Optimization of Sample Preparation for Detection of 10 Phthalates in Non-Alcoholic Beverages in Northern Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Instrumentation and Chromatographic Conditions
2.3. Sample Preparation Procedure
2.4. Experimental Design
2.5. Figure of Merit
3. Results and Discussion
3.1. Selecting Extraction Solvent and Optimizing the Method of Solvent Evaporation
3.1.1. Solvent Evaporation Method
3.1.2. Selecting the Extraction Solvent
3.2. D-Optimal
3.3. Method Performance
3.4. Levels of Phthalates in Samples
3.5. Exposure to Phthalates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Green, R.; Hauser, R.; Calafat, A.M.; Weuve, J.; Schettler, T.; Ringer, S.; Huttner, K.; Hu, H. Use of di (2-ethylhexyl) phthalate-containing medical products and urinary levels of mono (2-ethylhexyl) phthalate in neonatal intensive care unit infants. EHP 2005, 113, 1222–1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deep, T. Global Trends in PVC Resin Applications and Additives Usage; Townsend Solutions: Houston, TX, USA, 2018. [Google Scholar]
- Heudorf, U.; Mersch-Sundermann, V.; Angerer, J. Phthalates: Toxicology and exposure. Int. J. Hyg. Environ. Health 2007, 210, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Koch, H.M.; Calafat, A.M. Human body burdens of chemicals used in plastic manufacture. Philo. Trans. R Soc. Lond. B Biol. Sci. 2009, 364, 2063–2078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amiridou, D.; Voutsa, D. Alkylphenols and phthalates in bottled waters. J. Hazard. Mater. 2011, 185, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Sakhi, A.K.; Lillegaard, I.T.; Voorspoels, S.; Carlsen, M.H.; Loken, E.B.; Brantsaeter, A.L.; Haugen, M.; Meltzer, H.M.; Thomsen, C. Concentrations of phthalates and bisphenol A in Norwegian foods and beverages and estimated dietary exposure in adults. Environ. Int. 2014, 73, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Alomirah, H.; Cho, H.S.; Minh, T.B.; Mohd, M.A.; Nakata, H.; Kannan, K. Occurrence of phthalate metabolites in human urine from several Asian countries. Environ. Sci. Technol. 2011, 45, 3138–3144. [Google Scholar] [CrossRef] [PubMed]
- Meeker, J.D. Exposure to environmental endocrine disruptors and child development. Arch. Pediatr. Adolesc. Med. 2012, 166, E1–E7. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hauser, R.; Goldman, R.H. Taiwan food scandal: The illegal use of phthalates as a clouding agent and their contribution to maternal exposure. Food Chem. Toxicol. 2013, 58, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Foster, P.M. Disruption of reproductive development in male rat offspring following in utero exposure to phthalate esters. Int. J. Androl. 2006, 29, 140–147; discussion 181–185. [Google Scholar] [CrossRef] [PubMed]
- Gray, L.E., Jr.; Barlow, N.J.; Howdeshell, K.L.; Ostby, J.S.; Furr, J.R.; Gray, C.L. Transgenerational effects of Di (2-ethylhexyl) phthalate in the male CRL:CD(SD) rat: Added value of assessing multiple offspring per litter. Toxicol. Sci. 2009, 110, 411–425. [Google Scholar] [CrossRef] [PubMed]
- van Wezel, A.P.; van Vlaardingen, P.; Posthumus, R.; Crommentuijn, G.H.; Sijm, D.T.H.M. Environmental Risk Limits for Two Phthalates, with Special Emphasis on Endocrine Disruptive Properties. Ecotoxicol. Environ. Safe 2000, 46, 305–321. [Google Scholar] [CrossRef] [PubMed]
- Wormuth, M.; Scheringer, M.; Vollenweider, M.; Hungerbuhler, K. What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Anal. 2006, 26, 803–824. [Google Scholar] [CrossRef] [PubMed]
- Doull, J.; Cattley, R.; Elcombe, C.; Lake, B.G.; Swenberg, J.; Wilkinson, C.; Williams, G.; van Gemert, M. A cancer risk assessment of di (2-ethylhexyl)phthalate: Application of the new US EPA Risk Assessment Guidelines. Regul. Toxicol. Pharmacol. 1999, 29, 327–357. [Google Scholar] [CrossRef] [PubMed]
- ECHA. ANNEX XVII TO REACH 2007. Available online: https://echa.europa.eu/documents/10162/13645/guideline_interpretation_concept_mouth_en.pdf/6f0869f4-1ff1-45ad-ac13-f623d9717718 (accessed on 10 October 2018).
