotechnol. Biochem. 2018, 82, 1180–1187. [Google Scholar] [CrossRef]
  9. Lin, Y.-C.; Chen, Y.-T.; Li, K.-Y.; Chen, M.-J. Investigating the mechanistic differences of obesity-inducing Lactobacillus kefiranofaciens M1 and anti-obesity Lactobacillus mali APS1 by microbolomics and metabolomics. Front. Microbiol. 2020, 11, 1454. [Google Scholar] [CrossRef]
  10. Yin, T.; Bayanjargal, S.; Fang, B.; Inaba, C.; Mutoh, M.; Kawahara, T.; Tanaka, S.; Watanabe, J. Lactobacillus plantarum Shinshu N-07 isolated from fermented Brassica rapa L. attenuates visceral fat accumulation induced by high-fat diet in mice. Benef. Microbes 2020, 11, 655–667. [Google Scholar] [CrossRef]
  11. Bao, C.; Liu, S.; Shang, Z.; Liu, Y.; Wang, J.; Zhang, W.; Dong, B.; Cao, Y. Bacillus amyloliquefaciens TL106 protects mice against enterohaemorrhagic Escherichia coli O157: H7-induced intestinal disease through improving immune response, intestinal barrier function and gut microbiota. J. Appl. Microbiol. 2021, 131, 470–484. [Google Scholar] [CrossRef] [PubMed]
  12. Ormerod, K.L.; Wood, D.L.; Lachner, N.; Gellatly, S.L.; Daly, J.N.; Parsons, J.D.; Dal’Molin, C.G.; Palfreyman, R.W.; Nielsen, L.K.; Cooper, M.A. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome 2016, 4, 36. [Google Scholar] [CrossRef]
  13. Chung, Y.W.; Gwak, H.-J.; Moon, S.; Rho, M.; Ryu, J.-H. Functional dynamics of bacterial species in the mouse gut microbiome revealed by metagenomic and metatranscriptomic analyses. PLoS ONE 2020, 15, e0227886. [Google Scholar] [CrossRef] [PubMed]
  14. Smith, B.J.; Miller, R.A.; Schmidt, T.M. Muribaculaceae genomes assembled from metagenomes suggest genetic drivers of differential response to acarbose treatment in mice. Msphere 2021, 6, e00851-21. [Google Scholar] [CrossRef] [PubMed]
  15. Lagkouvardos, I.; Lesker, T.R.; Hitch, T.C.; Gálvez, E.J.; Smit, N.; Neuhaus, K.; Wang, J.; Baines, J.F.; Abt, B.; Stecher, B. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome 2019, 7, 28. [Google Scholar] [CrossRef]
  16. Miyake, S.; Ding, Y.; Soh, M.; Low, A.; Seedorf, H. Muribaculum gordoncarteri sp. nov., an anaerobic bacterium from the faeces of C57BL/6J mice. Int. J. Syst. Evol. Microbiol. 2020, 70, 4725–4729. [Google Scholar] [CrossRef] [PubMed]
  17. Miyake, S.; Ding, Y.; Soh, M.; Seedorf, H. Complete genome sequence of Duncaniella muris strain B8, isolated from the feces of C57/BL6 mice. Microbiol. Resour. Announc. 2019, 8, e00566-19. [Google Scholar] [CrossRef]
  18. Miyake, S.; Ding, Y.; Soh, M.; Low, A.; Seedorf, H. Cultivation and description of Duncaniella dubosii sp. nov., Duncaniella freteri sp. nov. and emended description of the species Duncaniella muris. Int. J. Syst. Evol. Microbiol. 2020, 70, 3105–3110. [Google Scholar] [CrossRef]
  19. Park, J.K.; Chang, D.-H.; Rhee, M.-S.; Jeong, H.; Song, J.; Ku, B.J.; Kim, S.B.; Lee, M.; Kim, B.-C. Heminiphilus faecis gen. nov., sp. nov., a member of the family Muribaculaceae, isolated from mouse faeces and emended description of the genus Muribaculum. Antonie Van Leeuwenhoek 2021, 114, 275–286. [Google Scholar] [CrossRef]
  20. Lagkouvardos, I.; Pukall, R.; Abt, B.; Foesel, B.U.; Meier-Kolthoff, J.P.; Kumar, N.; Bresciani, A.; Martínez, I.; Just, S.; Ziegler, C. The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat. Microbiol. 2016, 1, 16131. [Google Scholar] [CrossRef]
  21. Schoch, C.L.; Ciufo, S.; Domrachev, M.; Hotton, C.L.; Kannan, S.; Khovanskaya, R.; Leipe, D.; Mcveigh, R.; O’Neill, K.; Robbertse, B. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database 2020, 2020, baaa062. [Google Scholar] [CrossRef]
  22. Wylensek, D.; Hitch, T.C.; Riedel, T.; Afrizal, A.; Kumar, N.; Wortmann, E.; Liu, T.; Devendran, S.; Lesker, T.R.; Hernández, S.B. A collection of bacterial isolates from the pig intestine reveals functional and taxonomic diversity. Nat. Commun. 2020, 11, 6389. [Google Scholar] [CrossRef] [PubMed]
  23. Afrizal, A.; Jennings, S.A.; Hitch, T.C.; Riedel, T.; Basic, M.; Panyot, A.; Treichel, N.; Hager, F.T.; Wong, E.O.-Y.; Wolter, B. Enhanced cultured diversity of the mouse gut microbiota enables custom-made synthetic communities. Cell Host Microbe 2022, 30, 1630–1645.e25. [Google Scholar] [CrossRef] [PubMed]
  24. Hinsu, A.T.; Pandit, R.J.; Patel, S.H.; Psifidi, A.; Tomley, F.M.; Das, S.K.; Blake, D.P.; Joshi, C.G. Genome reconstruction of a novel carbohydrate digesting bacterium from the chicken caecal microflora. Meta Gene 2019, 20, 100543. [Google Scholar] [CrossRef]
