Next Article in Journal
The Involvement of the Banana F-Box Protein MaEBF1 in Regulating Chilling-Inhibited Starch Degradation through Interaction with a MaNAC67-Like Protein
Next Article in Special Issue
Bio-Guided Fractionation of Ethanol Extract of Leaves of Esenbeckia alata Kunt (Rutaceae) Led to the Isolation of Two Cytotoxic Quinoline Alkaloids: Evidence of Selectivity Against Leukemia Cells
Previous Article in Journal
Brusatol, a Nrf2 Inhibitor Targets STAT3 Signaling Cascade in Head and Neck Squamous Cell Carcinoma
Previous Article in Special Issue
Anacardium Plants: Chemical,Nutritional Composition and Biotechnological Applications
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Antidiabetic Potential of Medicinal Plants and Their Active Components

by
Bahare Salehi
1,
Athar Ata
2,
Nanjangud V. Anil Kumar
3,
Farukh Sharopov
4,
Karina Ramírez-Alarcón
5,
Ana Ruiz-Ortega
6,
Seyed Abdulmajid Ayatollahi
7,8,
Patrick Valere Tsouh Fokou
9,
Farzad Kobarfard
7,10,
Zainul Amiruddin Zakaria
11,12,
Marcello Iriti
13,*,
Yasaman Taheri
7,
Miquel Martorell
5,14,*,
Antoni Sureda
15,
William N. Setzer
16,
Alessandra Durazzo
17,
Massimo Lucarini
17,
Antonello Santini
18,*,
Raffaele Capasso
19,
Elise Adrian Ostrander
20,
Atta -ur-Rahman
21,
Muhammad Iqbal Choudhary
21,
William C. Cho
22,* and
Javad Sharifi-Rad
23,*
add Show full author list remove Hide full author list
1
Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
2
Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB R3B 2G3, Canada
3
Department of Chemistry, Manipal Institute of Technology, Manipal University, Manipal 576104, India
4
Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan
5
Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepción 4070386, Chile
6
Facultad de Educación y Ciencias Sociales, Universidad Andrés Bello, Autopista Concepción—Talcahuano, Concepción 7100, Chile
7
Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
8
Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran
9
Department of Biochemistry, Faculty of Science, University of Yaounde 1, Yaounde P.O. Box 812, Cameroon
10
Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran
11
Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
12
Integrative Pharmacogenomics Institute (iPROMISE), Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam Selangor 42300, Malaysia
13
Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, 20133 Milan, Italy
14
Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción 4070386, Chile
15
Research Group on Community Nutrition and Oxidative Stress, Laboratory of Physical Activity Sciences, and CIBEROBN—Physiopathology of Obesity and Nutrition, CB12/03/30038, University of Balearic Islands, E-07122 Palma de Mallorca, Spain
16
Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
17
CREA—Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
18
Department of Pharmacy, University of Napoli Federico II, Via D. Montesano, 49-80131 Napoli, Italy
19
Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
20
Medical Illustration, Kendall College of Art and Design, Ferris State University, Grand Rapids, MI 49503, USA
21
H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
22
Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
23
Department of Pharmacology, Faculty of Medicine, Jiroft University of Medical Sciences, Jiroft 7861756447, Iran
*
Authors to whom correspondence should be addressed.
Biomolecules 2019, 9(10), 551; https://doi.org/10.3390/biom9100551
Submission received: 29 August 2019 / Revised: 17 September 2019 / Accepted: 25 September 2019 / Published: 30 September 2019

Abstract

:
Diabetes mellitus is one of the major health problems in the world, the incidence and associated mortality are increasing. Inadequate regulation of the blood sugar imposes serious consequences for health. Conventional antidiabetic drugs are effective, however, also with unavoidable side effects. On the other hand, medicinal plants may act as an alternative source of antidiabetic agents. Examples of medicinal plants with antidiabetic potential are described, with focuses on preclinical and clinical studies. The beneficial potential of each plant matrix is given by the combined and concerted action of their profile of biologically active compounds.