- Russo, M.V.; Avino, P.; Perugini, L.; Notardonato, I. Extraction and GC-MS analysis of phthalate esters in food matrices: A review. RSC Adv. 2015, 5, 37023–37043. [Google Scholar] [CrossRef]
- Otero, P.; Saha, S.K.; Moane, S.; Barron, J.; Clancy, G.; Murray, P. Improved method for rapid detection of phthalates in bottled water by gas chromatography-mass spectrometry. J. Chromatogr. B 2015, 997, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Jara, S.; Lysebo, C.; Greibrokk, T.; Lundanes, E. Determination of phthalates in water samples using polystyrene solid-phase extraction and liquid chromatography quantification. Anal. Chim. Acta 2000, 407, 165–171. [Google Scholar] [CrossRef]
- Prapatpong, P.; Kanchanamayoon, W. Determination of Phthalate Esters in Drinking Water using Solid-phase Extraction and Gas Chromatography. J. Appl. Sci. 2010, 10, 1987–1990. [Google Scholar] [CrossRef]
- Russo, M.V.; Notardonato, I.; Avino, P.; Cinelli, G. Fast determination of phthalate ester residues in soft drinks and light alcoholic beverages by ultrasound/vortex assisted dispersive liquid–liquid microextraction followed by gas chromatography-ion trap mass spectrometry. RSC Adv. 2014, 4, 59655–59663. [Google Scholar] [CrossRef]
- Ustun, I.; Sungur, S.; Okur, R.; Sumbul, A.T.; Oktar, S.; Yilmaz, N.; Gokce, C. Determination of Phthalates Migrating from Plastic Containers into Beverages. Food Anal. Methods 2015, 8, 222–228. [Google Scholar] [CrossRef]
- Bošnir, J.; Puntarić, D.; Galić, A.; Škes, I.; Dijanić, T.; Klarić, M.; Grgić, M.; Čurković, M.; Šmit, Z. Migration of phthalates from plastic containers into soft drinks and mineral water. Food Technol. Biotechnol. 2007, 45, 91–95. [Google Scholar]
- Truong, N.; Karakilic, V.; Soulsbury, K. Detection of DEHP in Beverages Sold in Canada Using Gas Chromatography-Mass Spectrometry. 2016. Available online: https://pdfs.semanticscholar.org/ad43/3e188a091783fa311fd0d8e778d3aaa36b0d.pdf (accessed on 10 October 2018).