  25. Gilroy, R.; Ravi, A.; Getino, M.; Pursley, I.; Horton, D.L.; Alikhan, N.-F.; Baker, D.; Gharbi, K.; Hall, N.; Watson, M. Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture. PeerJ 2021, 9, e10941. [Google Scholar] [CrossRef] [PubMed]
  26. Forster, S.C.; Clare, S.; Beresford-Jones, B.S.; Harcourt, K.; Notley, G.; Stares, M.; Kumar, N.; Soderholm, A.T.; Adoum, A.; Wong, H. Novel gut pathobionts confound results in a widely used mouse model of human inflammatory disease. bioRxiv 2021, 02, 430393. [Google Scholar]
  27. Wang, Y.; Nan, X.; Zhao, Y.; Jiang, L.; Wang, H.; Zhang, F.; Hua, D.; Liu, J.; Yao, J.; Yang, L. Dietary supplementation of inulin ameliorates subclinical mastitis via regulation of rumen microbial community and metabolites in dairy cows. Microbiol. Spectr. 2021, 9, e00105-21. [Google Scholar] [CrossRef] [PubMed]
  28. Xu, C.; Liu, J.; Gao, J.; Wu, X.; Cui, C.; Wei, H.; Zheng, R.; Peng, J. Combined soluble fiber-mediated intestinal microbiota improve insulin sensitivity of obese mice. Nutrients 2020, 12, 351. [Google Scholar] [CrossRef] [PubMed]
  29. Wan, J.; Wu, Y.; Pham, Q.; Li, R.W.; Yu, L.; Chen, M.-H.; Boue, S.M.; Yokoyama, W.; Li, B.; Wang, T.T. Effects of differences in resistant starch content of rice on intestinal microbial composition. J. Agric. Food Chem. 2021, 69, 8017–8027. [Google Scholar] [CrossRef]
  30. Zou, H.; Gao, H.; Liu, Y.; Zhang, Z.; Zhao, J.; Wang, W.; Ren, B.; Tan, X. Dietary inulin alleviated constipation induced depression and anxiety-like behaviors: Involvement of gut microbiota and microbial metabolite short-chain fatty acid. Int. J. Biol. Macromol. 2024, 259, 129420. [Google Scholar] [CrossRef]
  31. Li, X.; Liang, J.; Gao, W.; Zhang, Y.; Zeng, H.; Zheng, B. Effects of butyrylated lotus seed starch on small intestinal bacteria and short-chain fatty acid production in mice. Food Biosci. 2023, 55, 102931. [Google Scholar] [CrossRef]
  32. Watanabe, K.; Yamano, M.; Masujima, Y.; Ohue-Kitano, R.; Kimura, I. Curdlan intake changes gut microbial composition, short-chain fatty acid production, and bile acid transformation in mice. Biochem. Biophys. Rep. 2021, 27, 101095. [Google Scholar] [CrossRef] [PubMed]
  33. Deng, J.; Zou, X.; Liang, Y.; Zhong, J.; Zhou, K.; Zhang, J.; Zhang, M.; Wang, Z.; Sun, Y.; Li, M. Hypoglycemic effects of different molecular weight konjac glucomannans via intestinal microbiota and SCFAs mediated mechanism. Int. J. Biol. Macromol. 2023, 234, 122941. [Google Scholar] [CrossRef] [PubMed]
  34. Wu, Y.; Hu, H.; Dai, X.; Che, H.; Zhang, H. Effects of dietary intake of potatoes on body weight gain, satiety-related hormones, and gut microbiota in healthy rats. RSC Adv. 2019, 9, 33290–33301. [Google Scholar] [CrossRef] [PubMed]
  35. Garcia-Mazcorro, J.F.; Lage, N.N.; Mertens-Talcott, S.; Talcott, S.; Chew, B.; Dowd, S.E.; Kawas, J.R.; Noratto, G.D. Effect of dark sweet cherry powder consumption on the gut microbiota, short-chain fatty acids, and biomarkers of gut health in obese db/db mice. PeerJ 2018, 6, e4195. [Google Scholar] [CrossRef]
  36. Usui, Y.; Kimura, Y.; Satoh, T.; Takemura, N.; Ouchi, Y.; Ohmiya, H.; Kobayashi, K.; Suzuki, H.; Koyama, S.; Hagiwara, S. Effects of long-term intake of a yogurt fermented with Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131 on mice. Int. Immunol. 2018, 30, 319–331. [Google Scholar] [CrossRef]
  37. Liu, Y.; Gao, Y.; Ma, F.; Sun, M.; Mu, G.; Tuo, Y. The ameliorative effect of Lactobacillus plantarum Y44 oral administration on inflammation and lipid metabolism in obese mice fed with a high fat diet. Food Funct. 2020, 11, 5024–5039. [Google Scholar] [CrossRef] [PubMed]
  38. Aindelis, G.; Ypsilantis, P.; Chlichlia, K. Alterations in faecal microbiota and elevated levels of intestinal IgA following oral administration of Lacticaseibacillus casei in mice. Probiotics Antimicrob. Proteins 2021, 15, 524–534. [Google Scholar] [CrossRef]
  39. Xie, Z.; Li, M.; Qian, M.; Yang, Z.; Han, X. Co-cultures of Lactobacillus acidophilus and Bacillus subtilis enhance mucosal barrier by modulating gut microbiota-derived short-chain fatty acids. Nutrients 2022, 14, 4475. [Google Scholar] [CrossRef]
  40. Lee, K.S.; Palatinszky, M.; Pereira, F.C.; Nguyen, J.; Fernandez, V.I.; Mueller, A.J.; Menolascina, F.; Daims, H.; Berry, D.; Wagner, M. An automated Raman-based platform for the sorting of live cells by functional properties. Nat. Microbiol. 2019, 4, 1035–1048. [Google Scholar] [CrossRef]
  41. Paone, P.; Cani, P.D. Mucus barrier, mucins and gut microbiota: The expected slimy partners? Gut 2020, 69, 2232–2243. [Google Scholar] [CrossRef] [PubMed]
