Endoplasmic Reticulum Stress in Neurodegenerative Diseases
Abstract
:1. Introduction
2. ER Stress
3. Neurodegenerative Diseases Involving ER Stress
4. ER Stress and AD
5. Clinically Approved ER Stress Inhibitors
6. Shortcomings of ER Stress Drugs
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giri, P.M.; Banerjee, A.; Ghosal, A.; Layek, B. Neuroinflammation in Neurodegenerative Disorders: Current Knowledge and Therapeutic Implications. Int. J. Mol. Sci. 2024, 25, 3995. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.H.; Walter, P.; Yen, T.S.B. Endoplasmic Reticulum Stress in Disease Pathogenesis. Annu. Rev. Pathol. 2008, 3, 399–425. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shi, C.; He, M.; Xiong, S.; Xia, X. Endoplasmic Reticulum Stress: Molecular Mechanism and Therapeutic Targets. Signal Transduct. Target. Ther. 2023, 8, 352. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Chai, Y.; Zhang, J.; Chen, X. Endoplasmic Reticulum Stress-Associated Neuronal Death and Innate Immune Response in Neurological Diseases. Front. Immunol. 2021, 12, 794580. [Google Scholar] [CrossRef] [PubMed]
- Read, A.; Schröder, M. The Unfolded Protein Response: An Overview. Biology 2021, 10, 384. [Google Scholar] [CrossRef]
- Han, Y.; Yuan, M.; Guo, Y.-S.; Shen, X.-Y.; Gao, Z.-K.; Bi, X. Mechanism of Endoplasmic Reticulum Stress in Cerebral Ischemia. Front. Cell. Neurosci. 2021, 15, 704334. [Google Scholar] [CrossRef]
- Harding, H.P.; Zhang, Y.; Ron, D. Protein Translation and Folding Are Coupled by an Endoplasmic-Reticulum-Resident Kinase. Nature 1999, 397, 271–274. [Google Scholar] [CrossRef]
- Calfon, M.; Zeng, H.; Urano, F.; Till, J.H.; Hubbard, S.R.; Harding, H.P.; Clark, S.G.; Ron, D. IRE1 Couples Endoplasmic Reticulum Load to Secretory Capacity by Processing the XBP-1 mRNA. Nature 2002, 415, 92–96. [Google Scholar] [CrossRef]
- Hossain, M.M.; Sivaram, G.; Richardson, J.R. Regional Susceptibility to ER Stress and Protection by Salubrinal Following a Single Exposure to Deltamethrin. Toxicol. Sci. 2019, 167, 249–257. [Google Scholar] [CrossRef]
- Lindholm, D.; Wootz, H.; Korhonen, L. ER Stress and Neurodegenerative Diseases. Cell Death Differ. 2006, 13, 385–392. [Google Scholar] [CrossRef]
- Neubrand, V.E.; Sepúlveda, M.R. New Insights into the Role of the Endoplasmic Reticulum in Microglia. Neural Regen. Res. 2024, 19, 1397. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, S.; Saido, T.C. Critical Review: Involvement of Endoplasmic Reticulum Stress in the Aetiology of Alzheimer’s Disease. Open Biol. 2018, 8, 180024. [Google Scholar] [CrossRef] [PubMed]
- Omura, T.; Kaneko, M.; Okuma, Y.; Matsubara, K.; Nomura, Y. Endoplasmic Reticulum Stress and Parkinson’s Disease: The Role of HRD1 in Averting Apoptosis in Neurodegenerative Disease. Oxid. Med. Cell Longev. 2013, 2013, 239854. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.-M.; Kwon, Y.; Lee, S.; Kim, H.-J. Potential Roles of the Endoplasmic Reticulum Stress Pathway in Amyotrophic Lateral Sclerosis. Front. Aging Neurosci. 2023, 15, 1047897. [Google Scholar] [CrossRef]
- Maity, S.; Komal, P.; Kumar, V.; Saxena, A.; Tungekar, A.; Chandrasekar, V. Impact of ER Stress and ER-Mitochondrial Crosstalk in Huntington’s Disease. Int. J. Mol. Sci. 2022, 23, 780. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wen, W.; Luo, J. Targeting Endoplasmic Reticulum Stress as an Effective Treatment for Alcoholic Pancreatitis. Biomedicines 2022, 10, 108. [Google Scholar] [CrossRef]