Graphical Abstract

1. Introduction

Diabetes mellitus (DM) is a serious, chronic, and complex metabolic disorder of multiple aetiologies with profound consequences, both acute and chronic [1]. Also known only as diabetes, DM and its complications affect people both in the developing and developed countries, leading to a major socioeconomic challenge. It is estimated that 25% of the world population is affected by this disease [2]. Genetic and environmental factors contribute significantly to the development of diabetes [3]. During the development of diabetes, the cells of the body cannot metabolize sugar properly due to deficient action of insulin on target tissues resulting from insensitivity or lack of insulin (a peptide hormone that regulates blood glucose). The inability of insulin to metabolize sugar occurs when the pancreas does not produce enough insulin or when the body cannot effectively use the insulin it produces. This triggers the body to break down its own fat, protein, and glycogen to produce sugar, leading to the presence of high sugar levels in the blood with excess by-products called ketones being produced by the liver [4,5]. Diabetes is distinguished by chronic hyperglycemia with disturbances in the macromolecules’ metabolism as a result of impairments in insulin secretion, insulin action, or both. Diabetes causes long-term damage, dysfunction, and failure of various organ systems (heart, blood vessels, eyes, kidneys, and nerves), leading to disability and premature death [6]. The severity of damage triggered by hyperglycemia on the respective organ systems may be related to how long the disease has been present and how well it has been controlled. Several symptoms such as thirst, polyuria, blurring of vision, and weight loss also accompany diabetes [7].

2. Types of Diabetes, Prevalence, and Management

There are various types of diabetes of which type 1 DM (T1DM) and type 2 DM (T2DM) were the most usually discussed. The T1DM is also known as insulin-dependent diabetes. It is primarily due to pancreatic islet beta cell destruction and is characterized by deficient insulin production in the body [6]. Patients with T1DM are prone to ketoacidosis and need daily administration of insulin to control the amount of glucose in their blood. The majority of T1DM occurs in children and adolescents [5]. On the other hand, T2DM, also known as non-insulin-dependent diabetes, results from the body’s ineffective use of insulin and hyperglycemia [8,9] and accounts for the vast majority of people with diabetes around the world. Insulin resistance is due to a reduced responsiveness of target tissues to normal circulating levels of insulin [9]. Ethnicity, family history of diabetes, and previous gestational diabetes, older age, overweight and obesity, unhealthy diet, physical inactivity, and smoking increase diabetes risk. Most people with diabetes are affected by T2DM diabetes (90%), usually occur nearly entirely among adults but, in these days, is increasing in children [5].
The universal prevalence of diabetes has nearly doubled since 1980, rising from 4.7% to 8.5% in the adult population. Moreover, the prevalence of diabetes has also been found to steadily increase for the past 3 decades and has risen faster in low- and middle-income countries compared to high-income countries. The increase in the prevalence of diabetes is parallel with an increase in associated risk factors such as being overweight or obese. If not properly treated or controlled, diabetes may cause blindness, kidney failure, lower limb amputation, and other long-term consequences that impact significantly on the quality of life [10]. Interestingly, the WHO also projects that diabetes will be the seventh leading cause of death in 2030 [11]. The incidence and prevalence of diabetes have continued to increase globally, despite a great deal of research with the resulting burden resting more heavily on tropical developing countries [12,13]. Based on demographic studies, by 2030, the number of people older than 64 years with diabetes will be greater in developing countries (≥82 million) in comparison to that in developed countries (≥48 million). The greatest relative increases are projected to occur in the Middle East crescent, sub-Saharan Africa, and India [14,15].
Amongst all people with diabetes, T2DM accounts for the majority (90%) of cases, and these can be prevented as well as treated easily, while T1DM cannot be prevented with current knowledge. Since management of diabetes is complex and multidisciplinary, it should include primary prevention through promotion of a healthy diet and lifestyle (such as exercise). Dietary management and exercise represent important pillars of care and are crucial in the treatment of T2DM, and both may be adequate to attain and retain the therapeutic goals to normolipidemic and normoglycemia.