  42. Crouch, L.; Liberato, M.; Urbanowicz, P.; Baslé, A.; Lamb, C.; Stewart, C.; Cooke, K.; Doona, M.; Needham, S.; Brady, R. Prominent members of the human gut microbiota express endo-acting O-glycanases to initiate mucin breakdown. Nat. Commun. 2020, 11, 4017. [Google Scholar] [CrossRef] [PubMed]
  43. Pan, L.; Fu, T.; Cheng, H.; Mi, J.; Shang, Q.; Yu, G. Polysaccharide from edible alga Gloiopeltis furcata attenuates intestinal mucosal damage by therapeutically remodeling the interactions between gut microbiota and mucin O-glycans. Carbohydr. Polym. 2022, 278, 118921. [Google Scholar] [CrossRef]
  44. Pereira, F.C.; Wasmund, K.; Cobankovic, I.; Jehmlich, N.; Herbold, C.W.; Lee, K.S.; Sziranyi, B.; Vesely, C.; Decker, T.; Stocker, R. Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nat. Commun. 2020, 11, 5104. [Google Scholar] [CrossRef]
  45. Zhou, K. Strategies to promote abundance of Akkermansia muciniphila, an emerging probiotics in the gut, evidence from dietary intervention studies. J. Funct. Foods 2017, 33, 194–201. [Google Scholar] [CrossRef]
  46. Pei, L.; Liu, W.; Liu, L.; Wang, X.; Jiang, L.; Chen, Z.; Wang, Q.; Wang, P.; Xu, H. Morel (Morchella spp.) intake alters gut microbial community and short-chain fatty acid profiles in mice. Front. Nutr. 2023, 10, 1237237. [Google Scholar] [CrossRef] [PubMed]
  47. Moens, F.; Verce, M.; De Vuyst, L. Lactate-and acetate-based cross-feeding interactions between selected strains of lactobacilli, bifidobacteria and colon bacteria in the presence of inulin-type fructans. Int. J. Food Microbiol. 2017, 241, 225–236. [Google Scholar] [CrossRef]
  48. Coyte, K.Z.; Rakoff-Nahoum, S. Understanding competition and cooperation within the mammalian gut microbiome. Curr. Biol. 2019, 29, R538–R544. [Google Scholar] [CrossRef] [PubMed]
  49. Singh, R.P. Glycan utilisation system in Bacteroides and Bifidobacteria and their roles in gut stability and health. Appl. Microbiol. Biotechnol. 2019, 103, 7287–7315. [Google Scholar] [CrossRef]
  50. Zeng, Z.; Guo, X.; Zhang, J.; Yuan, Q.; Chen, S. Lactobacillus paracasei modulates the gut microbiota and improves inflammation in type 2 diabetic rats. Food Funct. 2021, 12, 6809–6820. [Google Scholar] [CrossRef]
  51. Yun, S.-w.; Son, Y.-H.; Lee, D.-Y.; Shin, Y.-J.; Han, M.J.; Kim, D.-H. Lactobacillus plantarum and Bifidobacterium bifidum alleviate dry eye in mice with exorbital lacrimal gland excision by modulating gut inflammation and microbiota. Food Funct. 2021, 12, 2489–2497. [Google Scholar] [CrossRef] [PubMed]
  52. Gao, Y.; Liu, Y.; Ma, F.; Sun, M.; Song, Y.; Xu, D.; Mu, G.; Tuo, Y. Lactobacillus plantarum Y44 alleviates oxidative stress by regulating gut microbiota and colonic barrier function in Balb/C mice with subcutaneous d-galactose injection. Food Funct. 2021, 12, 373–386. [Google Scholar] [CrossRef] [PubMed]
  53. Li, W.; Zhang, S.; Wang, Y.; Bian, H.; Yu, S.; Huang, L.; Ma, W. Complex probiotics alleviate ampicillin-induced antibiotic-associated diarrhea in mice. Front. Microbiol. 2023, 14, 1156058. [Google Scholar] [CrossRef] [PubMed]
  54. Mu, Z.; Yang, Y.; Xia, Y.; Wang, F.; Sun, Y.; Yang, Y.; Ai, L. Probiotic yeast BR14 ameliorates DSS-induced colitis by restoring the gut barrier and adjusting the intestinal microbiota. Food Funct. 2021, 12, 8386–8398. [Google Scholar] [CrossRef]
  55. Dong, J.-P.; Zheng, Y.; Wu, T.; He, Q.; Teng, G.-G.; Wang, H.-H. Protective effect of Saccharomyces boulardii on intestinal mucosal barrier of dextran sodium sulfate-induced colitis in mice. Chin. Med. J. 2019, 132, 1951–1958. [Google Scholar] [CrossRef] [PubMed]
  56. Gryaznova, M.; Burakova, I.; Smirnova, Y.; Morozova, P.; Chirkin, E.; Gureev, A.; Mikhaylov, E.; Korneeva, O.; Syromyatnikov, M. Effect of Probiotic Bacteria on the Gut Microbiome of Mice with Lipopolysaccharide-Induced Inflammation. Microorganisms 2024, 12, 1341. [Google Scholar] [CrossRef] [PubMed]
  57. Hu, W.; Lu, W.; Li, L.; Zhang, H.; Lee, Y.k.; Chen, W.; Zhao, J. Both living and dead Faecalibacterium prausnitzii alleviate house dust mite-induced allergic asthma through the modulation of gut microbiota and short-chain fatty acid production. J. Sci. Food Agric. 2021, 101, 5563–5573. [Google Scholar] [CrossRef] [PubMed]
  58. Pei, L.; Liu, J.; Huang, Z.; Iqbal, M.; Shen, Y. Effects of lactic acid bacteria isolated from equine on salmonella-infected gut mouse model. Probiot. Antimicrob. Proteins 2021, 15, 469–478. [Google Scholar] [CrossRef] [PubMed]
