A Machine Learning Free Energy Functional for the 1D Reference Interaction Site Model: Towards Prediction of Solvation Free Energy for All Solvent Systems
Abstract
:1. Introduction
Solvation Free Energy
2. Theory
2.1. 1D-RISM
2.2. Solvation Free Energy Functionals
2.3. Solvation Free Energy Densities
2.4. Model Performance
3. Materials and Methods
3.1. Overview
3.2. Dataset Compilation
3.3. 1D RISM Calculations
3.4. SFED Processing
3.5. Final Dataset Analysis
3.6. CNN Training
4. Results
Model Validation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMBER | Assisted Model Building with Energy Refinement |
CEV | Cumulative Explained Variance |
CSE | CombiSolv-Exp |
CV | Cross-Validation |
EVR | Explained Variance Ratio |
GAFF | General AMBER Forcefield |
GB | Generalised-Born |
GF | Gaussian Fluctuations |
HFE | Hydration Free Energy |
HNC | Hypernetted-Chain |
IET | Integral Equation Theory |
KH | Kovalenko–Hirata |
LJ | Lennard-Jones |
MD | Molecular Dynamics |
MDIIS | Modified Direct Inversion of the Iterative Subspace |
MOZ | Molecular Ornstein–Zernike |
OZ | Orstein–Zernike |
PB | Poisson–Boltzmann |
PC | Pure Pressure Correction |
PCM | Polarisable Continuum Model |
PC+ | Expanded Pure Pressure Correction |
RDF | Radial Distribution Function |
ReLU | Rectified Linear Unit |
RISM | Reference Interaction Site Model |
RMSE | Root Mean Squared Error |
SASA | Surface Accessible Surface Area |
SDEP | Standard Deviation of the Error of Prediction |
SFE | Solvation Free Energy |
SFED | Solvation Free Energy Density |
SMILES | Simplified Molecular-Input Line-Entry System |
XRISM | Extended Reference Interaction Site Model |
References
- Ben-Naim, A. A Molecular Theory of Solutions; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Abel, R.; Wang, L.; Harder, E.D.; Berne, B.J.; Friesner, R.A. Advancing Drug Discovery through Enhanced Free Energy Calculations. Acc. Chem. Res. 2017, 50, 1625–1632. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, A.; Tsai, H.; Fernández-Pendás, M.; Lee, T.; Giese, T.J.; York, D.M. AMBER Drug Discovery Boost Tools: Automated Workflow for Production Free-Energy Simulation Setup Analysis (ProFESSA). J. Chem. Inf. Model. 2022, 62, 6069–6083. [Google Scholar] [CrossRef] [PubMed]
- Skyner, R.E.; McDonagh, J.L.; Groom, C.R.; Mourick, T.V.; Mitchell, J.B.O. A review of methods for the calculation of solution free energies and the modelling of systems in solution. Phys. Chem. Chem. Phys. 2015, 17, 6174–6191. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Ding, G.; Gao, H.; Zhuang, Y.; Gu, X.; Peijnenburg, W.J.G.M. Prediction of octanol-air partition coefficients for PCBs at different ambient temperatures based on the solvation free energy and the dimer ratio. Chemosphere 2020, 242, 125246. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Chen, Y.; Ge, Z.; Cao, W.; Jin, H. A molecular simulation study on solvation free energy and structural properties of polycyclic aromatic hydrocarbons in supercritical water environment. J. Mol. Liq. 2020, 318, 114274. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B. 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Marenich, A.V.; Olson, R.M.; Kelly, C.P.; Cramer, C.J.; Truhlar, D.G. Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges. J. Chem. Theory Comput. 2007, 3, 2011–2033. [Google Scholar] [CrossRef]
- Cramer, C.J.; Truhlar, D.G. A Universal Approach to Solvation Modeling. Acc. Chem. Res. 2008, 41, 760–768. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Generalized Born Solvation Model SM12. J. Chem. Theory Comput. 2013, 9, 609–620. [Google Scholar] [CrossRef]
- Miertuš, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the prevision of solvent effects. Chem. Phys. 1981, 55, 117–129. [Google Scholar] [CrossRef]
- Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24, 669–681. [Google Scholar] [CrossRef] [PubMed]
- Cancès, E.; Mennucci, B.; Tomasi, J. A new integral equation formalism for the polarizable continuum model: Theoterical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. [Google Scholar] [CrossRef]
- Cancès, E.; Mennucci, B. New applications of integral equations methods for solvation continuum models: Ionic solutions and liquid crystals. J. Math. Chem. 1998, 23, 309–326. [Google Scholar] [CrossRef]
- Klamt, A.; Schüürmann, G. COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. 1993, 2, 799–805. [Google Scholar] [CrossRef]
- Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sherman, W. Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. J. Chem. Theory Comput. 2010, 6, 1509–1519. [Google Scholar] [CrossRef]
- Leung, K.; Rempe, S.B.; von Lilienfeld, O.A. Ab Initio molecular dynamics calculations of ion hydration free energies. J. Chem. Phys. 2009, 130, 204507. [Google Scholar] [CrossRef]
- Geballe, M.T.; Skillman, A.G.; Nicholls, A.; Guthrie, J.P.; Taylor, P.J. The SAMPL2 blind prediction challenge: Introduction and overview. J. Comput.-Aided Mol. Des. 2010, 24, 259–279. [Google Scholar] [CrossRef]
- Geballe, M.T.; Guthrie, J.P. The SAMPL3 blind prediction challenge: Transfer energy overview. J. Comput. Aided Mol. Des. 2012, 26, 489–496. [Google Scholar] [CrossRef]
- Mobley, D.L.; Wymer, K.L.; Lim, N.M.; Guthrie, J.P. Blind prediction of solvation free energies from the SAMPL4 challenge. J. Comput. Aided Mol. Des. 2014, 28, 135–150. [Google Scholar] [CrossRef]
- Varilly, P.; Patel, A.J.; Chandler, D. An improved coarse-grained model of solvation and the hydrophobic effect. J. Chem. Phys. 2011, 134, 074109. [Google Scholar] [CrossRef]
- Genheden, S. Solvation free energies and partition coefficients with the coarse-grained and hybrid all-atom/coarse-grained MARTINI models. J. Comput. Aided Mol. Des. 2017, 31, 867–876. [Google Scholar] [CrossRef] [PubMed]
- Shivakumar, D.; Deng, Y.; Roux, B. Computations of Absolute Solvation Free Energies of Small Molecules Using Explicit and Implicit Solvent Model. J. Chem. Theory Comput. 2009, 5, 919–930. [Google Scholar] [CrossRef] [PubMed]
- Vyboishchikov, S.F. Predicting Solvation Free Energies Using Electronegativity-Equalization Atomic Charges and a Dense Neural Network: A Generalized-Born Approach. J. Chem. Theory Comput. 2023, 19, 8340–8350. [Google Scholar] [CrossRef] [PubMed]
- Steinmann, S.; Sautet, P.; Michel, C. Solvation free energies for periodic surfaces: Comparison of implicit and explicit solvation models. Phys. Chem. Chem. Phys. 2016, 18, 31850. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, H.; Wu, T.; Wang, Q.; van der Spoel, D. Comparison of Implicit and Explicit Solvent Models for the Calculation of Solvation Free Energy in Organic Solvents. J. Chem. Theory Comput. 2017, 13, 1034–1043. [Google Scholar] [CrossRef]
- Chandler, D.; Anderson, H.C. Optimized cluster expansions for classical fluids. 2. Theory of molecular liquids. J. Chem. Phys. 1972, 57, 1930–1937. [Google Scholar] [CrossRef]
- Palmer, D.S.; Frolov, A.I.; Ratkova, E.L.; Federov, M.V. Towards a universal method for calculating hydration free energies: 3D refernce interaction site model with partial molar volume correction. J. Phys. Condens. Matter 2010, 22, 492101. [Google Scholar] [CrossRef]
- Chuev, G.N.; Fedorov, M.V.; Crain, J. Improved estimates for hydration free energy obtained by the reference interaction site model. Chem. Phys. Lett. 2007, 448, 198–202. [Google Scholar] [CrossRef]
