Physicochemical, Functional, and Nutraceutical Properties of Eggplant Flours Obtained by Different Drying Methods
Abstract
:1. Introduction
2. Results and Discussion
2.1. Eggplant Flour Samples
2.2. Proximal Chemical Analysis
2.3. Physicochemical Parameters
2.4. Functional Properties
2.5. Total Phenols Content (TPC)
2.6. Total Flavonoids Content (TFC)
2.7. Total Catechins Content (TCC)
2.8. Total Anthocyanins
2.9. Antioxidant Capacity
3. Materials and Methods
3.1. Flour Preparation
3.2. Proximate Composition
3.3. Physicochemical Properties
3.4. Functional Properties
3.5. Preparation of the Eggplant Flour Extracts (EFE)
3.6. Total Phenols Content (TPC)
3.7. Total Flavonoids Content (TFC)
3.8. Total Catechins Content (TCC)
3.9. Total Anthocyanins (TAC)
3.10. Determination of Antioxidant Capacity
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gresele, P.; Cerletti, C.; Guglielmini, G.; Pignatelli, P.; de Gaetano, G.; Violi, F. Effects of resveratrol and other wine polyphenols on vascular function: An update. J. Nutr. Biochem. 2011, 22, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Xu, B.-T.; Xu, X.-R.; Qin, X.-S.; Gan, R.-Y.; Li, H.-B. Antioxidant capacities and total phenolic contents of 56 wild Fruits from South China. Molecules 2010, 15, 8602–8617. [Google Scholar] [CrossRef] [PubMed]
- Botterweck, A.; Verhagen, H.; Goldbohm, R.A.; Kleinjans, J.; Van den Brandt, P.A. Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: Results from analyses in the Netherlands cohort study. Food Chem. Toxicol. 2000, 38, 599–605. [Google Scholar] [CrossRef]
- Uthumporn, U.; Fazilah, A.; Tajul, A.; Maizura, M.; Ruri, A. Physico-chemical and antioxidant properties of eggplant flour as a functional ingredient. Adv. J. Food Sci. Technol. 2016, 12, 235–243. [Google Scholar] [CrossRef]
- Nino-Medina, G.; Urias-Orona, V.; Muy-Rangel, M.; Heredia, J. Structure and content of phenolics in eggplant (Solanum melongena)—A review. S. Afr. J. Bot. 2017, 111, 161–169. [Google Scholar] [CrossRef]
- Lo Scalzo, R.; Fibiani, M.; Francese, G.; D’Alessandro, A.; Rotino, G.L.; Conte, P.; Mennella, G. Cooking influence on physico-chemical fruit characteristics of eggplant (Solanum melongena L.). Food Chem. 2016, 194, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Atlas Agroalimentario. 2017. Available online: http://online.pubhtml5.com/clsi/ibhs/#p=1 (accessed on 26 March 2018).
- Muy-Rangel, D.; Siller-Cepeda, J.; Garcia-Estrada, R.; Baez-Sanudo, M. Caracterizacion poscosecha de berenjenas producidas en Sinaloa, Mexico. Rev. Chapingo Serie Hortic. 2002, 8, 171–181. [Google Scholar] [CrossRef]
- Vega-Galvez, A.; Ah-Hen, K.; Chacana, M.; Vergara, J.; Martinez-Monzo, J.; Garcia-Segovia, P.; Lemus-Mondaca, R.; Di Scala, K. Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, color, texture and microstructure of apple (var. Granny Smith) slices. Food Chem. 2012, 132, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Hincapie, G.; Omana, M.; Hincapie, C.; Arias, Z.; Velez, L. Efecto de la temperatura de secado sobre las propiedades funcionales de la fibra dietaria presente en la citropulpa. Rev. Lasallista Investig. 2010, 7, 85–93. [Google Scholar]
- Femenia, A.; Garcıa-Pascual, P.; Simala, S.; Rossello, C. Effects of heat treatment and dehydration on bioactive polysaccharide acemannan and cell wall polymers from Aloe barbadensis Miller. Carbohydr. Polym. 2003, 51, 397–405. [Google Scholar] [CrossRef]
- Demirel, D.; Turhan, M. Air-drying behavior of Dwarf Cavendish and Gros Michel banana slices. J. Food Eng. 2003, 59, 1–11. [Google Scholar] [CrossRef]
- Norma Oficial Mexicana, NOM-247-SSA1-2008. Productos y Servicios. Cereales y sus Productos. Cereales, Harinas de Cereales, Sémolas o Semolinas. Alimentos a base de: Cereales, Semillas Comestibles, de Harinas, Sémolas o Semolinas o sus Mezclas. Productos de Panificación. Disposiciones y Especificaciones Sanitarias y Nutrimentales. Métodos de Prueba. 2008. Available online: http://depa.fquim.unam.mx/amyd/archivero/NOMcereales_12434.pdf (accessed on 1 February 2018).