  59. Zhang, M.; Yang, Z.; Wu, G.; Xu, F.; Zhang, J.; Luo, X.; Ma, Y.; Pang, H.; Duan, Y.; Chen, J. Effects of Probiotic-Fermented Feed on the Growth Profile, Immune Functions, and Intestinal Microbiota of Bamei Piglets. Animals 2024, 14, 647. [Google Scholar] [CrossRef]
  60. Wang, Y.; Sun, J.; Xie, S.; Zhou, Y.; Wang, T.; Liu, Z.; Li, C.; Gao, L.; Pan, T. Increased abundance of bacteria of the family Muribaculaceae achieved by fecal microbiome transplantation correlates with the inhibition of kidney calcium oxalate stone deposition in experimental rats. Front. Cell. Infect. Microbiol. 2023, 13, 1145196. [Google Scholar] [CrossRef]
  61. Wang, H.; Wang, G.; Banerjee, N.; Liang, Y.; Du, X.; Boor, P.J.; Hoffman, K.L.; Khan, M.F. Aberrant gut microbiome contributes to intestinal oxidative stress, barrier dysfunction, inflammation and systemic autoimmune responses in MRL/lpr mice. Front. Immunol. 2021, 12, 651191. [Google Scholar] [CrossRef] [PubMed]
  62. Volk, J.K.; Nyström, E.E.; van der Post, S.; Abad, B.M.; Schroeder, B.O.; Johansson, Å.; Svensson, F.; Jäverfelt, S.; Johansson, M.E.; Hansson, G.C. The Nlrp6 inflammasome is not required for baseline colonic inner mucus layer formation or function. J. Exp. Med. 2019, 216, 2602–2618. [Google Scholar] [CrossRef] [PubMed]
  63. Li, A.-l.; Ni, W.-w.; Li, Y.; Zhang, X.; Yang, J.-j.; Ma, X.-y.; Jia, X.-d.; Li, C.; Liu, L.-b. Effect of 2′-fucosyllactose supplementation on intestinal flora in mice with intestinal inflammatory diseases. Int. Dairy J. 2020, 110, 104797. [Google Scholar] [CrossRef]
  64. Luo, J.; Wang, Z.; Fan, B.; Wang, L.; Liu, M.; An, Z.; Zhao, X. A comparative study of the effects of different fucoidans on cefoperazone-induced gut microbiota disturbance and intestinal inflammation. Food Funct. 2021, 12, 9087–9097. [Google Scholar] [CrossRef]
  65. Li, A.l.; Ni, W.w.; Zhang, Q.m.; Li, Y.; Zhang, X.; Wu, H.y.; Du, P.; Hou, J.c.; Zhang, Y. Effect of cinnamon essential oil on gut microbiota in the mouse model of dextran sodium sulfate-induced colitis. Microbiol. Immunol. 2020, 64, 23–32. [Google Scholar] [CrossRef] [PubMed]
  66. van der Hee, B.; Wells, J.M. Microbial regulation of host physiology by short-chain fatty acids. Trends Microbiol. 2021, 29, 700–712. [Google Scholar] [CrossRef] [PubMed]
  67. Alatawi, H.; Mosli, M.; Saadah, O.I.; Annese, V.; Al-Hindi, R.; Alatawy, M.; Al-Amrah, H.; Alshehri, D.; Bahieldin, A.; Edris, S. Attributes of intestinal microbiota composition and their correlation with clinical primary non-response to anti-TNF-α agents in inflammatory bowel disease patients. Bosn. J. Basic Med. Sci. 2022, 22, 412. [Google Scholar]
  68. Monk, J.M.; Lepp, D.; Zhang, C.P.; Wu, W.; Zarepoor, L.; Lu, J.T.; Pauls, K.P.; Tsao, R.; Wood, G.A.; Robinson, L.E. Diets enriched with cranberry beans alter the microbiota and mitigate colitis severity and associated inflammation. J. Nutr. Biochem. 2016, 28, 129–139. [Google Scholar] [CrossRef] [PubMed]
  69. Shao, J.; Li, Z.; Gao, Y.; Zhao, K.; Lin, M.; Li, Y.; Wang, S.; Liu, Y.; Chen, L. Construction of a “bacteria-metabolites” co-expression network to clarify the anti–ulcerative colitis effect of flavonoids of Sophora flavescens Aiton by regulating the “host–microbe” interaction. Front. Pharmacol. 2021, 12, 710052. [Google Scholar] [CrossRef]
  70. Shao, X.; Sun, C.; Tang, X.; Zhang, X.; Han, D.; Liang, S.; Qu, R.; Hui, X.; Shan, Y.; Hu, L. Anti-inflammatory and intestinal microbiota modulation properties of Jinxiang garlic (Allium sativum L.) polysaccharides toward dextran sodium sulfate-induced colitis. J. Agric. Food Chem. 2020, 68, 12295–12309. [Google Scholar] [CrossRef]
  71. Xia, X.; Lin, H.; Luo, F.; Wu, X.; Zhu, L.; Chen, S.; Luo, H.; Ye, F.; Peng, X.; Zhang, Y. Oryzanol ameliorates DSS-stimulated gut barrier damage via targeting the gut microbiota accompanied by the TLR4/NF-κB/NLRP3 cascade response in vivo. J. Agric. Food Chem. 2022, 70, 15747–15762. [Google Scholar] [CrossRef] [PubMed]
  72. Zhan, F.; Song, W.; Fan, Y.; Wang, F.; Wang, Q. Cucurbitacin E Alleviates Colonic Barrier Function Impairment and Inflammation Response and Improves Microbial Composition on Experimental Colitis Models. J. Inflamm. Res. 2024, 17, 2745–2756. [Google Scholar] [CrossRef] [PubMed]
  73. Guo, S.; Geng, W.; Chen, S.; Wang, L.; Rong, X.; Wang, S.; Wang, T.; Xiong, L.; Huang, J.; Pang, X. Ginger alleviates DSS-induced ulcerative colitis severity by improving the diversity and function of gut microbiota. Front. Pharmacol. 2021, 12, 632569. [Google Scholar] [CrossRef] [PubMed]