3. Antidiabetic Drugs and Their Side Effects

There are several classes of oral hypoglycemic drugs that exert antidiabetic effects through different mechanisms, namely sulfonylureas, biguanides, α-glucosidase inhibitors, thiazolidinediones, and non-sulfonylureas secretagogues. Oral sulfonylureas, such as glimepiride and glyburide, act to reduce blood sugar, mainly by elevating insulin release from islets of Langerhans. This is achieved through binding with the sulfonylurea receptor on β cells resulting in adenosine triphosphate-dependent potassium channels closure. As a result, the cell membrane depolarizes and the following calcium influx accompanied by secretion of stored insulin from secretory granules within the cells takes place. This mechanism works only in the presence of insulin [16,17].
Another oral hypoglycemic drug, the biguanides, acts to reduce hepatic gluconeogenesis and to replenish peripheral tissues’ sensitivity to insulin, actions that are achieved through elevation of insulin-stimulated uptake and use of sugar. Nevertheless, biguanides are ineffective in insulin absence. The best example of this class is metformin.
The α-glucosidase inhibitors, such as acarbose and miglitol, impede certain enzymes responsible for the breakdown of carbohydrates in the small intestine. This class of hypoglycemic agents acts mostly by reducing the absorption rate of carbohydrates in the body. Also, acarbose reversibly inhibits both pancreatic α-amylase and α-glucosidase enzymes by binding to the carbohydrate-binding region and by interfering with their hydrolysis into monosaccharides, which leads to a slower absorption together with a reduction in postprandial blood sugar levels [16,18].
Another important class of oral hypoglycemic agents is the thiazolidinediones (TZDs), such as pioglitazone and rosiglitazone, of which the mechanism of action primarily includes improving muscle and adipose tissue sensitivity to insulin and, to a smaller extent, reducing liver glucose production. TZDs also are potent and selective agonists to the nuclear peroxisome proliferator-activated receptor gamma (PPARγ) present in liver, skeletal muscle, and adipose tissue. Activation of PPARγ receptors controls the transcription of insulin-responsive genes involved in the regulation of transportation, production, and glucose use. Also, TZDs have been reported to augment β-cell function by lowering free fatty acid levels that ultimately lead to β-cell death [19].
The last class of oral hypoglycemic agents is the non-sulfonylureas secretagogues, which include meglitinide and repaglinide and which increases the secretion of insulin from active β cells by a similar mechanism as sulfonylureas. However, this class of oral antidiabetic agents binds to different β-cell receptors [20].
Although synthetic oral hypoglycemic drugs alongside insulin are the main route for controlling diabetes, they fail to reverse the course of its complications completely and further worsen it by the fact that they also demonstrate prominent side effects. This forms the main force for discovering alternative sources of antidiabetic agents [21]. Despite the significant progress made in the treatment of diabetes using oral antidiabetic agents in the past three decades, the results of treatment of diabetic patients are still far from perfect. Several disadvantages have been reported related to the use of those oral hypoglycemic agents, including drug resistance (reduction of efficiency), adverse effects, and even toxicity. For example, sulfonylureas lose their effectiveness after 6 years of treatment in approximately 44% of patients, whereas glucose-lowering drugs are reported to be not able to control hyperlipidemia [22]. Due to the several limitations associated with the use of existing synthetic antidiabetic drugs, the search for newer antidiabetic drugs from natural source continues [23].