- Hussain, J.; Rehman, N.; Khan, A.; Hussain, H.; Al-Harrasi, A.; Ali, L.; Sami, F.; Shinwari, Z. Determination of macro and micronutrients and nutritional prospects of six vegetable species of Mardan, Pakistan. Pak. J. Bot. 2011, 43, 2829–2833. [Google Scholar]
- Nasir, M.; Butt, M.; Anjum, F.; Sharif, K.; Minhas, R. Effect of moisture on the shelf life of wheat flour. Int. J. Agric. Biol. 2003, 5, 458–459. [Google Scholar]
- Niño-Medina, G.; Muy-Rangel, D.; Gardea-Béjar, A.; González-Aguilar, G.; Heredia, B.; Báez-Sañudo, M.; Siller-Cepeda, J.; Vélez-de la Rocha, R. Nutritional and nutraceutical components of commercial eggplant types grown in Sinaloa, Mexico. Not. Bot. Horti Agrobot. 2014, 42, 538–544. [Google Scholar] [CrossRef]
- United States Drug Administration (USDA). Agricultural Research Service; National Nutrient Database for Standard Reference. 2018. Available online: https://ndb.nal.usda.gov/ndb/search/list (accessed on 1 March 2018).
- San José, R.; Sánchez, M.; Cámara, M.; Prohens, J. Composition of eggplant cultivars of the Occidental type and implications for the improvement of nutritional and functional quality. Int. J. Food Sci. Technol. 2013, 48, 2490–2499. [Google Scholar] [CrossRef] [Green Version]
- Sadler, S.; Murphy, P. Chapter 13. pH and titratable acidity. In Food Analysis, 1st ed.; Nielsen, S.S., Ed.; Springer Science: Cham, Switzerland, 2010; p. 219. [Google Scholar]
- Tyl, C.; Sadler, G. Chapter 22. pH and titratable acidity. In Food Analysis, 5th ed.; Nielsen, S.S., Ed.; Springer Science: Cham, Switzerland, 2017; p. 389. [Google Scholar]
- Griffiths, J. Coloring food and beverages. Food Technol. (Chic.) 2005, 59, 38–44. [Google Scholar]
- Tomás-Barberán, F.; Ferreres, F.; Gil, M. Antioxidant phenolic metabolites from fruit and vegetables and changes during postharvest storage and processing. Stud. Nat. Prod. Chem. 2000, 23, 739–795. [Google Scholar] [CrossRef]
- Noor, A.; Komathi, C. Physicochemical and functional properties of peeled and unpeeled pumpkin flour. J. Food Sci. 2009, 74, S328–S333. [Google Scholar] [CrossRef]
- Que, F.; Mao, L.; Fang, X.; Wu, T. Comparison of hot air-drying and freeze-drying on the physicochemical properties and antioxidant activities of pumpkin (Cucurbita moschata Duch.) flours. Int. J. Food Sci. Technol. 2008, 43, 1195–1201. [Google Scholar] [CrossRef]
- Chau, C.F.; Cheung, P.C.K. Functional properties of flours prepared from three Chinese indigenous legume seeds. Food Chem. 1998, 61, 429–433. [Google Scholar] [CrossRef]
- Granito, M.; Guerra, M.; Torres, A.; Guinand, J. Efecto del procesamiento sobre las propiedades funcionales de vigna sinensis. Interciencia 2004, 29, 521–526. [Google Scholar]
- Kaur, M.; Sandhu, K.; Singh, N. Comparative study of the functional, thermal and pasting properties of flours from different field pea (Pisum sativum L.) and pigeon pea (Cajanus cajan L.) cultivars. Food Chem. 2007, 104, 259–267. [Google Scholar] [CrossRef]