  74. Kang, J.; Sun, M.; Chang, Y.; Chen, H.; Zhang, J.; Liang, X.; Xiao, T. Butyrate ameliorates colorectal cancer through regulating intestinal microecological disorders. Anti-Cancer Drugs 2023, 34, 227–237. [Google Scholar] [CrossRef] [PubMed]
  75. Liu, Y.; Zhou, M.; Yang, M.; Jin, C.; Song, Y.; Chen, J.; Gao, M.; Ai, Z.; Su, D. Pulsatilla chinensis saponins ameliorate inflammation and DSS-induced ulcerative colitis in rats by regulating the composition and diversity of intestinal flora. Front. Cell. Infect. Microbiol. 2021, 11, 728929. [Google Scholar] [CrossRef] [PubMed]
  76. Wang, K.; Xu, X.; Maimaiti, A.; Hao, M.; Sang, X.; Shan, Q.; Wu, X.; Cao, G. Gut microbiota disorder caused by diterpenoids extracted from Euphorbia pekinensis aggravates intestinal mucosal damage. Pharmacol. Res. Perspect. 2021, 9, e00765. [Google Scholar] [CrossRef] [PubMed]
  77. Gao, R.; Tian, S.; Wang, J.; Zhu, W. Galacto-oligosaccharides improve barrier function and relieve colonic inflammation via modulating mucosa-associated microbiota composition in lipopolysaccharides-challenged piglets. J. Anim. Sci. Biotechnol. 2021, 12, 92. [Google Scholar] [CrossRef] [PubMed]
  78. Wang, Q.; Xu, K.; Cai, X.; Wang, C.; Cao, Y.; Xiao, J. Rosmarinic acid restores colonic mucus secretion in colitis mice by regulating gut microbiota-derived metabolites and the activation of inflammasomes. J. Agric. Food Chem. 2023, 71, 4571–4585. [Google Scholar] [CrossRef] [PubMed]
  79. Liu, R.; Wang, J.; Zhao, Y.; Zhou, Q.; Yang, X.; Gao, Y.; Li, Q.; Bai, M.; Liu, J.; Liang, Y. Study on the mechanism of modified Gegen Qinlian decoction in regulating the intestinal flora-bile acid-TGR5 axis for the treatment of type 2 diabetes mellitus based on macro genome sequencing and targeted metabonomics integration. Phytomedicine 2024, 132, 155329. [Google Scholar] [CrossRef]
  80. Du, Y.; Li, D.x.; Lu, D.y.; Zhang, R.; Zheng, X.x.; Xu, B.j.; Zhao, Y.l.; Ji, S.; Guo, M.z.; Wang, L. Morus alba L. water extract changes gut microbiota and fecal metabolome in mice induced by high-fat and high-sucrose diet plus low-dose streptozotocin. Phytother. Res. 2022, 36, 1241–1257. [Google Scholar] [CrossRef]
  81. Li, Z.-R.; Jia, R.-B.; Luo, D.; Lin, L.; Zheng, Q.; Zhao, M. The positive effects and underlying mechanisms of Undaria pinnatifida polysaccharides on type 2 diabetes mellitus in rats. Food Funct. 2021, 12, 11898–11912. [Google Scholar] [CrossRef]
  82. Zheng, J.; Li, H.; Zhang, X.; Jiang, M.; Luo, C.; Lu, Z.; Xu, Z.; Shi, J. Prebiotic mannan-oligosaccharides augment the hypoglycemic effects of metformin in correlation with modulating gut microbiota. J. Agric. Food Chem. 2018, 66, 5821–5831. [Google Scholar] [CrossRef]
  83. Tang, Y.; Yan, M.; Fang, Z.; Jin, S.; Xu, T. Effects of metformin, saxagliptin and repaglinide on gut microbiota in high-fat diet/streptozocin-induced type 2 diabetic mice. BMJ Open Diabetes Res. Care 2024, 12, e003837. [Google Scholar] [CrossRef]
  84. Dong, J.; Liang, Q.; Niu, Y.; Jiang, S.; Zhou, L.; Wang, J.; Ma, C.; Kang, W. Effects of Nigella sativa seed polysaccharides on type 2 diabetic mice and gut microbiota. Int. J. Biol. Macromol. 2020, 159, 725–738. [Google Scholar] [CrossRef]
  85. Chen, J.; Ding, X.; Wu, R.; Tong, B.; Zhao, L.; Lv, H.; Meng, X.; Liu, Y.; Ren, B.; Li, J. Novel sesquiterpene glycoside from loquat leaf alleviates type 2 diabetes mellitus combined with nonalcoholic fatty liver disease by improving insulin resistance, oxidative stress, inflammation, and gut microbiota composition. J. Agric. Food Chem. 2021, 69, 14176–14191. [Google Scholar] [CrossRef]
  86. Yu, F.; Han, W.; Zhan, G.; Li, S.; Jiang, X.; Wang, L.; Xiang, S.; Zhu, B.; Yang, L.; Luo, A. Abnormal gut microbiota composition contributes to the development of type 2 diabetes mellitus in db/db mice. Aging 2019, 11, 10454. [Google Scholar] [CrossRef]
  87. Deng, J.; Zhong, J.; Long, J.; Zou, X.; Wang, D.; Song, Y.; Zhou, K.; Liang, Y.; Huang, R.; Wei, X. Hypoglycemic effects and mechanism of different molecular weights of konjac glucomannans in type 2 diabetic rats. Int. J. Biol. Macromol. 2020, 165, 2231–2243. [Google Scholar] [CrossRef]
  88. Zhang, M.; Yang, L.; Zhu, M.; Yang, B.; Yang, Y.; Jia, X.; Feng, L. Moutan cortex polysaccharide ameliorates diabetic kidney disease via modulating gut microbiota dynamically in rats. Int. J. Biol. Macromol. 2022, 206, 849–860. [Google Scholar] [CrossRef]