4. Medicinal Plants as an Alternative Source of Antidiabetic Agents

Natural products, particularly of plant origin, are the main quarry for discovering promising lead candidates and play an imperative role in the upcoming drug development programs [24,25,26]. Ease of availability, low cost, and least side effects make plant-based preparations the main key player of all available therapies, especially in rural areas [27]. Moreover, many plants provide a rich source of bioactive chemicals, which are free from undesirable side effects and possess powerful pharmacological actions [28,29,30,31,32,33,34]. Plants also have always been an exemplary source of drugs with many of the currently available drugs being obtained directly or indirectly from them [2,29,30,31]. The recent review of Durazzo et al. [35] gives a current snapshot of the strict interaction between the main biologically active compounds in plants and botanicals by giving a mini overview of botanicals features, a definition of the study, and examples of innovative (i.e., an assessment of the interaction of bioactive compounds, chemometrics, and the new goal of biorefineries) and a description of existing databases (i.e., plant metabolic pathways, food composition, bioactive compounds, dietary supplements, and dietary markers); in this regard, the authors marked the need for categorization of botanicals as useful tools for health research [35].
For centuries, many plants have been considered a fundamental source of potent antidiabetic drugs. In developing countries, particularly, medicinal plants are used to treat diabetes to overcome the burden of the cost of conventional medicines to the population [2]. Nowadays, treatments of diseases including diabetes using medicinal plants are recommended [36] because these plants contain various phytoconstituents such as flavonoids, terpenoids, saponins, carotenoids, alkaloids, and glycosides, which may possess antidiabetic activities [37]. Also marked by Durazzo et al. [35], the combined action of biologically active compounds (i.e., polyphenols, carotenoids, lignans, coumarins, glucosinolates, etc.) leads to the potential beneficial properties of each plant matrix, and this can represent the first step for understanding their biological actions and beneficial activities. Generally, the main current approaches of study [38,39] of the interactions of phytochemicals can be classified: (i) model system development of interactions [40,41,42]; (ii) study of extractable and nonextractablecompounds [43,44]; or (iii) characterization of biologically active compound-rich extracts [45,46].
The antihyperglycemic effects resulting from treatment with plants are usually attributed to their ability to improve the performance of pancreatic tissue, which is done by increasing insulin secretions or by reducing the intestinal absorption of glucose [2].
The number of people with diabetes today has been growing and causing increasing concerns in the medical community and the public. Despite the presence of antidiabetic drugs in the pharmaceutical market, the treatment of diabetes with medicinal plants is often successful. Herbal medicines and plant components with insignificant toxicity and no side effects are notable therapeutic options for the treatment of diabetes around the world [47]. Most tests have demonstrated the benefits of medicinal plants containing hypoglycemic properties in diabetes management. Ríos et al. [48] described medicinal plants (i.e., aloe, banaba, bitter melon, caper, cinnamon, cocoa, coffee, fenugreek, garlic, guava, gymnema, nettle, sage, soybean, green and black tea, turmeric, walnut, and yerba mate) used for treating diabetes and its comorbidities and the mechanisms of natural products as antidiabetic agents, with attention to compounds of high interest such as fukugetin, palmatine, berberine, honokiol, amorfrutins, trigonelline, gymnemic acids, gurmarin, and phlorizin. The current review of Bindu and Narendhirakannan [49] has categorized and described from literature 81 plants native to Asian countries with antidiabetic, antihyperglycemic, hypoglycemic, anti-lipidemic, and insulin-mimetic properties.
Traditional knowledge of antidiabetic Asian plants: (1) Review in Iran [50,51,52,53,54]; (2) Review in Jordan [55,56,57]; (3)Review in Malaysia [58,59]; (4) Review in Mongolia [60]; (5) Review in Philippines [61,62]; (6) Review in Saudi Arabia [63,64,65]; (7) Review in Korea [66,67,68]; (8) Review in Sri Lanka [69]; (9) Review in Syria [70]; (10) Review in Thailand [71,72,73,74,75]; (11) Review in Turkey [76,77,78,79,80,81,82]; (12) Review in Vietnam [83,84,85]; (13) Review in India [86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105]; and (14) Review in China [99,106,107,108,109,110,111,112].
The biological activities considered in this review are antidiabetic, antihyperglycemic, and hypoglycemic activities as well as α-amylase and α-glucosidase inhibition. A majority of the plant species was tested for antidiabetic activity. The methodology followed while collecting the plant species should influence the treatment of diabetes. Accordingly, the plants screened from the Asian region were selected. Then, the genus name was searched to identify whether any species belonging to the same genus are reported elsewhere. Such plants are listed in Table 1. Those plants where only one species is available are reported in Table 2.