- Palmer, D.S.; Sergiievskyi, V.P.; Jensen, F.; Fedorov, M.V. Accurate calculations of the hydration free energies of druglike molecules using the reference interaction site model. J. Chem. Phys. 2010, 133, 044104. [Google Scholar] [CrossRef]
- Ratkova, E.L.; Chuev, G.N.; Sergiievskyi, V.P.; Federov, M.V. An Accurate Prediction of Hydration Free Energies by Combination of Molecular Integral Equations Theory with Structural Descriptors. J. Phys. Chem. B 2010, 114, 12068–12079. [Google Scholar] [CrossRef]
- Truchon, J.F.; Pettitt, B.M.; Labute, P. A Cavity Corrected 3D-RISM Functional for Accurate Solvation Free Energies. J. Chem. Theory Comput. 2014, 10, 934–941. [Google Scholar] [CrossRef] [PubMed]
- Sergiievskyi, V.P.; Jeanmairet, G.; Levensque, M.; Borgis, D. Solvation free-energy pressure corrections in the three dimensional reference interaction site model. J. Chem. Phys. 2015, 143, 184116. [Google Scholar] [CrossRef] [PubMed]
- Misin, M.; Federov, M.V.; Palmer, D.S. Hydration Free Energies of Molcular Ions from Theory and Simulation. J. Phys. Chem. B 2016, 120, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Misin, M.; Palmer, D.S.; Federov, M.V. Predicting Solvation Free Energies Using Parameter-Free Solvent Models. J. Phys. Chem B 2016, 120, 5724–5731. [Google Scholar] [CrossRef]
- Misin, M.; Vainikka, P.A.; Federov, M.V.; Palmer, D.S. Salting-out effects by pressure-corrected 3D-RISM. J. Chem. Phys. 2016, 145, 194501. [Google Scholar] [CrossRef]
- Ratkova, E.L.; Fedorov, M.V. Combination of RISM and Cheminformatics for Efficient Predictions of Hydration Free Energy of Polyfragment Molecules: Application to a Set of Organic Pollutants. J. Chem. Theory Comput. 2011, 7, 1450–1457. [Google Scholar] [CrossRef]
- Fowles, D.J.; McHardy, R.G.; Ahmad, A.; Palmer, D.S. Accurately predicting solvation free energy in aqueous and organic solvents beyond 298 K by combining deep learning and the 1D reference interaction site model. Digit. Discov. 2022, 2, 177–188. [Google Scholar] [CrossRef]
- Fowles, D.J.; Palmer, D.S. Solvation entropy, enthalpy, and free energy prediction using a multi-task deep learning functional in 1D-RISM. Phys. Chem. Chem. Phys. 2023, 25, 6944–6954. [Google Scholar] [CrossRef]
- Kovalenko, A.; Hirata, F. Hydration free energy of hydrophobic solutes studied by a reference interaction site model with repulsive bridge correction and a thermodynamic perturbation method. J. Chem. Phys. 2000, 113, 2793–2805. [Google Scholar] [CrossRef]
- Vermeire, F.H.; Chung, Y.; Green, W.H. Predictinf Solubility Limits of Organic Solutes for a Wide Range of Solvents and Temperatures. J. Am. Chem. Soc. 2022, 144, 10785–10797. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and Testing of General AMBER Force Field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- The Open Babel Package, Version 3.1.1. Available online: http://openbabel.org (accessed on 1 November 2020).
- Ahmad, A. 2AUK/pyRISM: PyRISM 0.3.0; University of Strathclyde: Glasgow, UK, 2023. [Google Scholar] [CrossRef]
- Badaracco, A.G. Adriangb/Scikeras: Scikeras 0.11.0. Available online: https://pypi.org/project/scikeras/ (accessed on 3 November 2024).
- Conn, J.G.M.; Carter, J.W.; Conn, J.J.A.; Subramanian, V.; Baxter, A.; Engkvist, O.; Llinas, A.; Ratkova, E.L.; Pickett, S.D.; McDonagh, J.L.; et al. Blinded Predictions and Post Hoc Analysis of the Second Solubility Challenge Data: Exploring Training Data and Feature Set Selection for Machine and Deep Learning Models. J. Chem. Inf. Model. 2023, 63, 1099–1113. [Google Scholar] [CrossRef] [PubMed]
- Conn, J.G.M. PalmerChem/Conn_Liquids_SI, 2024. University of Strathclyde: Glasgow, UK. Available online: https://github.com/PalmerChem/Conn_Liquids_SI (accessed on 3 November 2024).