- Biscardi, D.; Monarca, S.; De Fusco, R.; Senatore, F.; Poli, P.; Buschini, A.; Rossi, C.; Zani, C. Evaluation of the migration of mutagens/carcinogens from PET bottles into mineral water by Tradescantia/micronuclei test, Comet assay on leukocytes and GC/MS. Sci. Total Environ. 2003, 302, 101–108. [Google Scholar] [CrossRef]
- Zaki, G.; Shoeib, T. Concentrations of several phthalates contaminants in Egyptian bottled water: Effects of storage conditions and estimate of human exposure. Sci. Total. Environ. 2018, 618, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Sireli, U.T.; Filazi, A.; Yurdakok-Dikmen, B.; Iplikcioglu-Cil, G.; Kuzukiran, O.; Orhan, C.E. Determination of Phthalate Residues in Different Types of Yogurt by Gas Chromatography-Mass Spectrometry and Estimation of Yogurt-Related Intake of Phthalates. Food Anal. Methods 2017, 10, 3052–3062. [Google Scholar] [CrossRef]
- Wu, P.-G.; Pan, X.-D.; Ma, B.-J.; Wang, L.-Y.; Zhang, J. Determination of phthalate esters in non-alcoholic beverages by GC–MS and optimization of the extraction conditions. Eur. Food Res. Technol. 2014, 238, 607–612. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Z.; Liu, L.; Li, Y.; Ren, N.; Kannan, K. Occurrence and profiles of phthalates in foodstuffs from China and their implications for human exposure. J. Agric. Food Chem. 2012, 60, 6913–6919. [Google Scholar] [CrossRef] [PubMed]
- Tomita, I.; Nakamura, Y.; Yagi, Y. Phthalic acid esters in various foodstuffs and biological materials. Ecotoxicol. Environ. Safe 1977, 1, 275–287. [Google Scholar] [CrossRef]
- Bigsby, R.; Chapin, R.E.; Daston, G.P.; Davis, B.J.; Gorski, J.; Gray, L.E.; Howdeshell, K.L.; Zoeller, R.T.; vom Saal, F.S. Evaluating the effects of endocrine disruptors on endocrine function during development. Environ. Health Perspect. 1999, 107 (Suppl. 4), 613–618. [Google Scholar] [CrossRef]
- Pei, X.Q.; Song, M.; Guo, M.; Mo, F.F.; Shen, X.Y. Concentration and risk assessment of phthalates present in indoor air from newly decorated apartments. Atmos. Environ. 2013, 68, 17–23. [Google Scholar] [CrossRef]
- Song, M.; Chi, C.; Guo, M.; Wang, X.; Cheng, L.; Shen, X. Pollution levels and characteristics of phthalate esters in indoor air of offices. J. Environ. Sci. 2015, 28, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Bu, Z.; Zhang, Y.; Mmereki, D.; Yu, W.; Li, B. Indoor phthalate concentration in residential apartments in Chongqing, China: Implications for preschool children’s exposure and risk assessment. Atmos. Environ. 2016, 127, 34–45. [Google Scholar] [CrossRef]