- Hodge, J.; Osman, E. Carbohydrates, principles of food science. Part I. In Food Chemistry; Fennema, R.O., Ed.; Marcel Dekker Inc.: New York, NY, USA, 1976; pp. 97–200. [Google Scholar]
- Chen, J.; Piva, M.; Labuza, T. Evaluation of water binding capacity (WBC) of food fiber sources. J. Food Sci. 1984, 49, 59–63. [Google Scholar] [CrossRef]
- Akubor, P.; Badifu, G. Chemical composition, functional properties and baking potential of African breadfruit kernel and wheat flour blends. J. Food Sci. Technol. 2004, 39, 223–229. [Google Scholar] [CrossRef]
- Fasasi, O.; Eleyinmi, A.; Fasasi, A.; Karim, O. Chemical properties of raw and processed breadfruit (Treculia africana) seed flour. J. Food Agric. Environ. 2004, 2, 65–68. [Google Scholar]
- Chel-Guerrero, L.; Perez, V.; Betancur, D.; Dávila, G. Functional properties of flours and protein isolate from Phaseolus lunatus and Canavalia ensiformis seeds. J. Agric. Food Chem. 2002, 50, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Sangnark, A.; Noomhorm, A. Chemical, physical and baking properties of dietary fiber prepared from rice straw. Food Res. Int. 2004, 37, 66–74. [Google Scholar] [CrossRef]
- Yu, J.; Ahmedna, M.; Goktepe, I. Peanut protein concentrate: Production and functional properties as affected by processing. Food Chem. 2007, 103, 121–129. [Google Scholar] [CrossRef]
- Mahmoud, M. Physicochemical and functional properties of protein hydrolysates in nutritional products. Food Technol. 1994, 48, 89–95. [Google Scholar]
- Kinsella, J.E.; Damodaran, S.; German, B. Physicochemical and functional properties of oil seed proteins with emphasis on soy proteins. New Protein Foods 1985, 5, 107–179. [Google Scholar]
- Sathe, S.; Desphande, S.; Salunhkhe, D. Functional properties of lupin seed (Lupinus mutabilis) proteins and protein concentrates. J. Food Sci. 1982, 47, 491–497. [Google Scholar] [CrossRef]
- Nisha, P.; Nazar, N.; Jayamurthy, P. A comparative study on antioxidant activities of different varieties of Solanum melongena. Food Chem. Toxicol. 2009, 47, 2640–2644. [Google Scholar] [CrossRef] [PubMed]
- Raigón, M.; Prohens, J.; Muñoz-Falcón, J.; Nuez, F. Comparison of eggplant landraces and commercial varieties for fruit content of phenolics, minerals, dry matter and protein. J. Food Compos. Anal. 2008, 21, 370–376. [Google Scholar] [CrossRef]
- Ninfalli, V.; Mea, G.; Giorgini, S.; Rocchi, M.; Bacchiocca, M. Antioxidant capacity of vegetables, spices and dressings relevant to nutrition. Brit. J. Nutr. 2005, 93, 257–266. [Google Scholar] [CrossRef]
- Molina, Y.; Caez-Ramirez, G.; Rodríguez, M.; Cerón, M.; Garnica, A. Contenido de antioxidantes en papas criollas nativas (Solanum tuberosum L. grupo phureja) en proceso de precocción y congelación. Aliment. Hoy 2015, 23, 31–41. Available online: http://www.alimentoshoy.acta.org.co/index.php/hoy/article/view/341 (accessed on 10 February 2018).