- James, A.W.; Gowsalya, R.; Nachiappan, V. Dolichyl Pyrophosphate Phosphatase-Mediated N-Glycosylation Defect Dysregulates Lipid Homeostasis in Saccharomyces Cerevisiae. Biochim. Biophys. Acta 2016, 1861, 1705–1718. [Google Scholar] [CrossRef]
- William James, A.; Ravi, C.; Srinivasan, M.; Nachiappan, V. Crosstalk between Protein N-Glycosylation and Lipid Metabolism in Saccharomyces Cerevisiae. Sci. Rep. 2019, 9, 14485. [Google Scholar] [CrossRef]
- 2023 Alzheimer’s Disease Facts and Figures. Alzheimers Dement. 2023, 19, 1598–1695. [CrossRef]
- Leuzy, A.; Mattsson-Carlgren, N.; Palmqvist, S.; Janelidze, S.; Dage, J.L.; Hansson, O. Blood-Based Biomarkers for Alzheimer’s Disease. EMBO Mol. Med. 2022, 14, e14408. [Google Scholar] [CrossRef]
- Hetz, C.; Mollereau, B. Disturbance of Endoplasmic Reticulum Proteostasis in Neurodegenerative Diseases. Nat. Rev. Neurosci. 2014, 15, 233–249. [Google Scholar] [CrossRef] [PubMed]
- Hoozemans, J.J.M.; van Haastert, E.S.; Nijholt, D.A.T.; Rozemuller, A.J.M.; Eikelenboom, P.; Scheper, W. The Unfolded Protein Response Is Activated in Pretangle Neurons in Alzheimer’s Disease Hippocampus. Am. J. Pathol. 2009, 174, 1241–1251. [Google Scholar] [CrossRef]
- Dsouza, V.L.; Shivakumar, A.B.; Kulal, N.; Gangadharan, G.; Kumar, D.; Kabekkodu, S.P. Phytochemical Based Modulation of Endoplasmic Reticulum Stress in Alzheimer’s Disease. Curr. Top. Med. Chem. 2022, 22, 1880–1896. [Google Scholar] [CrossRef]
- Yuan, S.; She, D.; Jiang, S.; Deng, N.; Peng, J.; Ma, L. Endoplasmic Reticulum Stress and Therapeutic Strategies in Metabolic, Neurodegenerative Diseases and Cancer. Mol. Med. 2024, 30, 40. [Google Scholar] [CrossRef]
- Duran-Aniotz, C.; Poblete, N.; Rivera-Krstulovic, C.; Ardiles, Á.O.; Díaz-Hung, M.L.; Tamburini, G.; Sabusap, C.M.P.; Gerakis, Y.; Cabral-Miranda, F.; Diaz, J.; et al. The Unfolded Protein Response Transcription Factor XBP1s Ameliorates Alzheimer’s Disease by Improving Synaptic Function and Proteostasis. Mol. Ther. 2023, 31, 2240–2256. [Google Scholar] [CrossRef]
- Parra Bravo, C.; Naguib, S.A.; Gan, L. Cellular and Pathological Functions of Tau. Nat. Rev. Mol. Cell Biol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Bocai, N.I.; Marcora, M.S.; Belfiori-Carrasco, L.F.; Morelli, L.; Castaño, E.M. Endoplasmic Reticulum Stress in Tauopathies: Contrasting Human Brain Pathology with Cellular and Animal Models. J. Alzheimers Dis. 2019, 68, 439–458. [Google Scholar] [CrossRef] [PubMed]
- Vivacqua, G.; Mancinelli, R.; Leone, S.; Vaccaro, R.; Garro, L.; Carotti, S.; Ceci, L.; Onori, P.; Pannarale, L.; Franchitto, A.; et al. Endoplasmic Reticulum Stress: A Possible Connection between Intestinal Inflammation and Neurodegenerative Disorders. Neurogastroenterol. Motil. 2024, 36, e14780. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, W.; Zhao, M.; Ma, L.; Jiang, X.; Pei, H.; Cao, Y.; Li, H. Interaction between Aβ and Tau in the Pathogenesis of Alzheimer’s Disease. Int. J. Biol. Sci. 2021, 17, 2181–2192. [Google Scholar] [CrossRef]
- Haeri, M.; Knox, B.E. Endoplasmic Reticulum Stress and Unfolded Protein Response Pathways: Potential for Treating Age-Related Retinal Degeneration. J. Ophthalmic Vis. Res. 2012, 7, 45–59. [Google Scholar]
- Lei, Y.; Yu, H.; Ding, S.; Liu, H.; Liu, C.; Fu, R. Molecular Mechanism of ATF6 in Unfolded Protein Response and Its Role in Disease. Heliyon 2024, 10, e25937. [Google Scholar] [CrossRef] [PubMed]