Table 1 has 509 plants belonging to 140 genera. Among these 140 genera, some of them have more than ten species exhibiting an antidiabetic property. Ficus with 18 species, Artemisia with 13, Solanum with 12, Terminalia with 11, and Euphorbia with 10 are some of the genera which have a large number of species exhibiting an antidiabetic property. In the Ficus genus, among 18 plants, the prominent species having relevance to traditional medicines are Ficus benghalensis, Ficus hispida, and Ficus elastica. Ficus benghalensis, also known as Indian Banyan tree, is one of the most frequently used plants for the treatment of diabetes [89] and is used in folk medicines, Ayurveda, Unani, Siddha [113], and homeopathy [114]. It is worth mentioning the recent review of Deepa et al. [115] on the role of Ficus species in the management of diabetes mellitus: F. benghalensis, F. carica, F. glomerata, F. glumosa, F. racemosa, and F. religiosa exhibited remarkable antidiabetic properties with various mechanisms of action. The leaves and edible fruits of Ficus hispida are used for the treatment of diabetes [116] and is used in Ayurveda [117], Siddha [118], and traditional African medicine [119]. Ficus elastica, an ethnomedicinal Filipino plant, exhibits less toxicity [62], which is used in diabetes treatment.
In the Artemisia genus, Artemisia absinthium is one of the traditional medicinal plant used for diabetes treatment [120]. Artemisia afra is one of the popular herbal medicines used in the southern part of Africa [121]. Artemisia herba-alba is a traditional medicinal plant [122], and its aqueous extract of the leaves and barks reduces blood glucose levels [123]. Solanum americanum is a traditional medicine used in Guatemala [124], while Solanum viarum is used in India [125]. Terminalia arjuna is a plant used in India and Bangladesh [126] and exhibits amylase inhibition (IC50 value of 302 μg/mL) [127]. Terminalia chebula is a medicinal plant used in India [128], Bangladesh [129], Thailand [75], and Iran [130]. Euphorbia ligularia [104], Euphorbia neriifolia [131], and Euphorbia caducifolia [132] are some of the plants traditionally used in India. Similarly, Euphorbia thymifolia and Euphorbia hirta are used in Bangladesh [116,133], and Euphorbia kansui is a Korean traditional medicinal plant used for diabetes treatment [134]. Allium cepa, Mangifera indica, Murraya koenigii, and Phyllanthus amarus reduce triglycerides (TG), total cholesterol (TC), and very low-density lipoproteins (VLDL) levels and exhibit antidiabetic and hypolipidemic effects [135].
α-Amylase inhibitors are reported in several plants, as follows. The corresponding IC50 values in μg/mL are in parentheses.
  • Pterocarpus marsupium (0.9) [136]
  • Catharanthus roseus, Carthamus tinctorius, Momordica charantia, Gynostemma pentaphyllum, Glycyrrhiza glabra, Smilax glabra, Psidium guajava, and Rehmannia glutinosa (ranging from 2.5 to 48.8) [85]
  • Santalum spicatum (5.43) [136]
  • Ocimum tenuiflorum (8.9) [128]
  • Rhizoma fagopyri, Rosa rugosa, Caulis polygoni, Fructus amomi, Rhizoma alpiniae officinarum, Folium ginkgo, and Cortex cinnamomi (16 to 2342.2) [109]
  • Methanol extract of Marrubium radiatum (61.1) [137]
  • Aloe vera (80) [138]
  • Methanol extract of Salvia acetabulosa (91.2) [137]
  • Paronychia argentea (200) [138]
  • Methanol extracts of Terminalia arjuna (302) [127]
  • Methanol extracts of Aegle marmelos (503) [127]
  • Linum usitatisumum (540) [128]
  • Methanol extracts of Eugenia cumini (632) [127]
  • Morus alba (1440) [128]
  • Moringa stenopetala (1470) [139]
  • Nelumbo nucifera (2200) [140]
  • Aqueous extract of Costus pictus (9900) [141]
Alpha-glucosidase inhibitors are reported in several plants, as follows. The corresponding IC50 values in μg/mL are in parentheses.
  • Beyeria leshnaultii (0.39) [136]
  • Mucuna pruriens (0.8) [136]
  • Acacia ligulata (1.01) [136]
  • Pterocarpus marsupium (1.01) [136]
  • Boerhaavia diffusa (1.72) [136]
  • Hydroalcoholic extract of Juniperus oxycedrus (4.4) [142]
  • Fagonia cretica (4.62) [143]
  • Santalum spicatum (5.16) [136]
  • Rhizoma fagopyri, Rosa rugosa, Caulis polygoni, Fructus amomi, Rhizoma alpiniae officinarum, Folium ginkgo, and Cortex cinnamomi (49 to 3385.5) [109]
  • Methanol extract of Marrubium radiatum (68.8) [137]
  • Methanol–water extract of Eugenia polyantha (71) [144]
  • Methanol extract of Salvia acetabulosa (76.9) [137]
  • Hydroalcoholic extracts of Ludwigia octovalvis (202) [145]
  • Hydroalcoholic extracts of Camellia sinensis (299) [145]
  • Aralia elata (450) [146]
  • Hydroalcoholic extracts of Iostephane heterophylla (509) [145]
  • Cinnamomum zeylanicum (670) [147]
  • Nelumbo nucifera (1860) [140]
  • Aqueous extract of Costus pictus (2510) [141]
Table 2 has 194 plant species, which includes only the genera represented by one species.