- Alkurd, A.; Takruri, H.; Al-Sayyed, H. Tannin contents of selected plants used in Jordan. Jordan J. Agric. Sci. 2008, 4, 265–274. Available online: https://www.uop.edu.jo/download/research/members/1046_2725_Refa.pdf (accessed on 30 February 2018).
- Boulekbache-Makhlouf, L.; Medouni, L.; Medouni-Adrar, S.; Arkoub, L.; Madani, K. Effect of solvents extraction on phenolic content and antioxidant activity of the byproduct of eggplant. Ind. Crop. Prod. 2013, 49, 668–674. [Google Scholar] [CrossRef]
- Lo Scalzo, R.; Fibiani, M.; Mennella, G.; Rotino, G.; Dal Sasso, M.; Culici, M.; Spallino, A.; Braga, P. Thermal Treatment of Eggplant (Solanum melongena L.) Increases the Antioxidant Content and the Inhibitory Effect on Human Neutrophil Burst. J. Agric. Food Chem. 2010, 58, 3371–3379. [Google Scholar] [CrossRef]
- Mokrani, A.; Madani, K. Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Sep. Purif. Technol. 2016, 162, 68–76. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Protteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Okmen, B.; Sigva, H.; Mutlu, S.; Doganlar, S.; Yemenicioglu, A.; Frary, A. Total antioxidant activity and total phenolic contents in different Turkish eggplant (Solanum melongena L.) Cultivars. Int. J. Food Prop. 2009, 12, 616–624. [Google Scholar] [CrossRef]
- Moon, J.; Shibamoto, T. Antioxidant assays for plant and food components. J. Agric. Food Chem. 2009, 57, 1655–1666. [Google Scholar] [CrossRef] [PubMed]
- Concellón, A.; Añón, M.; Chaves, A. Effect of low temperature storage on physical and physiological characteristics of eggplant fruit (Solanum melongena L.). LWT-Food Sci. Technol. 2007, 40, 389–396. [Google Scholar] [CrossRef]
- Oms-Oliu, G.; Rojas-Graü, M.; González, L.; Varela, P.; Soliva-Fortuny, R.; Hernando, M.; Martín-Belloso, O. Recent approaches using chemical treatments to preserve quality of fresh-cut fruit: A review. Postharvest Biol. Technol. 2010, 57, 139–148. [Google Scholar] [CrossRef]
- Prohens, J.; Rodríguez-Burruezo, A.; Raigón, M.; Nuez, F. Total phenolic concentration and browning susceptibility in a collection of different varietal types and hybrids of eggplant: Implications for breeding for higher nutritional quality and reduced browning. J. Am. Soc. Hortic. Sci. 2007, 132, 638–646. Available online: http://journal.ashspublications.org/content/132/5/638.short (accessed on 15 February 2018).
- Mishra, B.; Gautam, S.; Sharma, A. Free phenolics and polyphenol oxidase (PPO): The factors affecting post-cut browning in eggplant (Solanum melongena). Food Chem. 2013, 139, 105–114. [Google Scholar] [CrossRef]
- José Zaro, M. Análisis de Factores que Afectan la Acumulación, Distribución y Estabilidad de Antioxidantes de Naturaleza Fenólica en Berenjena (Solanum melongena L.). 2014. Available online: http://sedici.unlp.edu.ar/handle/10915/35592 (accessed on 25 February 2018).
- Association of Official Analytical Chemist (AOAC). Official Methods of Analysis of International, 16th ed.; AOAC: Maryland, MD, USA, 1998. [Google Scholar]
- Association of Official Analytical Chemist (AOAC). Official Methods of Analysis of International, 17th ed.; AOAC: Gaithersburg, MD, USA, 2006; ISBN 0935584773-9780935584776. [Google Scholar]
- Commission Internationale De L’ecleirage. Cie 15: Technical Report: Colorimetry, 3rd ed.; CIE Publications: Vienna, Austria, 2004; p. 7. [Google Scholar]
- Colorhexa. Color Encyclopedia: Information and Conversion. Computer Software. 2018. Available online: http://www.colorhexa.com/ (accessed on 28 August 2018).