- Credle, J.J.; Forcelli, P.A.; Delannoy, M.; Oaks, A.W.; Permaul, E.; Berry, D.L.; Duka, V.; Wills, J.; Sidhu, A. Alpha-synuclein-mediated inhibition of ATF6 processing into COPII vesicles disrupts UPR signaling in Parkinson’s disease. Neurobiol. Dis. 2015, 76, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Ghemrawi, R.; Khair, M. Endoplasmic Reticulum Stress and Unfolded Protein Response in Neurodegenerative Diseases. Int. J. Mol. Sci. 2020, 21, 6127. [Google Scholar] [CrossRef]
- Matsuoka, M.; Komoike, Y. Experimental Evidence Shows Salubrinal, an eIF2α Dephosphorylation Inhibitor, Reduces Xenotoxicant-Induced Cellular Damage. Int. J. Mol. Sci. 2015, 16, 16275–16287. [Google Scholar] [CrossRef]
- Pópulo, H.; Lopes, J.M.; Soares, P. The mTOR Signalling Pathway in Human Cancer. Int. J. Mol. Sci. 2012, 13, 1886–1918. [Google Scholar] [CrossRef] [PubMed]
- Erlich, S.; Alexandrovich, A.; Shohami, E.; Pinkas-Kramarski, R. Rapamycin Is a Neuroprotective Treatment for Traumatic Brain Injury. Neurobiol. Dis. 2007, 26, 86–93. [Google Scholar] [CrossRef]
- Jung, T.W.; Choi, K.M. Pharmacological Modulators of Endoplasmic Reticulum Stress in Metabolic Diseases. Int. J. Mol. Sci. 2016, 17, 192. [Google Scholar] [CrossRef]
- Engin, F.; Hotamisligil, G.S. Restoring Endoplasmic Reticulum Function by Chemical Chaperones: An Emerging Therapeutic Approach for Metabolic Diseases. Diabetes Obes. Metab. 2010, 12 (Suppl. S2), 108–115. [Google Scholar] [CrossRef]
- Zhang, N.; Lu, Y.; Shen, X.; Bao, Y.; Cheng, J.; Chen, L.; Li, B.; Zhang, Q. Fenofibrate Treatment Attenuated Chronic Endoplasmic Reticulum Stress in the Liver of Nonalcoholic Fatty Liver Disease Mice. Pharmacology 2015, 95, 173–180. [Google Scholar] [CrossRef]
- Qi, X.; Hosoi, T.; Okuma, Y.; Kaneko, M.; Nomura, Y. Sodium 4-Phenylbutyrate Protects against Cerebral Ischemic Injury. Mol. Pharmacol. 2004, 66, 899–908. [Google Scholar] [CrossRef]
- Song, H.; Liu, J.; Wang, L.; Hu, X.; Li, J.; Zhu, L.; Pang, R.; Zhang, A. Tauroursodeoxycholic Acid: A Bile Acid That May Be Used for the Prevention and Treatment of Alzheimer’s Disease. Front. Neurosci. 2024, 18, 1348844. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Zhang, J.; Hong, L.; Huang, W.; Dai, X.; Ye, Q.; Chen, X. Metformin Ameliorates Stress-Induced Depression-like Behaviors via Enhancing the Expression of BDNF by Activating AMPK/CREB-Mediated Histone Acetylation. J. Affect. Disord. 2020, 260, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.R.; Besson, V.C.; Palmier, B.; Garcia, Y.; Plotkine, M.; Marchand-Leroux, C. Neurological Recovery-Promoting, Anti-Inflammatory, and Anti-Oxidative Effects Afforded by Fenofibrate, a PPAR Alpha Agonist, in Traumatic Brain Injury. J. Neurotrauma 2007, 24, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- Daniele, G.; Iozzo, P.; Molina-Carrion, M.; Lancaster, J.; Ciociaro, D.; Cersosimo, E.; Tripathy, D.; Triplitt, C.; Fox, P.; Musi, N.; et al. Exenatide Regulates Cerebral Glucose Metabolism in Brain Areas Associated With Glucose Homeostasis and Reward System. Diabetes 2015, 64, 3406–3412. [Google Scholar] [CrossRef]
- Ouk, T.; Gautier, S.; Pétrault, M.; Montaigne, D.; Maréchal, X.; Masse, I.; Devedjian, J.-C.; Deplanque, D.; Bastide, M.; Nevière, R.; et al. Effects of the PPAR-α Agonist Fenofibrate on Acute and Short-Term Consequences of Brain Ischemia. J. Cereb. Blood Flow. Metab. 2014, 34, 542–551. [Google Scholar] [CrossRef]
- Wu, T.; Dong, Z.; Geng, J.; Sun, Y.; Liu, G.; Kang, W.; Zhang, Y.; Ge, Z. Valsartan Protects against ER Stress-Induced Myocardial Apoptosis via CHOP/Puma Signaling Pathway in Streptozotocin-Induced Diabetic Rats. Eur. J. Pharm. Sci. 2011, 42, 496–502. [Google Scholar] [CrossRef]