  89. Magne, F.; Gotteland, M.; Gauthier, L.; Zazueta, A.; Pesoa, S.; Navarrete, P.; Balamurugan, R. The firmicutes/bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients? Nutrients 2020, 12, 1474. [Google Scholar] [CrossRef]
  90. Clemente, J.C.; Pehrsson, E.C.; Blaser, M.J.; Sandhu, K.; Gao, Z.; Wang, B.; Magris, M.; Hidalgo, G.; Contreras, M.; Noya-Alarcón, Ó. The microbiome of uncontacted Amerindians. Sci. Adv. 2015, 1, e1500183. [Google Scholar] [CrossRef]
  91. Osborne, G.; Wu, F.; Yang, L.; Kelly, D.; Hu, J.; Li, H.; Jasmine, F.; Kibriya, M.G.; Parvez, F.; Shaheen, I. The association between gut microbiome and anthropometric measurements in Bangladesh. Gut Microbes 2020, 11, 63–76. [Google Scholar] [CrossRef]
  92. Qian, L.; Gao, R.; Hong, L.; Pan, C.; Li, H.; Huang, J.; Qin, H. Association analysis of dietary habits with gut microbiota of a native Chinese community. Exp. Ther. Med. 2018, 16, 856–866. [Google Scholar] [CrossRef]
  93. Barouei, J.; Bendiks, Z.; Martinic, A.; Mishchuk, D.; Heeney, D.; Hsieh, Y.H.; Kieffer, D.; Zaragoza, J.; Martin, R.; Slupsky, C. Microbiota, metabolome, and immune alterations in obese mice fed a high-fat diet containing type 2 resistant starch. Mol. Nutr. Food Res. 2017, 61, 1700184. [Google Scholar] [CrossRef]
  94. Muhomah, T.A.; Nishino, N.; Katsumata, E.; Haoming, W.; Tsuruta, T. High-fat diet reduces the level of secretory immunoglobulin A coating of commensal gut microbiota. Biosci. Microbiota Food Health 2019, 38, 55–64. [Google Scholar] [CrossRef]
  95. Liu, H.; Zhu, H.; Xia, H.; Yang, X.; Yang, L.; Wang, S.; Wen, J.; Sun, G. Different effects of high-fat diets rich in different oils on lipids metabolism, oxidative stress and gut microbiota. Food Res. Int. 2021, 141, 110078. [Google Scholar] [CrossRef]
  96. Hua, Y.; Fan, R.; Zhao, L.; Tong, C.; Qian, X.; Zhang, M.; Xiao, R.; Ma, W. Trans-fatty acids alter the gut microbiota in high-fat-diet-induced obese rats. Br. J. Nutr. 2020, 124, 1251–1263. [Google Scholar] [CrossRef]
  97. Júnior, R.E.M.; de Carvalho, L.M.; Pedersen, A.S.B.; Damasceno, S.; Maioli, T.U.; de Faria, A.M.C.; Godard, A.L.B. Interaction between high-fat diet and ethanol intake leads to changes on the fecal microbiome. J. Nutr. Biochem. 2019, 72, 108215. [Google Scholar]
  98. Ye, J.; Zhao, Y.; Chen, X.; Zhou, H.; Yang, Y.; Zhang, X.; Huang, Y.; Zhang, N.; Lui, E.M.; Xiao, M. Pu-erh tea ameliorates obesity and modulates gut microbiota in high fat diet fed mice. Food Res. Int. 2021, 144, 110360. [Google Scholar] [CrossRef]
  99. Mu, H.; Zhou, Q.; Yang, R.; Zeng, J.; Li, X.; Zhang, R.; Tang, W.; Li, H.; Wang, S.; Shen, T. Naringin attenuates high fat diet induced non-alcoholic fatty liver disease and gut bacterial dysbiosis in mice. Front. Microbiol. 2020, 11, 585066. [Google Scholar] [CrossRef]
  100. Loubet Filho, P.S.; Baseggio, A.M.; Vuolo, M.M.; Reguengo, L.M.; Biasoto, A.C.T.; Correa, L.C.; Junior, S.B.; Cagnon, V.H.A.; Cazarin, C.B.B.; Júnior, M.R.M. Gut microbiota modulation by jabuticaba peel and its effect on glucose metabolism via inflammatory signaling. Curr. Res. Food Sci. 2022, 5, 382–391. [Google Scholar] [CrossRef]
  101. Paone, P.; Suriano, F.; Jian, C.; Korpela, K.; Delzenne, N.M.; Van Hul, M.; Salonen, A.; Cani, P.D. Prebiotic oligofructose protects against high-fat diet-induced obesity by changing the gut microbiota, intestinal mucus production, glycosylation and secretion. Gut Microbes 2022, 14, 2152307. [Google Scholar] [CrossRef]
  102. Yu, Y.; Zeng, F.; Han, P.; Zhang, L.; Yang, L.; Zhou, F.; Liu, Q.; Ruan, Z. Dietary chlorogenic acid alleviates high-fat diet-induced steatotic liver disease by regulating metabolites and gut microbiota. Int. J. Food Sci. Nutr. 2024, 75, 369–384. [Google Scholar] [CrossRef]
  103. Yuan, G.; Tan, M.; Chen, X. Punicic acid ameliorates obesity and liver steatosis by regulating gut microbiota composition in mice. Food Funct. 2021, 12, 7897–7908. [Google Scholar] [CrossRef]
  104. Zhou, C.; Zhou, X.; Wen, Z.; Liu, L.; Yang, Z.; Yang, L.; Li, P.; Guo, X.; Mei, X. Compound Fu brick tea modifies the intestinal microbiome composition in high-fat diet-induced obesity mice. Food Sci. Nutr. 2020, 8, 5508–5520. [Google Scholar] [CrossRef]
  105. Zhang, M.; Yao, M.; Jia, A.; Shi, Y.; Bai, X.; Liu, X.; Cui, T.; Liu, X.; Liu, C. Hypolipidemic effect of soluble dietary fibers prepared from Asparagus officinalis and their effects on the modulation of intestinal microbiota. Food Sci. Biotechnol. 2021, 30, 1721–1731. [Google Scholar] [CrossRef]
Figure 1. Metabolic pathways of Muribaculaceae to produce short-chain fatty acids.