5. Medicinal Plants with Antidiabetic Potential

5.1. Preclinical In Vitro/In Vivo (Animal) Studies

Several plant species having hypoglycemic activity have been available in the literature; most of these plants contain bioactive compounds such glycosides, alkaloids, terpenoids, flavonoids, carotenoids, etc., that are frequently implicated as having an antidiabetic effect. In this section, plant species with antidiabetic potential will be organized in alphabetical order (Table 3).

5.1.1. Acacia arabica (Fabaceae)

Two doses of chloroform extracts of Acacia arabica (250 and 500 mg/kg, p.o. (orally) for two weeks) were evaluated in alloxan-induced diabetic albino rats [891]. The results of this study showed an antidiabetic effect in the two doses tested, decreasing serum glucose level and restoring TC, TG, and high-density lipoprotein (HDL) and low-density lipoprotein (LDL) levels. Additionally, in this study chloroform extracts of Benincasa hispida fruit, Tinispora cordifolia stem, Ocimum sanctum aerial parts, and Jatropha curcus leaves were evaluated, showing similar effects.
In another study performed in streptozotocin-induced diabetic rats, the extract of Acacia arabica (100 and 200 mg/kg, p.o. for 21 days) provoked a significantly decrease in serum glucose, TC, TG, LDL, and malonyldialdehyde (MDA) levels and a significantly increase in HDL and coenzyme Q10 in a dose-dependent manner [892].

5.1.2. Achyranthes rubrofusca (Amaranthaceae)

Hypoglycemic activity of the aqueous and ethanolic extracts of Achyranthes rubrofusca leaves was studied in alloxan-induced diabetic rats [893]. The two extracts (200 mg/kg, p.o. for 28 days) significantly decreased the blood glucose level and increased pancreatic enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione levels. Better results were obtained with the aqueous extract but were not statistically significant.

5.1.3. Albizzia lebbeck (Fabaceae)

Oral administration of a methanol/dichloromethane extract from Albizzia lebbeck Benth. stem bark (100, 200, 300, or 400 mg/k, for 30 days) was evaluated in streptozotocin-induced diabetic rats [894]. The treatment significantly decreased fasting blood glucose (FBG) and glycated hemoglobin and enhanced plasma insulin levels. Moreover, it significantly decreased the levels of TC, TG, LDL, and VLDL and significantly increased the level of HDL. The treatment also resulted in a marked increase in reduced glutathione, glutathione peroxidase, CAT, and SOD and a diminished level of lipid peroxidation in liver and kidneys of streptozotocin-induced diabetic rats. Moreover, the histopathological analysis of the pancreas, liver, kidney, and heart showed that the treatment protected these organs in diabetic rats and reduced the lesions in a dose-dependent manner. In another study in streptozotocin-nicotinamide-induced diabetic rats, the methanolic extract of Albizzia lebbeck bark significantly decreased the level of serum glucose, creatinine, urea, TC, TG, LDL, and VLDL and increased HDL level [895].

5.1.4. Aloe vera (Asphodelaceae)

Aloe vera extract was evaluated in streptozotocin-induced diabetic mice and in mouse embryonic NIH/3T3 cells [896]. Administration of an extract at a dosage of 130 mg/kg per day for four weeks resulted in a significant decrease in blood glucose, TG, LDL, and TC, an effect comparable to that of metformin. Moreover, this study showed that a lyophilized aqueous aloe extract (1 mg/mL) upregulated GLUT-4 mRNA synthesis in NIH/3T3 cells. In a more recent study, Aloe vera extract (300 mg/kg) exerted antidiabetic effects by improving insulin secretion and pancreatic β-cell function by restoring pancreatic islet mass in streptozotocin-induced diabetic rats [897].

5.1.5. Amaranthus tricolor (Amaranthaceae)

Methanolic extract of Amaranthus tricolor whole plant at different doses (50, 100, 200, or 400 mg/kg) was administered one hour before glucose administration in the oral glucose tolerance test (GTT) [898]. The results of this study showed significant antihyperglycemic activity in glucose-loaded mice at all doses of the extract tested, with the maximum effect observed at the maximum dose tested and with an effect comparable to glibenclamide (10 mg/kg).