- Fierens, T.; Vanermen, G.; Van Holderbeke, M.; De Henauw, S.; Sioen, I. Effect of cooking at home on the levels of eight phthalates in foods. Food Chem. Toxicol. 2012, 50, 4428–4435. [Google Scholar] [CrossRef] [PubMed]
- Kanchanamayoon, W.; Prapatpong, P.; Chumwangwapee, S.; Chaithongrat, S. Analysis of phthalate esters contamination in drinking water samples. Afr. J. Biotechnol. 2012, 11, 16263–16269. [Google Scholar] [CrossRef]
- Ahmed, M.B.M.; Abdel-Rahman, G.N.E.; Zaghloul, A.H.; Naguib, M.M.; Saad, M.M.E.D. Phthalates’ releasing pattern in low pH beverages of fermented milk, fruit juice, and soft drink packaged in plastic bottles. Biosci. Res. 2017, 14, 513–524. [Google Scholar]
- Koniecki, D.; Wang, R.; Moody, R.P.; Zhu, J. Phthalates in cosmetic and personal care products: Concentrations and possible dermal exposure. Environ. Res. 2011, 111, 329–336. [Google Scholar] [CrossRef] [PubMed]
Coded | Independent Variable | Level Experiment | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
X1 | Vsolvent/Vsample ratio | 5.0 | 6.0 | 7.0 |
X2 | Number of extractions | 1 | 2 | 3 |
X3 | NaCl (M) | 0.1 | 0.2 | 0.3 |
X4 | Time of extraction | 5 | 10 | 15 |
Recovery | DF | SS | MS (Variance) | F | P | SD |
---|---|---|---|---|---|---|
Total corrected | 28 | 1199.89 | 42.8532 | 6.54624 | ||
Regression | 7 | 1118.59 | 159.798 | 41.2734 | 0.000 | 12.6411 |
Residual | 21 | 81.3055 | 3.87169 | 1.96766 | ||
Lack of Fit | 19 | 79.1989 | 4.16836 | 3.9573 | 0.221 | 2.04166 |
(Model error) | ||||||
Pure error | 2 | 2.10667 | 1.05333 | 1.02632 | ||
(Replicate error) | ||||||
N = 29 | Q2 = | 0.857 | Cond. no. = | 1.752 | ||
DF = 21 | R2 = | 0.932 | RSD = | 1.968 | ||
Comp. = 2 | R2adj. = | 0.910 |
Vsolvent/Vsample Ratio | Number of Extractions | NaCl Concentration (M) | Solvent | Drying Method | Time of Extraction (Min) | % Recovery Efficiency | |
---|---|---|---|---|---|---|---|
Predicted | Experiment | ||||||
6.5 | 2 | 0.42 | n-hexan | Rotovap + nitrogen flow | 14 | 90.7 | 91.1 |
Compound | Linear Dynamic Range (µg/L) | r2 | Maximum Individual Residual (%) | Retention Times (min) | LOD (ng/L) | LOQ (ng/L) |
---|---|---|---|---|---|---|
DMP | 0.1–200 | 0.997 | 10.3 | 6.58 | 1.0 | 3.0 |
DEP | 0.1–200 | 0.996 | 11.2 | 8.16 | 1.0 | 3.0 |
DPP | 0.1–200 | 0.998 | 9.8 | 10.12 | 1.0 | 3.0 |
DiBP | 0.1–200 | 0.999 | 11.5 | 12.00 | 0.5 | 1.5 |
BzDP | 0.1–200 | 0.997 | 7.3 | 15.52 | 1.0 | 3.0 |
DnHP | 0.1–200 | 0.997 | 12.9 | 15.42 | 1.5 | 4.5 |
DEHP | 0.1–200 | 0.999 | 9.1 | 17.02 | 0.5 | 1.5 |
DnOP | 0.1–200 | 0.999 | 8.2 | 18.42 | 1.0 | 3.0 |
DCHP | 0.1–200 | 0.996 | 10.2 | 16.90 | 1.0 | 3.0 |
DBP | 0.1–200 | 0.999 | 11.1 | 12.33 | 1.0 | 3.0 |
Compound | RSDr (n = 5) | RSDwr (n = 5 × 4 Days) | ||||
---|---|---|---|---|---|---|