- Beuchat, L. Functional and electrophoretic characteristics of succinylated peanut flour proteins. J. Agric. Food Chem. 1977, 25, 258–263. [Google Scholar] [CrossRef]
- Yasumatsu, K.; Sawada, K.; Moritaka, S.; Misaki, M.; Toda, J.; Wada, T.; Ishii, K. Studies on the functional properties of food grade soybean products: Whipping and emulsifying properties of soybean products. Agric. Biol. Chem. 1992, 36, 719–727. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, X.; Liu, H.; Zhang, G.; Ao, Q. Functional, nutritional and flavor characteristic of soybean proteins obtained through reverse micelles. Food Hydrocolloids 2018, 74, 358–366. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Xiong, L.; Yang, J.; Jiang, Y.; Lu, B.; Hu, Y.; Zhou, F.; Mao, S.; Shen, C. Phenolic compounds and antioxidant capacities of 10 common edible flowers from China. J. Food Sci. 2014, 79, C517–C525. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Ricardo-da-Silva, J.M.; Spranger, I. Critical factors of vanillin assay for catechins and proanthocyanidins. J. Agric. Food Chem. 1998, 46, 4267–4274. [Google Scholar] [CrossRef]
- Abdel-Aal, E.S.; Hucl, P. A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheats. Cereal Chem. 1999, 76, 350–354. [Google Scholar] [CrossRef]
- Tai, Z.; Cai, L.; Dai, L.; Dong, L.; Wang, M.; Yang, Y.; Cao, Q.; Ding, Z. Antioxidant activity and chemical constituents of edible flower of Sophora viciifolia. Food Chem. 2011, 126, 1648–1654. [Google Scholar] [CrossRef] [PubMed]
- Arnao, M.B.; Cano, A.; Acosta, M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Suárez, B.; Álvarez, Á.L.; García, Y.D.; Barrio, G.; Lobo, A.P.; Parra, F. Phenolic profiles, antioxidant activity and in vitro antiviral properties of apple pomace. Food Chem. 2010, 120, 339–342. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compounds are not available from the authors. |
Component (%) | T1 | T2 | T3 | T4 |
---|---|---|---|---|
Moisture | 5.26 ± 0.4 b | 8.57 ± 0.26 a | 4.55 ± 0.32 c | 1.57 ± 0.09 d |
Ash | 6.47 ± 0.38 b | 7.31 ± 0.03 a | 7.31 ± 0.08 a | 6.53 ± 0.25 b |
Fat | 1.79 ± 0.07 a | 1.75 ± 0.03 a | 1.73 ± 0.0 a | 1.73 ± 0.02 a |
Protein | 12.57 ± 0.39 a | 12.5 ± 0.45 a | 12.68 ± 0.29 a | 12.77 ± 0.24 a |
Crude Fiber | 12.74 ± 0.37 a | 12.32 ± 0.43 a | 11.8 ± 0.59 a | 12.17 ± 0.92 a |
Carbohydrates + | 61.17 ± 0.7 b | 57.54 ± 0.52 c | 61.92 ± 0.18 b | 65.22 ± 1.22 a |
Flour | pH | TA (%) | Chromatic Properties | |||||
---|---|---|---|---|---|---|---|---|
L* | a* | b* | C* | h | View | |||
T1 | 3.89 ± 0.04 b | 0.47 ± 0.004 a | 52.50 ± 0.14 c | 9.65 ± 0.49 a | 21.65 ± 0.49 a | 23.60 ± 0.65 a | 65.98 ± 0.60 b | |
T2 | 3.97 ± 0.02 b | 0.47 ± 0.004 a | 52.55 ± 0.49 c | 9.25 ± 0.63 ab | 21.05 ± 0.49 a | 22.99 ± 0.71 ab | 66.29 ± 0.95 b | |