Figure 1. Metabolic pathways of Muribaculaceae to produce short-chain fatty acids.
Nutrients 16 02660 g001
Table 1. Diversity of Muribaculaceae family.
Table 1. Diversity of Muribaculaceae family.
Bacteria GenusStrainNameGenome AssemblyGenBankReferences
MuribaculumMuribaculum gordoncarteriTLL-A4ASM480369v1GCA_004803695.1Miyake et al., 2020 [16]
Muribaculum intestinaleYL27ASM168884v2GCA_001688845.2Lagkouvardos et al., 2016 [20]
Muribaculum sp. An287,
Muribaculum sp. An289
An287, An 289ASM215958v1GCA_002159585.1Schoch et al., 2020 [21]
DuncaniellaDuncaniella dubosii,
Duncaniella freteri
H5, TLL-A3ASM480391v1, ASM476612v1GCF_004803915.1,
GCF_004766125.1
Miyake et al., 2020 [18]
Duncaniella murisDSM 103720ASM302480v1GCA_003024805.1Lagkouvardos et al., 2019 [15]
ParamuribaculumParamuribaculum intestinaleDSM 100764ASM302481v1GCA_003024815.1Lagkouvardos et al., 2019 [15]
SodaliphilusSodaliphilus pleomorphusOil-RF-744-WCA-WT-10ASM967695v1GCA_009676955.1Wylensek et al., 2020 [22]
HeminiphilusHeminiphilus faecisAM35TASM872896v1GCA_008728965.1Schoch et al., 2020 [21]
LepagellaLepagella murisNM04_E33ASM479397v1GCA_004793975.1Afrizal et al., 2022 [23]
Candidatus amulumruptorCandidatus amulumruptor caecigallinariusHinsu1ASM2074201v1GCA_020742015.1Hinsu et al., 2019 [24]
Candidatus merdivivensCandidatus merdivivens faecigallinarum,
Candidatus merdivivens pullicola,
Candidatus merdivivens pullistercoris
B3-2255ASM1769505v1,
ASM1769493v1
GCA_017695055.1,
GCA_017694935.1
Gilroy et al., 2021 [25]
Candidatus homeothermusCandidatus homeothermus arabinoxylanisolvensM4//Ormerod et al., 2016 [12]
SangeribacterSangeribacter murisA43//Forster et al., 2021 [26]
Table 2. Intake of polysaccharides, plant foods, and probiotics increases Muribculaceae abundance and short-chain fatty acid content.
Table 2. Intake of polysaccharides, plant foods, and probiotics increases Muribculaceae abundance and short-chain fatty acid content.
Intervention SubstanceSubjectMuribaculaceae AbundanceShort-Chain Fatty AcidReferences
InulinDairy cowsLactic acid, propionic acid, butyric acidWang et al., 2021 [27]
Soluble fibreC57BL/6J miceAcetic acid, propionic acidXu et al., 2020 [28]
Resistant starchC57BL/6 miceAcetic acid, propionic acid, butyric acidWan et al., 2021 [29]
InulinCD-1 miceAcetic acid, propionic acid, butyric acidZou et al., 2024 [30]
Resistant starchBALB/c miceAcetic acid, butyric acidLi et al., 2023 [31]
Corderan gumC57BL/6J miceAcetic acid, propionic acid, butyric acidWatanabe et al., 2021 [32]
Konjac glucomannansSD ratButyric acidDeng et al., 2023 [33]
PotatoesSD ratAcetic acid, propionic acid, butyric acidWu et al., 2019 [34]
Black cherry powderSD ratAcetic acid, propionic acid, butyric acidGarcia-Mazcorro et al., 2018 [35]
Lactobacillus delbrueckii, Streptococcus thermophilus 1131ICR micePropionic acid, butyric acidUsui et al., 2018 [36]
Lactobacillus plantarum Y44C57BL/6J miceAcetic acid, propionic acid, butyric acid, valerate acidLiu et al., 2020 [37]
Lacticaseibacillus casei ATCC393BALB/c miceLactic acid, acetic acidAindelis et al., 2021 [38]
Lactobacillus acidophilus, Bacillus subtilisPigletsButyric acidXie et al., 2022 [39]
The up arrow indicates an increase in abundance.
Table 3. The intake of probiotics increases the abundance of Muribaculaceae.
Table 3. The intake of probiotics increases the abundance of Muribaculaceae.
Intervention SubstanceSubjectMuribaculaceae AbundanceReferences
Lactobacillus plantarum Shinshu N-07, Lactobacillus curvatus #4G2C57BL/6J miceYin et al., 2020 [10]
Lactobacillus kefirnofaciens M1, Lactobacillus mali APS1C57BL/6J miceLin et al., 2020 [9]
Lactobacillus paracasei NL41SD ratZeng et al., 2021 [50]
Lactobacillus plantarum NK151, Bifidobacterium bifidum NK175C57BL/6 miceYun et al., 2021 [51]
Lactobacillus plantarum Y44BALB/c miceGao et al., 2021 [52]
Bifidobacterium longum BR-108BALB/c miceMakioka et al., 2018 [8]
Bifidobacterium lactis XLTG11, Lactobacillus casei Zhang, Lactobacillus plantarum CCFM8661, Lactobacillus rhamnosus Probio-M9BALB/c miceLi et al., 2023 [53]
Saccharomyces boulardii BR14C57BL/6J miceMu et al., 2021 [54]
Saccharomyces boulardiiC57BL/6J miceDong et al., 2019 [55]
Bacillus amyloliquefaciens TL106C57BL/6J miceBao et al., 2021 [11]
Lactobacillus plantarum, Weissella confusaC57BL/6 miceGryaznova et al., 2024 [56]
Faecalibacterium prausnitziiBALB/c miceHu et al., 2021 [57]
Weissella confuse, Pediococcus acidilactici, Ligilactobacillus equiKM micePei et al., 2021 [58]
Lactobacillus plantarum QP28-1, Bacillus subtilis QB8Bamei pigletsZhang et al., 2024 [59]
The up arrow indicates an increase in abundance.
