Nutrigenetics and Metabolic Disease: Current Status and Implications for Personalised Nutrition
Abstract
:1. Introduction
2. Dietary Fat and Metabolic Health
3. Genetic Determinants of Metabolic Disease
3.1. Identification of Genes Associated with Metabolic Disease
3.2. GWAS and Metabolic Health Relevant Loci
3.3. Lipid Metabolism Genes
3.4. Pro-Inflammatory Cytokines and Other Inflammatory Mediators
4. Nutrigenetics and Metabolic Disease
Gene Locus | Polymorphism | Dietary Factors | Odds Ratio | Conclusions | Reference Number |
---|---|---|---|---|---|
Acetyl-CoA carboxylase β (ACC2) | rs4766587 | n-6 PUFA | 1.82 | Risk conferred by the A allele was exacerbated among individuals with a high-fat intake (>35% energy) (OR 1.62), particularly a high intake (>5.5% energy) of n-6 PUFA (OR 1.82 for gene-nutrient interaction). | [83] |
Apolipoprotein A-I (APOA1) | rs670 | MUFA | 1.57 | MetS risk was exacerbated among the habitual high-fat consumers (>35% energy, OR 1.58). In addition a high MUFA fat increased MetS risk (OR 1.57). | [84] |
Apolipoprotein B (APOB) | rs512535 | MUFA | 1.89 | MetS risk was increased among the habitual high-fat consumers (>35% energy, OR 2.00). Moreover a high MUFA intake increased MetS risk (OR 1.89). | [84] |
Complement component 3 ( C3) | rs2250656 rs11569562 | n-6 PUFA | 2.2 (rs2250656)
0.32 (rs11569562) | AA genotype for rs2250656 had increased MetS risk relative to minor G subjects. GG genotype for rs11569562 had decreased MetS risk compared with minor A allele carriers. | [101] |
Interleukin 1 beta (IL-1β) | 6054 G | n-3 PUFA | 3.29 (GG) 1.95 (GA) | Low n-3-PUFA intake (below the median) among the 6054 G allele carriers was associated with increased MetS risk (OR 3.29, for GG and OR 1.95, for GA) compared with the AA genotype. | [88] |
Long-chain acyl CoA synthetase 1 (ACSL1) | rs9997745 | Total PUFA | Risk abolished | GG genotype had increased MetS risk (OR 1.90) compared with the A allele. The risk conferred by GG homozygosity was abolished among those subjects consuming either a low-fat or a high-PUFA diet. | [82] |
Leptin receptor (LEPR) | rs3790433 | n-3 and n-6 PUFA | 1.65 | LEPR rs3790433 GG homozygotes had increased MetS risk (OR 1.65) compared with the minor A allele carriers, which may be accounted for by their increased risk of elevated insulin concentrations (OR 2.40) and insulin resistance (OR 2.15). Low (less than median) plasma (n-3) and high (n-6) PUFA status exacerbated the genetic risk conferred by GG homozygosity to hyperinsulinemia (OR 2.92–2.94) and insulin resistance (OR 3.40–3.47). These associations were abolished against a high (n-3) or low (n-6) PUFA background. | [104] |
Lymphotoxin-α (
LTA) Interleukin 6 (IL-6) Tumor necrosis factor-α (TNF-α) | LTA rs915654 TNF-α rs1800629 IL-6 rs1800797 | Total PUFA/SFA | 4.4 | LTA rs915654 minor A allele carriers and TNF-α rs1800629 major G allele homozygotes had increased MetS risk (OR 1.37 and OR 1.35). Possession of the IL-6 rs1800797 GG genotype by the LTA and TNF-α “risk genotype” carriers further increased MetS risk (OR 2.10). Low total PUFA/SFA exacerbated MetS risk (OR 4.4). | [92] |
Peroxisome proliferator-activated receptor-delta (PPAR-δ) | -87T>C | Total fat | 0.42 | Low dietary fat consumers (<34.4% of energy from fat (median of fat consumption)) carrying the -87C allele had reduced MetS risk (OR 0.42). | [111] |
Transcription factor 7-like 2 (TCF7L2) | rs7903146 | Total SFA | 2.35 | High SFA intake (≥15.5% energy) exacerbated MetS risk (OR 2.35) and was associated with further impaired insulin sensitivity in the T allele carriers of rs7903146 compared to the CC homozygotes and particularly to the T allele carriers with the lowest SFA intake. | [60] |
4.1. TCF7L2
4.2. FTO
4.3. Fatty Acid and Lipid Metabolism Genes
4.4. Pro-Inflammatory Cytokines, Adipocytokines and Inflammatory Mediators
5. Nutrigenetics and Personalised Nutrition
6. Conclusions
Acknowledgments
Conflict of Interest
References
- Moller, D.E.; Kaufman, K.D. Metabolic syndrome: A clinical and molecular perspective. Annu. Rev. Med. 2005, 56, 45–62. [Google Scholar] [CrossRef]
- Alberti, K.G.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a who consultation. Diabet. Med. 1998, 15, 539–553. [Google Scholar] [CrossRef]
- Balkau, B.; Charles, M.A. Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR). Diabet. Med. 1999, 16, 442–443. [Google Scholar]
- Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. 2002, 106, 3143–3421.
- Alberti, K.G.; Zimmet, P.; Shaw, J. The metabolic syndrome—A new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr. Honizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; american heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- Ford, E.S.; Li, C.; Zhao, G. Prevalence and correlates of metabolic syndrome based on a harmonious definition among adults in the US. J. Diabetes 2010, 2, 180–193. [Google Scholar] [CrossRef]
- Flier, J.S. Obesity wars: Molecular progress confronts an expanding epidemic. Cell 2004, 116, 337–350. [Google Scholar] [CrossRef]
- Anderson, J.W.; Kendall, C.W.; Jenkins, D.J. Importance of weight management in type 2 diabetes: Review with meta-analysis of clinical studies. J. Am. Coll. Nutr. 2003, 22, 331–339. [Google Scholar]
- Shaw, J.E.; Sicree, R.A.; Zimmet, P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010, 87, 4–14. [Google Scholar] [CrossRef]
- Bellia, A.; Giardina, E.; Lauro, D.; Tesauro, M.; Di Fede, G.; Cusumano, G.; Federici, M.; Rini, G.B.; Novelli, G.; Lauro, R.; et al. "The linosa study”: Epidemiological and heritability data of the metabolic syndrome in a caucasian genetic isolate. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 455–461. [Google Scholar] [CrossRef]
- Henneman, P.; Aulchenko, Y.S.; Frants, R.R.; van Dijk, K.W.; Oostra, B.A.; van Duijn, C.M. Prevalence and heritability of the metabolic syndrome and its individual components in a dutch isolate: The erasmus rucphen family study. J. Med. Genet. 2008, 45, 572–577. [Google Scholar] [CrossRef]
- Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z. The metabolic syndrome. Lancet 2005, 365, 1415–1428. [Google Scholar] [CrossRef]
- Lottenberg, A.M.; Afonso Mda, S.; Lavrador, M.S.; Machado, R.M.; Nakandakare, E.R. The role of dietary fatty acids in the pathology of metabolic syndrome. J. Nutr. Biochem. 2012, 23, 1027–1040. [Google Scholar] [CrossRef]
- Phillips, C.; Lopez-Miranda, J.; Perez-Jimenez, F.; McManus, R.; Roche, H.M. Genetic and nutrient determinants of the metabolic syndrome. Curr. Opin. Cardiol. 2006, 21, 185–193. [Google Scholar] [CrossRef]
- Szabo de Edelenyi, F.; Goumidi, L.; Bertrais, S.; Phillips, C.; Macmanus, R.; Roche, H.; Planells, R.; Lairon, D. Prediction of the metabolic syndrome status based on dietary and genetic parameters, using random forest. Genes Nutr. 2008, 3, 173–176. [Google Scholar] [CrossRef]
- Vessby, B. Dietary fat, fatty acid composition in plasma and the metabolic syndrome. Curr. Opin. Lipidol. 2003, 14, 15–19. [Google Scholar] [CrossRef]
- Warensjo, E.; Sundstrom, J.; Lind, L.; Vessby, B. Factor analysis of fatty acids in serum lipids as a measure of dietary fat quality in relation to the metabolic syndrome in men. Am. J. Clin. Nutr. 2006, 84, 442–448. [Google Scholar]
- Hu, F.B.; van Dam, R.M.; Liu, S. Diet and risk of Type II diabetes: The role of types of fat and carbohydrate. Diabetologia 2001, 44, 805–817. [Google Scholar] [CrossRef]
- Melanson, E.L.; Astrup, A.; Donahoo, W.T. The relationship between dietary fat and fatty acid intake and body weight, diabetes, and the metabolic syndrome. Ann. Nutr. Metab. 2009, 55, 229–243. [Google Scholar] [CrossRef]
- Meyer, K.A.; Kushi, L.H.; Jacobs, D.R., Jr.; Folsom, A.R. Dietary fat and incidence of type 2 diabetes in older iowa women. Diabetes Care 2001, 24, 1528–1535. [Google Scholar] [CrossRef]
- Perez-Jimenez, F.; Lopez-Miranda, J.; Pinillos, M.D.; Gomez, P.; Paz-Rojas, E.; Montilla, P.; Marin, C.; Velasco, M.J.; Blanco-Molina, A.; Jimenez Pereperez, J.A.; et al. A mediterranean and a high-carbohydrate diet improve glucose metabolism in healthy young persons. Diabetologia 2001, 44, 2038–2043. [Google Scholar] [CrossRef]
- Tierney, A.C.; McMonagle, J.; Shaw, D.I.; Gulseth, H.L.; Helal, O.; Saris, W.H.; Paniagua, J.A.; Golabek-Leszczynska, I.; Defoort, C.; Williams, C.M.; et al. Effects of dietary fat modification on insulin sensitivity and on other risk factors of the metabolic syndrome—LIPGENE: A european randomized dietary intervention study. Int. J. Obes. (Lond.) 2011, 35, 800–809. [Google Scholar] [CrossRef]
- Due, A.; Larsen, T.M.; Mu, H.; Hermansen, K.; Stender, S.; Astrup, A. Comparison of 3 ad libitum diets for weight-loss maintenance, risk of cardiovascular disease, and diabetes: A 6-mo randomized, controlled trial. Am. J. Clin. Nutr. 2008, 88, 1232–1241. [Google Scholar]
- Due, A.; Larsen, T.M.; Hermansen, K.; Stender, S.; Holst, J.J.; Toubro, S.; Martinussen, T.; Astrup, A. Comparison of the effects on insulin resistance and glucose tolerance of 6-mo high-monounsaturated-fat, low-fat, and control diets. Am. J. Clin. Nutr. 2008, 87, 855–862. [Google Scholar]
- Vessby, B.; Unsitupa, M.; Hermansen, K.; Riccardi, G.; Rivellese, A.A.; Tapsell, L.C.; Nalsen, C.; Berglund, L.; Louheranta, A.; Rasmussen, B.M.; et al. Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: The kanwu study. Diabetologia 2001, 44, 312–319. [Google Scholar] [CrossRef]
- Oliver, E.; McGillicuddy, F.C.; Harford, K.A.; Reynolds, C.M.; Phillips, C.M.; Ferguson, J.F.; Roche, H.M. Docosahexaenoic acid attenuates macrophage-induced inflammation and improves insulin sensitivity in adipocytes-specific differential effects between LC n-3 PUFA. J. Nutr. Biochem. 2011, 23, 1192–1200. [Google Scholar]
- Storlien, L.H.; Baur, L.A.; Kriketos, A.D.; Pan, D.A.; Cooney, G.J.; Jenkins, A.B.; Calvert, G.D.; Campbell, L.V. Dietary fats and insulin action. Diabetologia 1996, 39, 621–631. [Google Scholar] [CrossRef]
- Storlien, L.H.; Jenkins, A.B.; Chisholm, D.J.; Pascoe, W.S.; Khouri, S.; Kraegen, E.W. Influence of dietary fat composition on development of insulin resistance in rats. Relationship to muscle triglyceride and omega-3 fatty acids in muscle phospholipid. Diabetes 1991, 40, 280–289. [Google Scholar]
- Willett, W. Nutritional Epidemiology, 2nd ed; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Perez-Martinez, P.; Phillips, C.M.; Delgado-Lista, J.; Garcia-Rios, A.; Lopez-Miranda; Francisco Perez-Jimenez, J. Nutrigenetics, metabolic syndrome risk and personalized nutrition. Curr. Vasc. Pharmacol. 2012, in press. [Google Scholar]
- Phillips, C.M.; Tierney, A.C.; Roche, H.M. Gene-nutrient interactions in the metabolic syndrome. J. Nutrigenet. Nutrigenomics 2008, 1, 136–151. [Google Scholar] [CrossRef]
- Roche, H.M.; Phillips, C.; Gibney, M.J. The metabolic syndrome: The crossroads of diet and genetics. Proc. Nutr. Soc. 2005, 64, 371–377. [Google Scholar] [CrossRef]
- Allison, D.B.; Faith, M.S.; Nathan, J.S. Risch’s lambda values for human obesity. Int. J. Obes. Relat. Metab. Disord. 1996, 20, 990–999. [Google Scholar]
- Maes, H.H.; Neale, M.C.; Eaves, L.J. Genetic and environmental factors in relative body weight and human adiposity. Behav. Genet. 1997, 27, 325–351. [Google Scholar] [CrossRef]
- Stunkard, A.J.; Sorensen, T.I.; Hanis, C.; Teasdale, T.W.; Chakraborty, R.; Schull, W.J.; Schulsinger, F. An adoption study of human obesity. N. Engl. J. Med. 1986, 314, 193–198. [Google Scholar] [CrossRef]
- Bouchard, C.; Perusse, L.; Leblanc, C.; Tremblay, A.; Theriault, G. Inheritance of the amount and distribution of human body fat. Int. J. Obes. 1988, 12, 205–215. [Google Scholar]
- Vogler, G.P.; Sorensen, T.I.; Stunkard, A.J.; Srinivasan, M.R.; Rao, D.C. Influences of genes and shared family environment on adult body mass index assessed in an adoption study by a comprehensive path model. Int. J. Obes. Relat. Metab. Disord. 1995, 19, 40–45. [Google Scholar]
- Florez, J.C.; Hirschhorn, J.; Altshuler, D. The inherited basis of diabetes mellitus: Implications for the genetic analysis of complex traits. Annu. Rev. Genomics. Hum. Genet. 2003, 4, 257–291. [Google Scholar] [CrossRef]
- Gloyn, A.L. The search for type 2 diabetes genes. Ageing Res. Rev. 2003, 2, 111–127. [Google Scholar]
- Andreasen, C.H.; Andersen, G. Gene-environment interactions and obesity—Further aspects of genomewide association studies. Nutrition 2009, 25, 998–1003. [Google Scholar] [CrossRef]
- Horikawa, Y.; Oda, N.; Cox, N.J.; Li, X.; Orho-Melander, M.; Hara, M.; Hinokio, Y.; Lindner, T.H.; Mashima, H.; Schwarz, P.E.; et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat. Genet. 2000, 26, 163–175. [Google Scholar] [CrossRef]
- Saez, M.E.; Gonzalez-Sanchez, J.L.; Ramirez-Lorca, R.; Martinez-Larrad, M.T.; Zabena, C.; Gonzalez, A.; Moron, F.J.; Ruiz, A.; Serrano-Rios, M. The CAPN10 gene is associated with insulin resistance phenotypes in the Spanish population. PLoS One 2008, 3, e2953. [Google Scholar]
- Carlsson, E.; Fredriksson, J.; Groop, L.; Ridderstrale, M. Variation in the calpain-10 gene is associated with elevated triglyceride levels and reduced adipose tissue messenger ribonucleic acid expression in obese Swedish subjects. J. Clin. Endocrinol. Metab. 2004, 89, 3601–3605. [Google Scholar]
- Garant, M.J.; Kao, W.H.; Brancati, F.; Coresh, J.; Rami, T.M.; Hanis, C.L.; Boerwinkle, E.; Shuldiner, A.R. SNP43 of CAPN10 and the risk of type 2 diabetes in African-Americans: The atherosclerosis risk in communities study. Diabetes 2002, 51, 231–237. [Google Scholar]
- Shima, Y.; Nakanishi, K.; Odawara, M.; Kobayashi, T.; Ohta, H. Association of the SNP-19 genotype 22 in the calpain-10 gene with elevated body mass index and hemoglobin A1c levels in Japanese. Clin. Chim. Acta 2003, 336, 89–96. [Google Scholar] [CrossRef]
- Florez, J.C.; Jablonski, K.A.; Bayley, N.; Pollin, T.I.; de Bakker, P.I.; Shuldiner, A.R.; Knowler, W.C.; Nathan, D.M.; Altshuler, D. TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N. Engl. J. Med. 2006, 355, 241–250. [Google Scholar] [CrossRef]
- Grant, S.F.; Thorleifsson, G.; Reynisdottir, I.; Benediktsson, R.; Manolescu, A.; Sainz, J.; Helgason, A.; Stefansson, H.; Emilsson, V.; Helgadottir, A.; et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 2006, 38, 320–323. [Google Scholar] [CrossRef]
- Cauchi, S.; El Achhab, Y.; Choquet, H.; Dina, C.; Krempler, F.; Weitgasser, R.; Nejjari, C.; Patsch, W.; Chikri, M.; Meyre, D.; et al. TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: A global meta-analysis. J. Mol. Med. (Berl.) 2007, 85, 777–782. [Google Scholar] [CrossRef]
- Cauchi, S.; Meyre, D.; Dina, C.; Choquet, H.; Samson, C.; Gallina, S.; Balkau, B.; Charpentier, G.; Pattou, F.; Stetsyuk, V.; et al. Transcription factor TCF7L2 genetic study in the french population: Expression in human beta-cells and adipose tissue and strong association with type 2 diabetes. Diabetes 2006, 55, 2903–2908. [Google Scholar] [CrossRef]
- Chandak, G.R.; Janipalli, C.S.; Bhaskar, S.; Kulkarni, S.R.; Mohankrishna, P.; Hattersley, A.T.; Frayling, T.M.; Yajnik, C.S. Common variants in the TCF7L2 gene are strongly associated with type 2 diabetes mellitus in the indian population. Diabetologia 2007, 50, 63–67. [Google Scholar]
- Hayashi, T.; Iwamoto, Y.; Kaku, K.; Hirose, H.; Maeda, S. Replication study for the association of TCF7L2 with susceptibility to type 2 diabetes in a japanese population. Diabetologia 2007, 50, 980–984. [Google Scholar] [CrossRef]
- Humphries, S.E.; Gable, D.; Cooper, J.A.; Ireland, H.; Stephens, J.W.; Hurel, S.J.; Li, K.W.; Palmen, J.; Miller, M.A.; Cappuccio, F.P.; et al. Common variants in the TCF7L2 gene and predisposition to type 2 diabetes in UK European whites, Indian Asians and Afro-Caribbean men and women. J. Mol. Med. (Berl.) 2006, 84, 1005–1014. [Google Scholar] [CrossRef]
- Wang, J.; Kuusisto, J.; Vanttinen, M.; Kuulasmaa, T.; Lindstrom, J.; Tuomilehto, J.; Uusitupa, M.; Laakso, M. Variants of transcription factor 7-like 2 (TCF7L2) gene predict conversion to type 2 diabetes in the finnish diabetes prevention study and are associated with impaired glucose regulation and impaired insulin secretion. Diabetologia 2007, 50, 1192–1200. [Google Scholar] [CrossRef]
- Melzer, D.; Murray, A.; Hurst, A.J.; Weedon, M.N.; Bandinelli, S.; Corsi, A.M.; Ferrucci, L.; Paolisso, G.; Guralnik, J.M.; Frayling, T.M. Effects of the diabetes linked TCF7L2 polymorphism in a representative older population. BMC Med. 2006, 4, 34. [Google Scholar] [CrossRef]
- Warodomwichit, D.; Arnett, D.K.; Kabagambe, E.K.; Tsai, M.Y.; Hixson, J.E.; Straka, R.J.; Province, M.; An, P.; Lai, C.Q.; Borecki, I.; et al. Polyunsaturated fatty acids modulate the effect of TCF7L2 gene variants on postprandial lipemia. J. Nutr. 2009, 139, 439–446. [Google Scholar] [CrossRef]
- Sjogren, M.; Lyssenko, V.; Jonsson, A.; Berglund, G.; Nilsson, P.; Groop, L.; Orho-Melander, M. The search for putative unifying genetic factors for components of the metabolic syndrome. Diabetologia 2008, 51, 2242–2251. [Google Scholar] [CrossRef]
- Marzi, C.; Huth, C.; Kolz, M.; Grallert, H.; Meisinger, C.; Wichmann, H.E.; Rathmann, W.; Herder, C.; Illig, T. Variants of the transcription factor 7-like 2 gene (TCF7L2) are strongly associated with type 2 diabetes but not with the metabolic syndrome in the MONICA/KORA surveys. Horm. Metab. Res. 2007, 39, 46–52. [Google Scholar] [CrossRef]
- Saadi, H.; Nagelkerke, N.; Carruthers, S.G.; Benedict, S.; Abdulkhalek, S.; Reed, R.; Lukic, M.; Nicholls, M.G. Association of TCF7L2 polymorphism with diabetes mellitus, metabolic syndrome, and markers of beta cell function and insulin resistance in a population-based sample of emirati subjects. Diabetes Res. Clin. Pract. 2008, 80, 392–398. [Google Scholar] [CrossRef]
- Phillips, C.M.; Goumidi, L.; Bertrais, S.; Field, M.R.; McManus, R.; Hercberg, S.; Lairon, D.; Planells, R.; Roche, H.M. Dietary saturated fat, gender and genetic variation at the TCF7L2 locus predict the development of metabolic syndrome. J. Nutr. Biochem. 2012, 23, 239–244. [Google Scholar] [CrossRef]
- Povel, C.M.; Boer, J.M.; Reiling, E.; Feskens, E.J. Genetic variants and the metabolic syndrome: A systematic review. Obes. Rev. 2011, 12, 952–967. [Google Scholar] [CrossRef]
- Frayling, T.M.; Timpson, N.J.; Weedon, M.N.; Zeggini, E.; Freathy, R.M.; Lindgren, C.M.; Perry, J.R.; Elliott, K.S.; Lango, H.; Rayner, N.W.; et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007, 316, 889–894. [Google Scholar]
- Haupt, A.; Thamer, C.; Staiger, H.; Tschritter, O.; Kirchhoff, K.; Machicao, F.; Haring, H.U.; Stefan, N.; Fritsche, A. Variation in the FTO gene influences food intake but not energy expenditure. Exp. Clin. Endocrinol. Diabetes 2009, 117, 194–197. [Google Scholar] [CrossRef]
- Speakman, J.R.; Rance, K.A.; Johnstone, A.M. Polymorphisms of the fto gene are associated with variation in energy intake, but not energy expenditure. Obesity (Silver Spring) 2008, 16, 1961–1965. [Google Scholar] [CrossRef]
- Tanofsky-Kraff, M.; Han, J.C.; Anandalingam, K.; Shomaker, L.B.; Columbo, K.M.; Wolkoff, L.E.; Kozlosky, M.; Elliott, C.; Ranzenhofer, L.M.; Roza, C.A.; et al. The FTO gene rs9939609 obesity-risk allele and loss of control over eating. Am. J. Clin. Nutr. 2009, 90, 1483–1488. [Google Scholar] [CrossRef]
- Dina, C.; Meyre, D.; Gallina, S.; Durand, E.; Korner, A.; Jacobson, P.; Carlsson, L.M.; Kiess, W.; Vatin, V.; Lecoeur, C.; et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat. Genet. 2007, 39, 724–726. [Google Scholar] [CrossRef]
- Hinney, A.; Nguyen, T.T.; Scherag, A.; Friedel, S.; Bronner, G.; Muller, T.D.; Grallert, H.; Illig, T.; Wichmann, H.E.; Rief, W.; et al. Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS One 2007, 2, e1361. [Google Scholar] [CrossRef]
- Hunt, S.C.; Stone, S.; Xin, Y.; Scherer, C.A.; Magness, C.L.; Iadonato, S.P.; Hopkins, P.N.; Adams, T.D. Association of the FTO gene with BMI. Obesity (Silver Spring) 2008, 16, 902–904. [Google Scholar] [CrossRef]
- Thorleifsson, G.; Walters, G.B.; Gudbjartsson, D.F.; Steinthorsdottir, V.; Sulem, P.; Helgadottir, A.; Styrkarsdottir, U.; Gretarsdottir, S.; Thorlacius, S.; Jonsdottir, I.; et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat. Genet. 2009, 41, 18–24. [Google Scholar]
- Willer, C.J.; Speliotes, E.K.; Loos, R.J.; Li, S.; Lindgren, C.M.; Heid, I.M.; Berndt, S.I.; Elliott, A.L.; Jackson, A.U.; Lamina, C.; et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat. Genet. 2009, 41, 25–34. [Google Scholar]
- Dupuis, J.; Langenberg, C.; Prokopenko, I.; Saxena, R.; Soranzo, N.; Jackson, A.U.; Wheeler, E.; Glazer, N.L.; Bouatia-Naji, N.; Gloyn, A.L.; et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet. 2010, 42, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Manning, A.K.; Hivert, M.F.; Scott, R.A.; Grimsby, J.L.; Bouatia-Naji, N.; Chen, H.; Rybin, D.; Liu, C.T.; Bielak, L.F.; Prokopenko, I.; et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat. Genet. 2012, 44, 659–669. [Google Scholar] [CrossRef]
- Perez-Caballero, A.I.; Alcala-Diaz, J.F.; Perez-Martinez, P.; Garcia-Rios, A.; Delgado-Casado, N.; Marin, C.; Yubero-Serrano, E.; Camargo, A.; Caballero, J.; Malagon, M.M.; et al. Lipid metabolism after an oral fat test meal is affected by age-associated features of metabolic syndrome, but not by age. Atherosclerosis 2013, 226, 258–262. [Google Scholar] [CrossRef]
- Phillips, C.; Murugasu, G.; Owens, D.; Collins, P.; Johnson, A.; Tomkin, G.H. Improved metabolic control reduces the number of postprandial apolipoprotein B-48-containing particles in Type 2 diabetes. Atherosclerosis 2000, 148, 283–291. [Google Scholar] [CrossRef]
- Perez-Martinez, P.; Delgado-Lista, J.; Perez-Jimenez, F.; Lopez-Miranda, J. Update on genetics of postprandial lipemia. Atheroscler. Suppl. 2010, 11, 39–43. [Google Scholar]
- Perez-Martinez, P.; Lopez-Miranda, J.; Perez-Jimenez, F.; Ordovas, J.M. Influence of genetic factors in the modulation of postprandial lipemia. Atheroscler. Suppl. 2008, 9, 49–55. [Google Scholar]
- Deeb, S.S.; Fajas, L.; Nemoto, M.; Pihlajamaki, J.; Mykkanen, L.; Kuusisto, J.; Laakso, M.; Fujimoto, W.; Auwerx, J. A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat. Genet. 1998, 20, 284–287. [Google Scholar] [CrossRef]
- Altshuler, D.; Hirschhorn, J.N.; Klannemark, M.; Lindgren, C.M.; Vohl, M.C.; Nemesh, J.; Lane, C.R.; Schaffner, S.F.; Bolk, S.; Brewer, C.; et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat. Genet. 2000, 26, 76–80. [Google Scholar] [CrossRef]
- Andrulionyte, L.; Zacharova, J.; Chiasson, J.L.; Laakso, M. Common polymorphisms of the PPAR-gamma2 (Pro12Ala) and PGC-1alpha (Gly482Ser) genes are associated with the conversion from impaired glucose tolerance to type 2 diabetes in the STOP-NIDDM trial. Diabetologia 2004, 47, 2176–2184. [Google Scholar] [CrossRef]
- Ghoussaini, M.; Meyre, D.; Lobbens, S.; Charpentier, G.; Clement, K.; Charles, M.A.; Tauber, M.; Weill, J.; Froguel, P. Implication of the Pro12Ala polymorphism of the PPAR-gamma 2 gene in type 2 diabetes and obesity in the French population. BMC Med. Genet. 2005, 6. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Rios, A.; Delgado-Lista, J.; Perez-Martinez, P.; Phillips, C.M.; Ferguson, J.F.; Gjelstad, I.M.; Williams, C.M.; Karlstrom, B.; Kiec-Wilk, B.; Blaak, E.E.; et al. Genetic variations at the lipoprotein lipase gene influence plasma lipid concentrations and interact with plasma n-6 polyunsaturated fatty acids to modulate lipid metabolism. Atherosclerosis 2011, 218, 416–422. [Google Scholar] [CrossRef]
- Phillips, C.M.; Goumidi, L.; Bertrais, S.; Field, M.R.; Cupples, L.A.; Ordovas, J.M.; Defoort, C.; Lovegrove, J.A.; Drevon, C.A.; Gibney, M.J.; et al. Gene-nutrient interactions with dietary fat modulate the association between genetic variation of the ACSL1 gene and metabolic syndrome. J. Lipid Res. 2010, 51, 1793–1800. [Google Scholar] [CrossRef]
- Phillips, C.M.; Goumidi, L.; Bertrais, S.; Field, M.R.; Cupples, L.A.; Ordovas, J.M.; McMonagle, J.; Defoort, C.; Lovegrove, J.A.; Drevon, C.A.; et al. ACC2 gene polymorphisms, metabolic syndrome, and gene-nutrient interactions with dietary fat. J. Lipid Res. 2010, 51, 3500–3507. [Google Scholar]
- Phillips, C.M.; Goumidi, L.; Bertrais, S.; Field, M.R.; McManus, R.; Hercberg, S.; Lairon, D.; Planells, R.; Roche, H.M. Gene-nutrient interactions and gender may modulate the association between Apoa1 and Apob gene polymorphisms and metabolic syndrome risk. Atherosclerosis 2011, 214, 408–414. [Google Scholar] [CrossRef]
- Dalziel, B.; Gosby, A.K.; Richman, R.M.; Bryson, J.M.; Caterson, I.D. Association of the TNF-alpha-308 G/A promoter polymorphism with insulin resistance in obesity. Obes. Res. 2002, 10, 401–407. [Google Scholar] [CrossRef]
- Hamid, Y.H.; Rose, C.S.; Urhammer, S.A.; Glumer, C.; Nolsoe, R.; Kristiansen, O.P.; Mandrup-Poulsen, T.; Borch-Johnsen, K.; Jorgensen, T.; Hansen, T.; et al. Variations of the interleukin-6 promoter are associated with features of the metabolic syndrome in caucasian danes. Diabetologia 2005, 48, 251–260. [Google Scholar] [CrossRef]
- Huth, C.; Heid, I.M.; Vollmert, C.; Gieger, C.; Grallert, H.; Wolford, J.K.; Langer, B.; Thorand, B.; Klopp, N.; Hamid, Y.H.; et al. Il6 gene promoter polymorphisms and type 2 diabetes: Joint analysis of individual participants’ data from 21 studies. Diabetes 2006, 55, 2915–2921. [Google Scholar]
- Shen, J.; Arnett, D.K.; Perez-Martinez, P.; Parnell, L.D.; Lai, C.Q.; Peacock, J.M.; Hixson, J.E.; Tsai, M.Y.; Straka, R.J.; Hopkins, P.N.; et al. The effect of IL6-174C/G polymorphism on postprandial triglyceride metabolism in the GOLDN studyboxs. J. Lipid Res. 2008, 49, 1839–1845. [Google Scholar] [CrossRef]
- Sookoian, S.; Garcia, S.I.; Gianotti, T.F.; Dieuzeide, G.; Gonzalez, C.D.; Pirola, C.J. The G-308A promoter variant of the tumor necrosis factor-alpha gene is associated with hypertension in adolescents harboring the metabolic syndrome. Am. J. Hypertens. 2005, 18, 1271–1275. [Google Scholar]
- Meirhaeghe, A.; Cottel, D.; Amouyel, P.; Dallongeville, J. Lack of association between certain candidate gene polymorphisms and the metabolic syndrome. Mol. Genet. Metab. 2005, 86, 293–299. [Google Scholar] [CrossRef]
- Qi, L.; Zhang, C.; van Dam, R.M.; Hu, F.B. Interleukin-6 genetic variability and adiposity: Associations in two prospective cohorts and systematic review in 26,944 individuals. J. Clin. Endocrinol. Metab. 2007, 92, 3618–3625. [Google Scholar] [CrossRef]
- Phillips, C.M.; Goumidi, L.; Bertrais, S.; Ferguson, J.F.; Field, M.R.; Kelly, E.D.; Mehegan, J.; Peloso, G.M.; Cupples, L.A.; Shen, J.; et al. Additive effect of polymorphisms in the IL-6, LTA, and TNF-{alpha} genes and plasma fatty acid level modulate risk for the metabolic syndrome and its components. J. Clin. Endocrinol. Metab. 2010, 95, 1386–1394. [Google Scholar]
- Aaronson, D.S.; Horvath, C.M. A road map for those who don’t know JAK-STAT. Science 2002, 296, 1653–1655. [Google Scholar] [CrossRef]
- Phillips, C.M.; Goumidi, L.; Bertrais, S.; Field, M.R.; Peloso, G.M.; Shen, J.; McManus, R.; Hercberg, S.; Lairon, D.; Planells, R.; et al. Dietary saturated fat modulates the association between STAT3 polymorphisms and abdominal obesity in adults. J. Nutr. 2009, 139, 2011–2017. [Google Scholar] [CrossRef]
- Weedon, M.N.; McCarthy, M.I.; Hitman, G.; Walker, M.; Groves, C.J.; Zeggini, E.; Rayner, N.W.; Shields, B.; Owen, K.R.; Hattersley, A.T.; et al. Combining information from common type 2 diabetes risk polymorphisms improves disease prediction. PLoS Med. 2006, 3, e374. [Google Scholar] [CrossRef]
- Engström, G.; Hedblad, B.; Eriksson, K.F.; Janzon, L.; Lindgärde, F. Complement C3 is a risk factor for the development of diabetes: A population-based cohort study. Diabetes 2005, 54, 570–575. [Google Scholar]
- Halkes, C.J.; van Dijk, H.; de Jaegere, P.P.; Plokker, H.W.; van Der Helm, Y.; Erkelens, D.W.; Castro Cabezas, M. Postprandial increase of complement component 3 in normolipidemic patients with coronary artery disease: Effects of expanded-dose simvastatin. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 1526–1530. [Google Scholar] [CrossRef]
- Muscari, A.; Massarelli, G.; Bastagli, L.; Poggiopollini, G.; Tomassetti, V.; Drago, G.; Martignani, C.; Pacilli, P.; Boni, P.; Puddu, P. Relationship of serum C3 to fasting insulin, risk factors and previous ischaemic events in middle-aged men. Eur. Heart J. 2000, 21, 1081–1090. [Google Scholar] [CrossRef]
- Van Oostrom, A.J.; Alipour, A.; Plokker, T.W.; Sniderman, A.D.; Cabezas, M.C. The metabolic syndrome in relation to complement component 3 and postprandial lipemia in patients from an outpatient lipid clinic and healthy volunteers. Atherosclerosis 2007, 190, 167–173. [Google Scholar] [CrossRef]
- Phillips, C.M.; Kesse-Guyot, E.; Ahluwalia, N.; McManus, R.; Hercberg, S.; Lairon, D.; Planells, R.; Roche, H.M. Dietary fat, abdominal obesity and smoking modulate the relationship between plasma complement component 3 concentrations and metabolic syndrome risk. Atherosclerosis 2012, 220, 513–519. [Google Scholar] [CrossRef]
- Phillips, C.M.; Goumidi, L.; Bertrais, S.; Ferguson, J.F.; Field, M.R.; Kelly, E.D.; Peloso, G.M.; Cupples, L.A.; Shen, J.; Ordovas, J.M.; et al. Complement component 3 polymorphisms interact with polyunsaturated fatty acids to modulate risk of metabolic syndrome. Am. J. Clin. Nutr. 2009, 90, 1665–1673. [Google Scholar] [CrossRef]
- Menzaghi, C.; Trischitta, V.; Doria, A. Genetic influences of adiponectin on insulin resistance, type 2 diabetes, and cardiovascular disease. Diabetes 2007, 56, 1198–1209. [Google Scholar] [CrossRef]
- Sheng, T.; Yang, K. Adiponectin and its association with insulin resistance and type 2 diabetes. J. Genet. Genomics 2008, 35, 321–326. [Google Scholar] [CrossRef]
- Phillips, C.M.; Goumidi, L.; Bertrais, S.; Field, M.R.; Ordovas, J.M.; Cupples, L.A.; Defoort, C.; Lovegrove, J.A.; Drevon, C.A.; Blaak, E.E.; et al. Leptin receptor polymorphisms interact with polyunsaturated fatty acids to augment risk of insulin resistance and metabolic syndrome in adults. J. Nutr. 2010, 140, 238–244. [Google Scholar] [CrossRef]
- Neel, J.V. Diabetes mellitus: A “thrifty” genotype rendered detrimental by “progress”? Am. J. Hum. Genet. 1962, 14, 353–362. [Google Scholar]
- Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 2004, 27, 1047–1053. [Google Scholar] [CrossRef]
- Esparza-Romero, J.; Valencia, M.E.; Martinez, M.E.; Ravussin, E.; Schulz, L.O.; Bennett, P.H. Differences in insulin resistance in Mexican and U.S. Pima Indians with normal glucose tolerance. J. Clin. Endocrinol. Metab. 2010, 95, E358–E362. [Google Scholar] [CrossRef]
- Schulz, L.O.; Bennett, P.H.; Ravussin, E.; Kidd, J.R.; Kidd, K.K.; Esparza, J.; Valencia, M.E. Effects of traditional and western environments on prevalence of type 2 diabetes in Pima indians in Mexico and the U.S. Diabetes Care 2006, 29, 1866–1871. [Google Scholar] [CrossRef]
- Luan, J.; Browne, P.O.; Harding, A.H.; Halsall, D.J.; O'Rahilly, S.; Chatterjee, V.K.; Wareham, N.J. Evidence for gene-nutrient interaction at the PPARgamma locus. Diabetes 2001, 50, 686–689. [Google Scholar] [CrossRef]
- Scacchi, R.; Pinto, A.; Rickards, O.; Pacella, A.; de Stefano, G.F.; Cannella, C.; Corbo, R.M. An analysis of peroxisome proliferator-activated receptor gamma (PPAR-γ2) Pro12Ala polymorphism distribution and prevalence of type 2 diabetes mellitus (T2DM) in world populations in relation to dietary habits. Nutr. Metab. Cardiovasc. Dis. 2007, 17, 632–641. [Google Scholar] [CrossRef]
- Robitaille, J.; Gaudet, D.; Perusse, L.; Vohl, M.C. Features of the metabolic syndrome are modulated by an interaction between the peroxisome proliferator-activated receptor-delta -87T>C polymorphism and dietary fat in French-Canadians. Int. J. Obes. (Lond.) 2007, 31, 411–417. [Google Scholar] [CrossRef]
- Delgado-Lista, J.; Perez-Martinez, P.; Garcia-Rios, A.; Phillips, C.M.; Williams, C.M.; Gulseth, H.L.; Helal, O.; Blaak, E.E.; Kiec-Wilk, B.; Basu, S.; et al. Pleiotropic effects of TCF7L2 gene variants and its modulation in the metabolic syndrome: From the lipgene study. Atherosclerosis 2011, 214, 110–116. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, I.K.; Kang, J.H.; Ahn, Y.; Han, B.G.; Lee, J.Y.; Song, J. Effects of common FTO gene variants associated with BMI on dietary intake and physical activity in Koreans. Clin. Chim. Acta 2010, 411, 1716–1722. [Google Scholar] [CrossRef]
- Sonestedt, E.; Roos, C.; Gullberg, B.; Ericson, U.; Wirfalt, E.; Orho-Melander, M. Fat and carbohydrate intake modify the association between genetic variation in the fto genotype and obesity. Am. J. Clin. Nutr. 2009, 90, 1418–1425. [Google Scholar] [CrossRef]
- Moleres, A.; Ochoa, M.C.; Rendo-Urteaga, T.; Martinez-Gonzalez, M.A.; Azcona San Julian, M.C.; Martinez, J.A.; Marti, A. Dietary fatty acid distribution modifies obesity risk linked to the rs9939609 polymorphism of the fat mass and obesity-associated gene in a Spanish case-control study of children. Br. J. Nutr. 2012, 107, 533–538. [Google Scholar] [CrossRef]
- Garcia-Rios, A.; Perez-Martinez, P.; Delgado-Lista, J.; Phillips, C.M.; Gjelstad, I.M.; Wright, J.W.; Karlstrom, B.; Kiec-Wilk, B.; van Hees, A.M.; Helal, O.; et al. A Period 2 genetic variant interacts with plasma SFA to modify plasma lipid concentrations in adults with metabolic syndrome. J. Nutr. 2012, 142, 1213–1218. [Google Scholar] [CrossRef]
- Corella, D.; Arnett, D.K.; Tucker, K.L.; Kabagambe, E.K.; Tsai, M.; Parnell, L.D.; Lai, C.Q.; Lee, Y.C.; Warodomwichit, D.; Hopkins, P.N.; et al. A high intake of saturated fatty acids strengthens the association between the fat mass and obesity-associated gene and bmi. J. Nutr. 2011, 141, 2219–2225. [Google Scholar] [CrossRef]
- Gutierrez-Aguilar, R.; Kim, D.H.; Woods, S.C.; Seeley, R.J. Expression of new loci associated with obesity in diet-induced obese rats: From genetics to physiology. Obesity (Silver Spring) 2011, 20, 306–312. [Google Scholar]
- Coleman, R.A.; Lewin, T.M.; Muoio, D.M. Physiological and nutritional regulation of enzymes of triacylglycerol synthesis. Annu. Rev. Nutr. 2000, 20, 77–103. [Google Scholar] [CrossRef]
- McGarry, J.D. Banting lecture 2001: Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 2002, 51, 7–18. [Google Scholar] [CrossRef]
- Shimabukuro, M.; Zhou, Y.T.; Levi, M.; Unger, R.H. Fatty acid-induced beta cell apoptosis: A link between obesity and diabetes. Proc. Natl. Acad. Sci. USA 1998, 95, 2498–2502. [Google Scholar]
- Garcia-Rios, A.; Perez-Martinez, P.; Delgado-Lista, J.; Lopez-Miranda, J.; Perez-Jimenez, F. Nutrigenetics of the lipoprotein metabolism. Mol. Nutr. Food Res. 2012, 56, 171–183. [Google Scholar] [CrossRef]
- Perez-Martinez, P.; Garcia-Rios, A.; Delgado-Lista, J.; Perez-Jimenez, F.; Lopez-Miranda, J. Nutrigenetics of the postprandial lipoprotein metabolism: Evidences from human intervention studies. Curr. Vasc. Pharmacol. 2011, 9, 287–291. [Google Scholar] [CrossRef]
- Warodomwichit, D.; Shen, J.; Arnett, D.K.; Tsai, M.Y.; Kabagambe, E.K.; Peacock, J.M.; Hixson, J.E.; Straka, R.J.; Province, M.A.; An, P.; et al. ADIPOQ polymorphisms, monounsaturated fatty acids, and obesity risk: The GOLDN study. Obesity (Silver Spring) 2009, 17, 510–517. [Google Scholar] [CrossRef]
- Perez-Martinez, P.; Lopez-Miranda, J.; Cruz-Teno, C.; Delgado-Lista, J.; Jimenez-Gomez, Y.; Fernandez, J.M.; Gomez, M.J.; Marin, C.; Perez-Jimenez, F.; Ordovas, J.M. Adiponectin gene variants are associated with insulin sensitivity in response to dietary fat consumption in Caucasian men. J. Nutr. 2008, 138, 1609–1614. [Google Scholar]
- Ferguson, J.F.; Phillips, C.M.; Tierney, A.C.; Perez-Martinez, P.; Defoort, C.; Helal, O.; Lairon, D.; Planells, R.; Shaw, D.I.; Lovegrove, J.A.; et al. Gene-nutrient interactions in the metabolic syndrome: Single nucleotide polymorphisms in ADIPOQ and ADIPOR1 interact with plasma saturated fatty acids to modulate insulin resistance. Am. J. Clin. Nutr. 2010, 91, 794–801. [Google Scholar] [CrossRef]
- Shi, H.; Kokoeva, M.V.; Inouye, K.; Tzameli, I.; Yin, H.; Flier, J.S. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest. 2006, 116, 3015–3025. [Google Scholar] [CrossRef]
- Zhao, A.; Yu, J.; Lew, J.L.; Huang, L.; Wright, S.D.; Cui, J. Polyunsaturated fatty acids are FXR ligands and differentially regulate expression of FXR targets. DNA Cell Biol. 2004, 23, 519–526. [Google Scholar] [CrossRef]
- Fraga, M.F.; Ballestar, E.; Paz, M.F.; Ropero, S.; Setien, F.; Ballestar, M.L.; Heine-Suner, D.; Cigudosa, J.C.; Urioste, M.; Benitez, J.; et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. USA 2005, 102, 10604–10609. [Google Scholar]
- Greco, L.; Romino, R.; Coto, I.; Di Cosmo, N.; Percopo, S.; Maglio, M.; Paparo, F.; Gasperi, V.; Limongelli, M.G.; Cotichini, R.; et al. The first large population based twin study of coeliac disease. Gut 2002, 50, 624–628. [Google Scholar] [CrossRef]
- Arkadianos, I.; Valdes, A.M.; Marinos, E.; Florou, A.; Gill, R.D.; Grimaldi, K.A. Improved weight management using genetic information to personalize a calorie controlled diet. Nutr. J. 2007, 6, 29. [Google Scholar] [CrossRef]
- Tapueru-French, C. Can the Use of Genetics Benefit Weight Loss IN A New Zealand Setting? M.Sc. Thesis, University of Auckland, Auckland, New Zealand, 2009. [Google Scholar]
- Stewart-Knox, B.J.; Bunting, B.P.; Gilpin, S.; Parr, H.J.; Pinhao, S.; Strain, J.J.; de Almeida, M.D.; Gibney, M. Attitudes toward genetic testing and personalised nutrition in a representative sample of European consumers. Br. J. Nutr. 2009, 101, 982–989. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Phillips, C.M. Nutrigenetics and Metabolic Disease: Current Status and Implications for Personalised Nutrition. Nutrients 2013, 5, 32-57. https://doi.org/10.3390/nu5010032
Phillips CM. Nutrigenetics and Metabolic Disease: Current Status and Implications for Personalised Nutrition. Nutrients. 2013; 5(1):32-57. https://doi.org/10.3390/nu5010032
Chicago/Turabian StylePhillips, Catherine M. 2013. "Nutrigenetics and Metabolic Disease: Current Status and Implications for Personalised Nutrition" Nutrients 5, no. 1: 32-57. https://doi.org/10.3390/nu5010032
APA StylePhillips, C. M. (2013). Nutrigenetics and Metabolic Disease: Current Status and Implications for Personalised Nutrition. Nutrients, 5(1), 32-57. https://doi.org/10.3390/nu5010032