T3 | 4.19 ± 0.01 a | 0.46 ± 0.009 a | 57.40 ± 0.42 b | 6.90 ± 0.56 b | 20.15 ± 0.21 a | 21.30 ± 0.01 b | 71.10 ± 1.62 b | |
T4 | 4.14 ± 0.03 a | 0.46 ± 0.004 a | 64.60 ± 0.42 a | 4.55 ± 0.07 c | 20.60 ± 0.14 a | 21.09 ± 0.16 b | 77.54 ± 0.10 a |
Flour | WHC (g Water/g Flour DW) | OHC (g Oil/ g Flour DW) | EC (%) |
---|---|---|---|
T1 | 1.28 ± 0.1 b | 2.13 ± 0.26 d | 25.00 ± 0.10 c |
T2 | 1.61 ± 0.16 b | 4.49 ± 0.59 b | 37.33 ± 0.57 a |
T3 | 1.40 ± 0.25 b | 3.79 ± 0.16 c | 34.50 ± 0.50 b |
T4 | 2.08 ± 0.13 a | 5.22 ± 0.11 a | 37.83 ± 0.28 a |
Flour | TPC (mgCAE/kg Flour DW) | TFC (mgCatE/kg Flour DW) | TCC (mgCatE/kg Flour DW) | TAC (mgC3GE/kg Flour DW) |
---|---|---|---|---|
T1 | 8211 ± 452 c | 2060 ± 396 c | 3022 ± 330 a | 1612 ± 44 a |
T2 | 18,227 ± 442 a | 15,753 ± 1027 a | 1461 ± 176 c | 679 ± 12 b |
T3 | 4183 ± 123 d | 1473 ± 188 c | 1240 ± 206 c | 230 ± 13 d |
T4 | 10,866 ± 673 b | 10,300 ± 467 b | 2307 ± 145 b | 519 ± 10 c |
Flour | ABTS (μMTE/kg Flour DW) | DPPH (μMTE/kg Flour DW) | FRAP (μMTE/kg Flour DW) |
---|---|---|---|
T1 | 25,484 ± 1166 c | 15,160 ± 142 c | 29,534 ± 315 c |
T2 | 63,583 ± 1689 a | 54,815 ± 2447 a | 105,617 ± 3917 a |
T3 | 14,272 ± 433 d | 9111 ± 160 d | 17,820 ± 587 d |
T4 | 43,205 ± 673 b | 43,167 ± 3611 b | 75,361 ± 773 b |
Flour | Pre-Treatments | Equipment |
---|---|---|
T1 | Mincing | Drying oven |
T2 | Cutting in slices | Drying oven |
T3 | Cutting in slices and freezing | Tunnel dryer |
T4 | Cutting in slices | Tunnel dryer |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez-Jimenez, J.R.; Amaya-Guerra, C.A.; Baez-Gonzalez, J.G.; Aguilera-Gonzalez, C.; Urias-Orona, V.; Nino-Medina, G. Physicochemical, Functional, and Nutraceutical Properties of Eggplant Flours Obtained by Different Drying Methods. Molecules 2018, 23, 3210. https://doi.org/10.3390/molecules23123210
Rodriguez-Jimenez JR, Amaya-Guerra CA, Baez-Gonzalez JG, Aguilera-Gonzalez C, Urias-Orona V, Nino-Medina G. Physicochemical, Functional, and Nutraceutical Properties of Eggplant Flours Obtained by Different Drying Methods. Molecules. 2018; 23(12):3210. https://doi.org/10.3390/molecules23123210
Chicago/Turabian StyleRodriguez-Jimenez, Jenny R., Carlos A. Amaya-Guerra, Juan G. Baez-Gonzalez, Carlos Aguilera-Gonzalez, Vania Urias-Orona, and Guillermo Nino-Medina. 2018. "Physicochemical, Functional, and Nutraceutical Properties of Eggplant Flours Obtained by Different Drying Methods" Molecules 23, no. 12: 3210. https://doi.org/10.3390/molecules23123210
APA StyleRodriguez-Jimenez, J. R., Amaya-Guerra, C. A., Baez-Gonzalez, J. G., Aguilera-Gonzalez, C., Urias-Orona, V., & Nino-Medina, G. (2018). Physicochemical, Functional, and Nutraceutical Properties of Eggplant Flours Obtained by Different Drying Methods. Molecules, 23(12), 3210. https://doi.org/10.3390/molecules23123210