1 µg/L | 10 µg/L | 100 µg/L | 1 µg/L | 10 µg/L | 100 µg/L | |
DMP | 3.6 | 1.0 | 3.2 | 9.1 | 4.1 | 5.1 |
DEP | 6.3 | 4.3 | 3.8 | 6.7 | 4.7 | 3.4 |
DPP | 7.5 | 5.4 | 4.3 | 8.5 | 3.3 | 3.8 |
DiBP | 2.6 | 1.7 | 5.7 | 14.3 | 3.3 | 3.3 |
BzDP | 1.6 | 2.8 | 3.6 | 8.6 | 2.7 | 3.3 |
DnHP | 5.6 | 6.0 | 3.0 | 12.2 | 2.8 | 2.7 |
DEHP | 2.4 | 3.7 | 4.4 | 10.2 | 7.0 | 2.8 |
DnOP | 3.8 | 5.7 | 8.2 | 11.2 | 6.7 | 4.1 |
DCHP | 5.2 | 7.4 | 9.1 | 12.3 | 8.6 | 4.7 |
DBP | 1.9 | 2.3 | 8.8 | 9.9 | 6.7 | 3.3 |
Spiking Level Compound | 1 | 10 | 100 | |||
---|---|---|---|---|---|---|
Gas (M/R) | Fat (M/R) | Gas (M/R) | Fat (M/R) | Gas (M/R) | Fat (M/R) | |
DMP | 109.2/7.3 | 103.2/3.4 | 94.9/4.3 | 100.6/9.1 | 99.2/3.8 | 103.3/3.8 |
DEP | 97.2/3.8 | 92.6/6.3 | 98.3/1.0 | 98.9/8.8 | 108.3/1.0 | 109.3/5.7 |
DPP | 102.2/4.2 | 101.2/7.5 | 91.5/1.9 | 101.4/2.3 | 94.0/1.7 | 103.1/5.6 |
DiBP | 107.1/9.1 | 102.8/2.6 | 92.3/5.2 | 105.2/7.4 | 102.2/4.3 | 114.7/10.1 |
BzDP | 99.6/6.9 | 99.3/1.0 | 113.3/3.8 | 101.3/5.7 | 108.5/1.9 | 97.5/1.6 |
DnHP | 105.6/3.6 | 100.5/1.9 | 111.1/2.4 | 96.5/3.7 | 100.2/2.8 | 108.9/8.8 |
DEHP | 114.7/10.1 | 105.1/2.4 | 101.1/5.6 | 99.7/6.0 | 101.1/5.7 | 103.2/7.5 |
DnOP | 110.5/8.6 | 102.5/3.7 | 99.5/1.6 | 1002/2.8 | 94.3/5.2 | 118.1/12.3 |
DCHP | 117.6/6.9 | 103.0/1.7 | 102.8/2.6 | 103.0/1.7 | 107.7/6.0 | 96.6/6.3 |
DBP | 118.1/12.3 | 109.2/2.8 | 103.2/7.5 | 96.1/5.4 | 100.6/3.6 | 105.4/8.2 |
Non-Alcoholic Beverages | N | DMP | DEP | DBP | BzBP | DEHP | DnHP | DPP | DiBP | DnOP | DCHP |
---|---|---|---|---|---|---|---|---|---|---|---|
Mineral water | 14 | 14 (100) | 14 (100) | 14 (100) | 14 (100) | 14 (100) | 0 | 14 (100) | 14 (100) | 0 | 14 (100) |
Carbonated drinks | 17 | 14 (82) | 17 (100) | 17 (100) | 16 (94) | 17 (100) | 0 | 17 (100) | 17 (100) | 17 (100) | 17 (100) |
Functional drinks | 29 | 19 (66) | 26 (90) | 29 (100) | 28 (97) | 29 (100) | 0 | 25 (86) | 29 (100) | 0 | 29 (100) |
Juice drinks | 32 | 31 (97) | 32 (100) | 32 (100) | 32 (100) | 32 (100) | 0 | 32 (100) | 0 | 0 | 0 |
Tea drinks | 33 | 0 | 33 (100) | 33 (100) | 33 (100) | 33 (100) | 0 | 0 | 0 | 0 | 0 |
Fermented milks | 23 | 23 (100) | 23 (100) | 23 (100) | 23 (100) | 23 (100) | 0 | 0 | 0 | 0 | 0 |
Total | 148 | 101 (68) | 145 (98) | 148 (100) | 146 (99) | 148 (100) | 0 | 88 (59) | 60 (41) | 49 (33) | 60 (41) |
Non-Alcoholic Beverages | Mineral Water | Carbonated Drinks | Functional Drinks | Juice Drinks | Tea Drinks | Fermented Milk | |
---|---|---|---|---|---|---|---|
DMP | Range | 0.02–0.05 | 1.1–5.5 | 0.04–0.08 | 0.1–5.6 | Nd | 12.3–131.9 |
Mean | 0.03 | 3.3 | 0.06 | 3.3 | 68 | ||
Median | 0.04 | 3.4 | 0.05 | 3.2 | 65.7 | ||