- Ahmad, A. 2AUK/pyRISM, 2024. University of Strathclyde: Glasgow, UK. Available online: https://github.com/2AUK/pyRISM (accessed on 3 November 2024).
RMSE (kcal/mol) | Bias (kcal/mol) | SDEP (kcal/mol) | ||
---|---|---|---|---|
Inner Loop (5-fold CV) | 0.87 (0.02) | 1.50 (0.14) | 0.04 (0.13) | 1.49 (0.14) |
Outer Loop (Testing Set) | 0.89 (0.02) | 1.41 (0.11) | −0.02 (0.14) | 1.41 (0.11) |
Solvent | Solutes | RMSE | Bias | SDEP | |
---|---|---|---|---|---|
Methanol | 150 | 0.96 | 1.07 | −0.19 | 1.05 |
N,N-Dimethylformamide | 143 | 0.95 | 1.06 | 0.08 | 1.06 |
Propan-1-ol | 138 | 0.96 | 1.00 | 0.08 | 1.00 |
Ethanol | 133 | 0.96 | 1.10 | −0.20 | 1.08 |
Propan-2-ol | 124 | 0.96 | 1.00 | 0.07 | 1.00 |
Butan-1-ol | 123 | 0.97 | 0.90 | −0.15 | 0.88 |
Tetrachloromethane | 118 | 0.95 | 0.70 | 0.05 | 0.70 |
Propan-2-one | 96 | 0.93 | 1.18 | −0.28 | 1.15 |
Ethyl acetate | 83 | 0.96 | 0.97 | −0.06 | 0.97 |
Methyl acetate | 78 | 0.94 | 1.27 | −0.41 | 1.20 |
N,N-Dimethylacetamide | 77 | 0.93 | 0.88 | −0.03 | 0.88 |
Butan-2-one | 72 | 0.92 | 0.79 | −0.23 | 0.76 |
Formamide | 71 | 0.89 | 1.21 | 0.45 | 1.13 |
1,2-Dichloroethane | 70 | 0.85 | 1.29 | −0.34 | 1.24 |
Acetonitrile | 64 | 0.78 | 0.69 | −0.16 | 0.67 |
1,4-Dioxane | 61 | 0.82 | 1.16 | 0.36 | 1.10 |
RMSE (kcal/mol) | Bias (kcal/mol) | SDEP (kcal/mol) | ||
---|---|---|---|---|
Mean | 0.91 | 1.35 | 0.01 | 1.34 |
Standard Deviation | 0.02 | 0.13 | 0.18 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conn, J.G.M.; Ahmad, A.; Palmer, D.S. A Machine Learning Free Energy Functional for the 1D Reference Interaction Site Model: Towards Prediction of Solvation Free Energy for All Solvent Systems. Liquids 2024, 4, 710-731. https://doi.org/10.3390/liquids4040040
Conn JGM, Ahmad A, Palmer DS. A Machine Learning Free Energy Functional for the 1D Reference Interaction Site Model: Towards Prediction of Solvation Free Energy for All Solvent Systems. Liquids. 2024; 4(4):710-731. https://doi.org/10.3390/liquids4040040
Chicago/Turabian StyleConn, Jonathan G. M., Abdullah Ahmad, and David S. Palmer. 2024. "A Machine Learning Free Energy Functional for the 1D Reference Interaction Site Model: Towards Prediction of Solvation Free Energy for All Solvent Systems" Liquids 4, no. 4: 710-731. https://doi.org/10.3390/liquids4040040
APA StyleConn, J. G. M., Ahmad, A., & Palmer, D. S. (2024). A Machine Learning Free Energy Functional for the 1D Reference Interaction Site Model: Towards Prediction of Solvation Free Energy for All Solvent Systems. Liquids, 4(4), 710-731. https://doi.org/10.3390/liquids4040040