- Wakai, T.; Yoshioka, H.; Yagi, T.; Kato, T.; Kinouchi, H. Effects of Valsartan on Neuroprotection and Neurogenesis after Ischemia. Neuroreport 2011, 22, 385–390. [Google Scholar] [CrossRef]
- Ping, G.; Qian, W.; Song, G.; Zhaochun, S. Valsartan Reverses Depressive/Anxiety-like Behavior and Induces Hippocampal Neurogenesis and Expression of BDNF Protein in Unpredictable Chronic Mild Stress Mice. Pharmacol. Biochem. Behav. 2014, 124, 5–12. [Google Scholar] [CrossRef]
- Ali, M.; Tabassum, H.; Alam, M.M.; Alothaim, A.S.; Al-Malki, E.S.; Jamal, A.; Parvez, S. Valsartan: An Angiotensin Receptor Blocker Modulates BDNF Expression and Provides Neuroprotection Against Cerebral Ischemic Reperfusion Injury. Mol. Neurobiol. 2024. [Google Scholar] [CrossRef]
- Ozcan, L.; Tabas, I. Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu. Rev. Med. 2012, 63, 317–328. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Walter, P.; Ron, D. The unfolded protein response: From stress pathway to homeostatic regulation. Science 2011, 334, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Hetz, C.; Zhang, K.; Kaufman, R.J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol. 2020, 21, 421–438. [Google Scholar] [CrossRef] [PubMed]
- Radosavljevic, M.; Svob Strac, D.; Jancic, J.; Samardzic, J. The Role of Pharmacogenetics in Personalizing the Antidepressant and Anxiolytic Therapy. Genes 2023, 14, 1095. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Drug | Drug Class | Clinical Uses (FDA Approved) | Neurological Implication | Mechanism | Ref. |
---|---|---|---|---|---|
Rapamycin | mTOR Inhibitor | Cancer Diabetes Kidney Rejection | TBI Protection Anti-Inflammatory | Autophagy Activation | [36,37] |
4-PBA and TUDCA | Chemical Chaperones | Urea cycle disorders Biliary Cholangitis | Ischemic Protectant Alzheimer’s Disease | Mitigates apoptotic promoters | [40,41] |
Metformin | AMPK Activator | Diabetes | Neuroprotectant | BDNF Expression | [42] |
Exenatide | GLP-1 Agonist | Diabetes | Glucose Homeostasis (Human Study) | ATF-4 Upregulation | [44] |
Fenofibrate | PPAR Agonist | Dyslipidemia | Multiple Sclerosis ALS Ischemic Memory loss TBI | NF-kβ Suppression Anti-Inflammatory | [45,46,47] |
Valsartan | ARBs | High Blood Pressure Heart Failure | Neuroprotectant | BDNF Expression | [37,38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, S.-A.-M.; James, A.W.; Fazili, F.M.; Tarabishi, S.; Sheikh, N.M.; Shah, Z.A. Endoplasmic Reticulum Stress in Neurodegenerative Diseases. J. Dement. Alzheimer's Dis. 2024, 1, 87-97. https://doi.org/10.3390/jdad1020006
Hasan S-A-M, James AW, Fazili FM, Tarabishi S, Sheikh NM, Shah ZA. Endoplasmic Reticulum Stress in Neurodegenerative Diseases. Journal of Dementia and Alzheimer's Disease. 2024; 1(2):87-97. https://doi.org/10.3390/jdad1020006
Chicago/Turabian StyleHasan, Syed-Abdul-Moiz, Antonisamy William James, Farzeen M. Fazili, Samiha Tarabishi, Namir M. Sheikh, and Zahoor A. Shah. 2024. "Endoplasmic Reticulum Stress in Neurodegenerative Diseases" Journal of Dementia and Alzheimer's Disease 1, no. 2: 87-97. https://doi.org/10.3390/jdad1020006
APA StyleHasan, S. -A. -M., James, A. W., Fazili, F. M., Tarabishi, S., Sheikh, N. M., & Shah, Z. A. (2024). Endoplasmic Reticulum Stress in Neurodegenerative Diseases. Journal of Dementia and Alzheimer's Disease, 1(2), 87-97. https://doi.org/10.3390/jdad1020006