DEP | Range | 0.05–0.57 | 0.38–13.0 | 1.6–17.9 | 3.0–33.4 | 0.9–21.1 | 0.6–10.2 |
Mean | 0.3 | 4.8 | 10 | 17.9 | 11.2 | 5 | |
Median | 0.29 | 3.4 | 11 | 17.3 | 10.3 | 3.8 | |
DBP | Range | 0.09–0.95 | 0.18–43.5 | 0.16–64.7 | 1.6–73.4 | 6.0–4.3 | 0.81–1.35 |
Mean | 0.61 | 19.8 | 30.3 | 20.6 | 34.9 | 1.1 | |
Median | 0.59 | 19 | 26.3 | 17.8 | 34.7 | 1.1 | |
BzBP | Range | 0.30–0.95 | 0.31–3.4 | 0.41–21.5 | 0.4–6.4 | 0.8–21.9 | 1.1–8.4 |
Mean | 0.61 | 1.4 | 11.8 | 3.1 | 11.5 | 4.2 | |
Median | 0.59 | 1.2 | 11.7 | 3 | 11.3 | 3.7 | |
DEHP | Range | 0.46–1.8 | 0.09–71.0 | 0.72–96.1 | 27.7–466.6 | 15.4–87.8 | 8.3–151.2 |
Mean | 1.2 | 28.6 | 35.9 | 230.8 | 63.4 | 71.2 | |
Median | 1.2 | 20.5 | 21 | 222.7 | 72.9 | 67.6 | |
DnHP | Range | Nd | Nd | Nd | Nd | Nd | Nd |
Mean | |||||||
Median | |||||||
DPP | Range | 0.13–0.44 | 0.05–0.52 | Nd–0.06 | 0.03–0.21 | Nd | Nd |
Mean | 0.28 | 0.3 | 0.01 | 0.11 | |||
Median | 0.28 | 0.33 | 0.01 | 0.1 | |||
DiBP | Range | 0.14–0.41 | 0.04–1.9 | Nd–0.14 | Nd | Nd | Nd |
Mean | 0.22 | 0.76 | 0.07 | ||||
Median | 0.15 | 0.83 | 0.06 | ||||
DnOP | Range | Nd | 0.98–200.4 | Nd | 136–197 | Nd | Nd |
Mean | 69.2 | 169.1 | |||||
Median | 56.9 | 169 | |||||
DCHP | Range | 0.13–0.60 | 0.02–0.09 | Nd–0.15 | Nd | Nd | Nd |
Mean | 0.26 | 0.07 | 0.02 | ||||
Median | 0.16 | 0.07 | 0.01 |
Compound | EDI (µg/kg × Day) | TDI (µg/kg × Day) |
---|---|---|
DEP | 1.50 × 10−4–0.1002 | 0.800 (U.S. EPA) |
DBP | 2.70 × 10−4–0.2202 | 0.100 (U.S. EPA) |
BzBP | 9.00 × 10−4–0.0645 | 0.800 (U.S. EPA) |
DEHP | 2.70 × 10−4–1.3998 | 0.020 (U.S. EPA) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran-Lam, T.-T.; Dao, Y.H.; Nguyen, D.T.; Ma, H.K.; Pham, T.Q.; Le, G.T. Optimization of Sample Preparation for Detection of 10 Phthalates in Non-Alcoholic Beverages in Northern Vietnam. Toxics 2018, 6, 69. https://doi.org/10.3390/toxics6040069
Tran-Lam T-T, Dao YH, Nguyen DT, Ma HK, Pham TQ, Le GT. Optimization of Sample Preparation for Detection of 10 Phthalates in Non-Alcoholic Beverages in Northern Vietnam. Toxics. 2018; 6(4):69. https://doi.org/10.3390/toxics6040069
Chicago/Turabian StyleTran-Lam, Thanh-Thien, Yen Hai Dao, Duong Thanh Nguyen, Hoi Kim Ma, Trung Quoc Pham, and Giang Truong Le. 2018. "Optimization of Sample Preparation for Detection of 10 Phthalates in Non-Alcoholic Beverages in Northern Vietnam" Toxics 6, no. 4: 69. https://doi.org/10.3390/toxics6040069
APA StyleTran-Lam, T.-T., Dao, Y. H., Nguyen, D. T., Ma, H. K., Pham, T. Q., & Le, G. T. (2018). Optimization of Sample Preparation for Detection of 10 Phthalates in Non-Alcoholic Beverages in Northern Vietnam. Toxics, 6(4), 69. https://doi.org/10.3390/toxics6040069