Table 4. An increase in Muribaculaceae is related to the alleviation of IBD.
Table 4. An increase in Muribaculaceae is related to the alleviation of IBD.
Intervention SubstanceSubjectMuribaculaceae AbundanceReferences
Changes before InterventionChanges after Intervention
Infliximab and adalimumabIBD patients/Alatawi et al., 2021 [67]
Recombinant mouse Il18C57BL/6 mice/Volk et al., 2019 [62]
N-acetylcysteineC57BL/6J miceWang et al., 2021 [61]
Cranberry beansC57BL/6 miceMonk et al., 2016 [68]
Flavones from matrineC57BL/6 miceShao et al., 2021 [69]
Garlic polysaccharideC57BL/6J miceShao et al., 2020 [70]
OryzanolC57BL/6J miceXia et al., 2022 [71]
2′-FucosyllactoseC57BL/6J miceLi et al., 2020 [63]
Cucurbitacin EC57BL/6J miceZhan et al., 2024 [72]
Cinnamon essential oilKM miceLi et al., 2020 [65]
Fresh gingerBALB/c miceGuo et al., 2021 [73]
ButyrateBALB/c miceKang et al., 2023 [74]
Pulsatilla saponinSD ratLiu et al., 2021 [75]
FucoidanC57BL/6J miceLuo et al., 2021 [64]
Euphorbia total diterpenoidsC57BL/6J miceWang et al., 2021 [76]
GalactooligosaccharidePigletGao et al., 2021 [77]
Rosmarinic acidICR miceWang et al., 2023 [78]
The up and down arrows indicate increases and decreases in abundance.
Table 5. An increase in Muribaculaceae content is related to the alleviation of T2D.
Table 5. An increase in Muribaculaceae content is related to the alleviation of T2D.
Intervention SubstanceSubjectMuribaculaceae AbundanceReferences
Changes before InterventionChanges after Intervention
AcarboseC57BL/6J mice/Smith et al., 2021 [14]
Metformin, saxagliptin, and repaglinideC57BL/6J miceTang et al., 2024 [83]
Black seed polysaccharideKM mice/Dong et al., 2020 [84]
Loquat leaf sesquiterpenedb/db mice/Chen et al., 2021 [85]
Broad-spectrum antibioticsdb/db mice/Yu et al., 2019 [86]
Gegen Qinlian decoctiondb/db mice/Liu et al., 2024 [79]
Konjac glucomannanSD ratDeng et al., 2020 [87]
Sargassum polysaccharide and acarboseSD ratLi et al., 2021 [6]
Wakame polysaccharideSD ratLi et al., 2021 [81]
Moutan cortex polysaccharideSD ratZhang et al., 2022 [88]
MannooligosaccharidesC57BL/6J miceZheng et al., 2021 [82]
Morus alba L. water extractC57BL/6J miceDu et al., 2022 [80]
The up and down arrows indicate increases and decreases in abundance.
Table 6. An increase in Muribaculaceae is related to alleviating obesity.
Table 6. An increase in Muribaculaceae is related to alleviating obesity.
Intervention SubstanceSubjectMuribaculaceae AbundanceReferences
Changes before InterventionChanges after Intervention
Olive oil, lard oil, soybean oilC57BL/6J mice/Liu et al., 2021 [95]
Trans-fatty acidsC57BL/6J mice/Hua et al., 2020 [96]
10% alcohol solutionC57BL/6J mice/Júnior et al., 2019 [97]
Pu-erh tea extractC57BL/6J miceYe et al., 2021 [98]
Resistant starchC57BL/6J miceBarouei et al., 2017 [93]
NaringinC57BL/6J miceMu et al., 2020 [99]
Jabuticaba peelC57BL/6J miceLoubet et al., 2022 [100]
Saskatoon berryC57BL/6J miceZhao et al., 2023 [5]
Prebiotic oligofructoseC57BL/6J micePaone et al., 2023 [101]
Chlorogenic acidC57BL/6J miceYu et al., 2024 [102]
Punicic acidICR miceYuan et al., 2020 [103]
Fu brick teaKM miceZhou et al., 2020 [104]
Asparagus soluble fibreKM miceZhang et al., 2021 [105]
The up and down arrows indicate increases and decreases in abundance.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Zhu, Y.; Chen, B.; Zhang, X.; Akbar, M.T.; Wu, T.; Zhang, Y.; Zhi, L.; Shen, Q. Exploration of the Muribaculaceae Family in the Gut Microbiota: Diversity, Metabolism, and Function. Nutrients 2024, 16, 2660. https://doi.org/10.3390/nu16162660

AMA Style

Zhu Y, Chen B, Zhang X, Akbar MT, Wu T, Zhang Y, Zhi L, Shen Q. Exploration of the Muribaculaceae Family in the Gut Microbiota: Diversity, Metabolism, and Function. Nutrients. 2024; 16(16):2660. https://doi.org/10.3390/nu16162660

Chicago/Turabian Style

Zhu, Yiqing, Borui Chen, Xinyu Zhang, Muhammad Toheed Akbar, Tong Wu, Yiyun Zhang, Li Zhi, and Qun Shen. 2024. "Exploration of the Muribaculaceae Family in the Gut Microbiota: Diversity, Metabolism, and Function" Nutrients 16, no. 16: 2660. https://doi.org/10.3390/nu16162660

APA Style

Zhu, Y., Chen, B., Zhang, X., Akbar, M. T., Wu, T., Zhang, Y., Zhi, L., & Shen, Q. (2024). Exploration of the Muribaculaceae Family in the Gut Microbiota: Diversity, Metabolism, and Function. Nutrients, 16(16), 2660. https://doi.org/10.3390/nu16162660

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop