Higher Mortality Rate in Moderate-to-Severe Thoracoabdominal Injury Patients with Admission Hyperglycemia Than Nondiabetic Normoglycemic Patients
Abstract
:1. Background
2. Methods
2.1. Ethics Statement
2.2. Study Population
2.3. Methods of Statistical Analysis
3. Results
3.1. Characteristics of the Patients
3.2. Mortality Outcome of the Propensity Score-Matched Patient Populations
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lecky, B.O.; Woodford, M.; Alexandrescu, R.; O’Brien, S.J. Changing Epidemiology of Polytrauma. In Damage Control Management in the Polytrauma Patient; Pape, H.C., Peitzman, A.B., Rotondo, M.F., Giannoudis, P.V., Eds.; Springer: New York, NY, USA, 2017; Volume 3, pp. 27–32. [Google Scholar]
- Demirhan, R.; Onan, B.; Oz, K.; Halezeroglu, S. Comprehensive analysis of 4205 patients with chest trauma: A 10-year experience. Interact. Cardiov. Th. 2009, 9, 450–453. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, O.; Varnalidis, I.; Papapostolou, D.; Chatzopoulos, S.; Kotronis, A.; Paraskevas, G.; Konstantara, A.; Papadimitriou, N.; Makrantonakis, A.; Kakoutis, E. Thoraco-abdominal injuries: The general surgeon’s perspective. Rev. Med. Chir. Soc. Med. Nat. Iasi. 2012, 116, 175–181. [Google Scholar] [PubMed]
- Yang, C.J.; Liao, W.I.; Wang, J.C.; Tsai, C.L.; Lee, J.T.; Peng, G.S.; Lee, C.H.; Hsu, C.W.; Tsai, S.H. Usefulness of glycated hemoglobin A1c-based adjusted glycemic variables in diabetic patients presenting with acute ischemic stroke. Am. J. Emerg. Med. 2017, 35, 1240–1246. [Google Scholar] [CrossRef] [PubMed]
- Figler, B.D.; Mack, C.D.; Kaufman, R.; Wessells, H.; Bulger, E.; Smith, T.G.; Voelzke, B. Crash test rating and likelihood of major thoracoabdominal injury in motor vehicle crashes: the new car assessment program side-impact crash test, 1998-2010. J. Trauma Acute Care 2014, 76, 750–754. [Google Scholar] [CrossRef] [PubMed]
- Newgard, C.D.; Lewis, R.J.; Kraus, J.F.; McConnell, K.J. Seat position and the risk of serious thoracoabdominal injury in lateral motor vehicle crashes. Accid. Anal. Prev. 2005, 37, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Rostas, J.W.; Lively, T.B.; Brevard, S.B.; Simmons, J.D.; Frotan, M.A.; Gonzalez, R.P. Rib fractures and their association With solid organ injury: Higher rib fractures have greater significance for solid organ injury screening. Am. J. Surg. 2017, 213, 791–797. [Google Scholar] [CrossRef]
- Park, S. Clinical Analysis for the Correlation of Intra-abdominal Organ Injury in the Patients with Rib Fracture. J. Thorac. Cardiov. Sur. 2012, 45, 246–250. [Google Scholar] [CrossRef]
- Hill, S.L.; Edmisten, T.; Holtzman, G.; Wright, A. The occult pneumothorax: An increasing diagnostic entity in trauma. Am. Surg. 1999, 65, 254–258. [Google Scholar]
- Berg, R.J.; Okoye, O.; Teixeira, P.G.; Inaba, K.; Demetriades, D. The double jeopardy of blunt thoracoabdominal trauma. Arch. Surg. 2012, 147, 498–504. [Google Scholar] [CrossRef]
- Somcharit, L.; Keorochana, K.; Muangman, P.; Chunhasuwankul, R.; Siritongtaworn, P.; Pongnumkul, C. Thoracic trauma at Siriraj Hospital 1997-2006. J. Med. Assoc. Thai. 2010, 93, 73–76. [Google Scholar]
- Chrysou, K.; Halat, G.; Hoksch, B.; Schmid, R.A.; Kocher, G.J. Lessons from a large trauma center: Impact of blunt chest trauma in polytrauma patients-still a relevant problem? Scand. J. Trauma Resus. 2017, 25, 42. [Google Scholar] [CrossRef] [PubMed]
- Mizock, B.A. Alterations in carbohydrate metabolism during stress: A review of the literature. Am. J. Med. 1995, 98, 75–84. [Google Scholar] [CrossRef]
- Yendamuri, S.; Fulda, G.J.; Tinkoff, G.H. Admission hyperglycemia as a prognostic indicator in trauma. J. Trauma 2003, 55, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.; Bochicchio, G.V.; Joshi, M.; Bochicchio, K.; Tracy, K.; Scalea, T.M. Admission hyperglycemia is predictive of outcome in critically ill trauma patients. J. Trauma 2005, 59, 80–83. [Google Scholar] [CrossRef]
- Kreutziger, J.; Wenzel, V.; Kurz, A.; Constantinescu, M.A. Admission blood glucose is an independent predictive factor for hospital mortality in polytraumatised patients. Intensive Care Med. 2009, 35, 1234–1239. [Google Scholar] [CrossRef]
- Laird, A.M.; Miller, P.R.; Kilgo, P.D.; Meredith, J.W.; Chang, M.C. Relationship of early hyperglycemia to mortality in trauma patients. J. Trauma 2004, 56, 1058–1062. [Google Scholar] [CrossRef] [PubMed]
- Leto, R.; Desruelles, D.; Gillet, J.B.; Sabbe, M.B. Admission hyperglycaemia is associated with higher mortality in patients with hip fracture. Eur. J. Emerg. Med. 2015, 22, 99–102. [Google Scholar] [CrossRef]
- Marik, P.E.; Bellomo, R. Stress hyperglycemia: An essential survival response! Crit. Care Med. 2013, 41, e93–e94. [Google Scholar] [CrossRef] [PubMed]
- Dungan, K.M.; Braithwaite, S.S.; Preiser, J.C. Stress hyperglycaemia. Lancet 2009, 373, 1798–1807. [Google Scholar] [CrossRef]
- McCowen, K.C.; Malhotra, A.; Bistrian, B.R. Stress-induced hyperglycemia. Crit. Care Clin. 2001, 17, 107–124. [Google Scholar] [CrossRef]
- Richards, J.E.; Kauffmann, R.M.; Zuckerman, S.L.; Obremskey, W.T.; May, A.K. Relationship of hyperglycemia and surgical-site infection in orthopaedic surgery. J. Bone Joint Surg. Am. 2012, 94, 1181–1186. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.E.; Kauffmann, R.M.; Obremskey, W.T.; May, A.K. Stress-induced hyperglycemia as a risk factor for surgical-site infection in nondiabetic orthopedic trauma patients admitted to the intensive care unit. J. Orthop. Trauma 2013, 27, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Bosarge, P.L.; Kerby, J.D. Stress-induced hyperglycemia: Is it harmful following trauma? Adv. Surg. 2013, 47, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Ray, B.; Ludwig, A.; Yearout, L.K.; Thompson, D.M.; Bohnstedt, B.N. Stress-Induced Hyperglycemia After Spontaneous Subarachnoid Hemorrhage and Its Role in Predicting Cerebrospinal Fluid Diversion. World Neurosurg. 2017, 100, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.W.; Huang, C.Y.; Liu, H.T.; Chen, Y.C.; Hsieh, C.H. Stress-Induced and Diabetic Hyperglycemia Associated with Higher Mortality among Intensive Care Unit Trauma Patients: Cross-Sectional Analysis of the Propensity Score-Matched Population. Int. J. Environ. Res. Public Health 2018, 15, 992. [Google Scholar] [CrossRef] [PubMed]
- Olariu, E.; Pooley, N.; Danel, A.; Miret, M.; Preiser, J.C. A systematic scoping review on the consequences of stress-related hyperglycaemia. PLoS ONE 2018, 13, e0194952. [Google Scholar]
- Peacock, T.S. Perioperative Hyperglycemia: A Literature Review. Aorn. J. 2019, 109, 80–86. [Google Scholar] [CrossRef]
- Kerby, J.D.; Griffin, R.L.; MacLennan, P.; Rue, L.W. Stress-induced hyperglycemia, not diabetic hyperglycemia, is associated with higher mortality in trauma. Ann. Surg. 2012, 256, 446–452. [Google Scholar] [CrossRef]
- Rau, C.S.; Wu, S.C.; Chen, Y.C.; Chien, P.C.; Hsieh, H.Y.; Kuo, P.J.; Hsieh, C.H. Higher Mortality in Trauma Patients Is Associated with Stress-Induced Hyperglycemia, but Not Diabetic Hyperglycemia: A Cross-Sectional Analysis Based on a Propensity-Score Matching Approach. Int. J. Environ. Res. Public Health 2017, 14, 1161. [Google Scholar] [CrossRef]
- Rau, C.S.; Wu, S.C.; Chen, Y.C.; Chien, P.C.; Hsieh, H.Y.; Kuo, P.J.; Hsieh, C.H. Stress-Induced Hyperglycemia, but Not Diabetic Hyperglycemia, Is Associated with Higher Mortality in Patients with Isolated Moderate and Severe Traumatic Brain Injury: Analysis of a Propensity Score-Matched Population. Int. J. Environ. Res. Public Health 2017, 14, 1340. [Google Scholar] [CrossRef]
- Hsieh, C.H.; Hsu, S.Y.; Hsieh, H.Y.; Chen, Y.C. Differences between the sexes in motorcycle-related injuries and fatalities at a Taiwanese level I trauma center. Biomed. J. 2017, 40, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.H.; Liu, H.T.; Hsu, S.Y.; Hsieh, H.Y.; Chen, Y.C. Motorcycle-related hospitalizations of the elderly. Biomed. J. 2017, 40, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.H.; Chen, Y.C.; Hsu, S.Y.; Hsieh, H.Y.; Chien, P.C. Defining polytrauma by abbreviated injury scale >/= 3 for a least two body regions is insufficient in terms of short-term outcome: A cross-sectional study at a level I trauma center. Biomed. J. 2018, 41, 321–327. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2012, 35 (Suppl. 1), S64–S71. [Google Scholar] [CrossRef] [PubMed]
- Butcher, N.; Balogh, Z.J. AIS>2 in at least two body regions: A potential new anatomical definition of polytrauma. Injury 2012, 43, 196–199. [Google Scholar] [CrossRef] [PubMed]
- Maffi, P.; Secchi, A. The Burden of Diabetes: Emerging Data. Dev. Ophthalmol 2017, 60, 1–5. [Google Scholar] [PubMed]
- Tun, N.N.; Arunagirinathan, G.; Munshi, S.K.; Pappachan, J.M. Diabetes mellitus and stroke: A clinical update. World J. Diabetes 2017, 8, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Oei, L.; Rivadeneira, F.; Zillikens, M.C.; Oei, E.H. Diabetes, diabetic complications, and fracture risk. Curr. Osteoporos. Rep. 2015, 13, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Rhee, S.Y.; Kim, Y.S. Peripheral Arterial Disease in Patients with Type 2 Diabetes Mellitus. Diabetes Metab. J. 2015, 39, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Mittal, K.; Katare, D.P. Shared links between type 2 diabetes mellitus and Alzheimer’s disease: A review. Diabetes Metab. Syndr. 2016, 10(2 Suppl 1), S144–S149. [Google Scholar] [CrossRef]
- Hildebrand, F.; Giannoudis, P.V.; Griensven, M.; Zelle, B.; Ulmer, B.; Krettek, C.; Bellamy, M.C.; Pape, H.C. Management of polytraumatized patients with associated blunt chest trauma: A comparison of two European countries. Injury 2005, 36, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Scalea, T.M.; Bochicchio, G.V.; Bochicchio, K.M.; Johnson, S.B.; Joshi, M.; Pyle, A. Tight glycemic control in critically injured trauma patients. Ann. Surg. 2007, 246, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Wahl, W.L.; Taddonio, M.; Maggio, P.M.; Arbabi, S.; Hemmila, M.R. Mean glucose values predict trauma patient mortality. J. Trauma 2008, 65, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Kutcher, M.E.; Pepper, M.B.; Morabito, D.; Sunjaya, D.; Knudson, M.M.; Cohen, M.J. Finding the sweet spot: Identification of optimal glucose levels in critically injured patients. J. Trauma 2011, 71, 1108–1114. [Google Scholar] [CrossRef] [PubMed]
- Finfer, S.; Chittock, D.R.; Su, S.Y.; Blair, D.; Foster, D.; Dhingra, V.; Bellomo, R.; Cook, D.; Dodek, P.; Henderson, W.R.; et al. Intensive versus conventional glucose control in critically ill patients. N. Engl. J. Med. 2009, 360, 1283–1297. [Google Scholar] [PubMed]
Variables | SIH n = 52 | DH n = 79 | NDN n = 621 | p |
---|---|---|---|---|
Male, n (%) | 35(67.3) | 55(69.6) | 445(71.7) | 0.763 |
Age, years | 50.2 ± 15.6 | 61.4 ± 13.7 * | 49.8 ± 17.2 | <0.001 |
Co-morbidities | ||||
HTN, n (%) | 10(19.2) | 40(50.6) * | 112(18.0) | <0.001 |
CHF, n (%) | 0(0.0) | 2(2.5) * | 2(0.3) | 0.034 |
CAD, n (%) | 1(1.9) | 3(3.8) | 12(1.9) | 0.555 |
CVA, n (%) | 1(1.9) | 1(1.3) | 7(1.1) | 0.878 |
ESRD, n (%) | 0(0.0) | 2(2.5) | 9(1.4) | 0.498 |
Mechanisms | 0.642 | |||
Penetrating injury, n (%) | 2(3.8) | 1(1.3) | 17(2.7) | |
Blunt injury, n (%) | 50(96.2) | 78(98.7) | 604(97.3) | |
GCS | 14.0 ± 1.9 | 14.2 ± 2.6 | 14.5 ± 1.8 | 0.167 |
ISS, median (IQR) | 20(15–22) * | 13(9–17) | 13(10–18) | <0.001 |
<16 | 13(25.0) * | 48(60.8) | 356(57.3) | <0.001 |
16–24 | 30(57.7) * | 23(29.1) | 223(35.9) | 0.002 |
≥25 | 9(17.3) * | 8(10.1) | 42(6.8) | 0.018 |
Mortality, n (%) | 5(9.6) * | 5(6.3) * | 9(1.4) | <0.001 |
Hospital LOS (days) | 17.4 ± 17.7 * | 14.7 ± 14.5 | 13.1 ± 10.7 | 0.036 |
Propensity-Score Matched Cohort | |||||
---|---|---|---|---|---|
Variables | SIH n = 47 | NDN n = 47 | Odds Ratio (95% CI) | p | Standardized Difference |
Male, n (%) | 14 (29.8) | 14 (29.8) | 1.0 (0.41–2.42) | 1.000 | 0.00% |
Age, years | 50.2 ± 15.5 | 50.3 ± 15.5 | ― | 0.963 | −0.96% |
Co-morbidities | |||||
HTN, n (%) | 9 (19.1) | 9 (19.1) | 1.0 (0.36–2.79) | 1.000 | 0.00% |
CAD, n (%) | 0 (0.0) | 0 (0.0) | ― | ― | ― |
CHF, n (%) | 0 (0.0) | 0 (0.0) | ― | ― | ― |
CVA, n (%) | 0 (0.0) | 0 (0.0) | ― | ― | ― |
ESRD, n (%) | 0 (0.0) | 0 (0.0) | ― | ― | ― |
Mechanisms, n (%) | 0.00% | ||||
Penetrating injury, n (%) | 1 (2.1) | 1 (2.1) | 1.0 (0.06–16.47) | 1.000 | |
Blunt injury, n (%) | 46 (97.9) | 46 (97.9) | 1.0 (0.06–16.47) | 1.000 | |
ISS, median (IQR) | 20 (14–21) | 19 (14–21) | ― | 0.985 | −0.38% |
Outcome measurement | |||||
Mortality, n (%) | 5 (10.6) | 0 (0.0) | ― | 0.022 | ― |
Propensity-Score Matched Cohort | |||||
---|---|---|---|---|---|
Variables | DH n = 76 | NDN n = 76 | Odds Ratio (95% CI) | p | Standardized Difference |
Male, n (%) | 53 (69.7) | 53 (69.7) | 1.0 (0.50–2.00) | 1.000 | 0.00% |
Age, years | 61.1 ± 13.8 | 61.2 ± 13.1 | ― | 0.986 | −0.29% |
Co-morbidities | |||||
HTN, n (%) | 37 (48.7) | 37 (48.7) | 1.0 (0.53–1.89) | 1.000 | 0.00% |
CAD, n (%) | 1 (1.3) | 1 (1.3) | 1.0 (0.06–16.29) | 1.000 | 0.00% |
CHF, n (%) | 0 (0.0) | 0 (0.0) | ― | ― | ― |
CVA, n (%) | 1 (1.3) | 1 (1.3) | 1.0 (0.06–16.29) | 1.000 | 0.00% |
ESRD, n (%) | 1 (1.3) | 1 (1.3) | 1.0 (0.06–16.29) | 1.000 | 0.00% |
Mechanisms, n (%) | 0.00% | ||||
Penetrating injury, n (%) | 1 (1.3) | 1 (1.3) | 1.0 (0.06–16.29) | ||
Blunt injury, n (%) | 75 (98.7) | 75 (98.7) | 1.0 (0.06–16.29) | ||
ISS, median (IQR) | 13 (9–17) | 14 (9–17) | ― | 0.987 | −0.46% |
Outcome measurement | |||||
Mortality, n (%) | 4 (5.3) | 0 (0.0) | ― | 0.043 | ― |
Propensity-Score Matched Cohort | |||||
---|---|---|---|---|---|
Variables | SIH n = 35 | DH n = 35 | Odds Ratio (95% CI) | p | Standardized Difference |
Male, n (%) | 24 (68.6) | 24 (68.6) | 1.0 (0.36–2.74) | 1.000 | 0.00% |
Age, years | 54.6 ± 14.6 | 55.1 ± 13.9 | ― | 0.881 | −3.60% |
Co-morbidities | |||||
HTN, n (%) | 9 (25.7) | 9 (25.7) | 1.0 (0.34–2.92) | 1.000 | 0.00% |
CAD, n (%) | 0 (0.0) | 0 (0.0) | ― | ― | ― |
CHF, n (%) | 0 (0.0) | 0 (0.0) | ― | ― | ― |
CVA, n (%) | 0 (0.0) | 0 (0.0) | ― | ― | ― |
ESRD, n (%) | 0 (0.0) | 0 (0.0) | ― | ― | ― |
Mechanisms, n (%) | 0.00% | ||||
Penetrating injury, n (%) | 0 (0.0) | 0 (0.0) | ― | ― | ― |
Blunt injury, n (%) | 35 (100) | 35 (100) | ― | ― | ― |
ISS, median (IQR) | 17 (13–20) | 17 (10–21) | ― | 0.706 | 9.06% |
Outcome measurement | |||||
Mortality, n (%) | 4 (11.4) | 3 (8.6) | 1.4 (0.29–6.66) | 0.690 | ― |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, W.-T.; Wu, S.-C.; Chou, S.-E.; Huang, C.-Y.; Hsu, S.-Y.; Liu, H.-T.; Hsieh, C.-H. Higher Mortality Rate in Moderate-to-Severe Thoracoabdominal Injury Patients with Admission Hyperglycemia Than Nondiabetic Normoglycemic Patients. Int. J. Environ. Res. Public Health 2019, 16, 3562. https://doi.org/10.3390/ijerph16193562
Su W-T, Wu S-C, Chou S-E, Huang C-Y, Hsu S-Y, Liu H-T, Hsieh C-H. Higher Mortality Rate in Moderate-to-Severe Thoracoabdominal Injury Patients with Admission Hyperglycemia Than Nondiabetic Normoglycemic Patients. International Journal of Environmental Research and Public Health. 2019; 16(19):3562. https://doi.org/10.3390/ijerph16193562
Chicago/Turabian StyleSu, Wei-Ti, Shao-Chun Wu, Sheng-En Chou, Chun-Ying Huang, Shiun-Yuan Hsu, Hang-Tsung Liu, and Ching-Hua Hsieh. 2019. "Higher Mortality Rate in Moderate-to-Severe Thoracoabdominal Injury Patients with Admission Hyperglycemia Than Nondiabetic Normoglycemic Patients" International Journal of Environmental Research and Public Health 16, no. 19: 3562. https://doi.org/10.3390/ijerph16193562
APA StyleSu, W.-T., Wu, S.-C., Chou, S.-E., Huang, C.-Y., Hsu, S.-Y., Liu, H.-T., & Hsieh, C.-H. (2019). Higher Mortality Rate in Moderate-to-Severe Thoracoabdominal Injury Patients with Admission Hyperglycemia Than Nondiabetic Normoglycemic Patients. International Journal of Environmental Research and Public Health, 16(19), 3562. https://doi.org/10.3390/ijerph16193562