5.1.6. Anacardium occidentale (Anacardiaceae)

Hypoglycemic role of Anacardium occidentale was reported in streptozotocin-induced diabetic rats [899]. The rats were treated with 175 mg/kg of the aqueous extract, twice daily, beginning 2 days before streptozotocin injection. Three days after streptozotocin administration, there was a significantly lower blood glucose level in pretreated rats compared to control diabetic rats. Moreover, the treatment prevented glycosuria, body weight loss, polyphagia, and polydipsia. A more recent study performed with 100 mg/kg of methanol extract for 30 days showed a decrease of blood glucose levels of streptozotocin-induced diabetic rats and comparable effects to the standard drug Pioglitazone [900].

5.1.7. Azadirachta indica (Meliaceae)

One study was designed to evaluate the hypoglycemic effects of different plant extracts (Azadirachta indica leaves, Momordica charantia fruits, and Syzygium jambolana seeds) in single and in combined formulation in alloxan-induced diabetic rabbits [901]. Treatment of diabetes with plant extracts started at 8 days after alloxan injection. A dose of 200 mg/kg of an ethanol extract from the leaves of Azadirachtaindica caused a hypoglycemic effect 72 h after administration in diabetic rabbits, with a persistence of up to 24 h.

5.1.8. Barleria prionitis (Acanthaceae)

Antidiabetic activity of alcoholic extracts of leaf and root of Barleria prionitis (200 mg/kg, p.o. for 14 days) was tested in alloxan-induced diabetic rats [902]. Animals treated with leaf extract significantly decreased blood glucose and glycosylated hemoglobin levels. Moreover, serum insulin and liver glycogen levels were significantly increased. The root extract showed a moderate but nonsignificant antidiabetic activity.

5.1.9. Bauhinia thoningii (Fabaceae)

A study conducted on alloxan-induced diabetic rats showed the antidiabetic effect of aqueous leaf extract from Bauhinia thoningii [903]. The extract administered orally at a dose of 500 mg/kg for seven days provoked a significant reduction in blood glucose, LDL, and coronary risk index.

5.1.10. Caesalpinia ferrea (Fabaceae)

Aqueous extract of the stem bark of Caesalpinia ferrea (300 and 450 mg/kg, daily for four weeks) was administered orally to streptozotocin-induced diabetic rats [904]. The results of this study showed a significant reduction of blood glucose levels and an improvement of the metabolic state of the animals (low levels of TC, TG, and epididymis adipose tissue).

5.1.11. Camellia sinensis (Theaceae)

The hypoglycemic activity of the crude tea leaves extract of Camellia sinensis was investigated on streptozotocin-induced diabetic mice [905]. The tea (0.5 mL/day) was administered for 15 and 30 days and caused antihyperglycemic and hypolipidemic (TG and TC) activities in diabetic rats. Moreover, protective effects such as recovery of certain altered hematobiochemical parameters—creatinine, urea, uric acid, aspartate aminotransferase (AST), and alanine aminotransferase (ALT)—and reduced body weight were observed.

5.1.12. Casearia esculenta (Flacourtiaceae)

The extract of Casearia esculenta root in streptozotocin-induced diabetic rats (200 and 300 mg/kg, p.o. for 45 days) significantly restored levels of glucose, urea, uric acid, creatinine, and albumin; the albumin/globulin ratio; and the activities of diagnostic marker enzymes AST, ALT, alkaline phosphatase (ALP), and γ-glutamyltranspeptidase (GGT) [906].

5.1.13. Cassia fistula (Fabaceae)

Alcoholic extracts of stem bark of Cassia fistula administered to alloxan-induced diabetic rats at 250 or 500 mg/kg for 21 days significantly decreased blood glucose levels [907]. The extract also recovered normal levels of serum cholesterol, TG, creatinine, albumin, total proteins, and body weight. Moreover, the alcoholic extract showed significant antioxidant activity by reducing 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide, and hydroxyl radical induced in vitro.

5.1.14. Cassia grandis (Fabaceae)

The aqueous and ethanolic extracts of Cassia grandis (150 mg/kg, p.o. for 10 days treatment) were evaluated for antidiabetic activity by a GTT in normal rats and alloxan-induced diabetic rats [908]. The two extracts showed antidiabetic potential, decreasing the blood glucose, TC, and TG levels.

5.1.15. Catharanthus roseus (Apocynaceae)

Dichloromethane-methanol extracts of Catharanthus roseus leaves and twigs in streptozotocin-induced diabetic rats significantly reduced blood glucose levels and hepatic enzyme activities of glycogen synthase, glucose 6-phosphate-dehydrogenase, succinate dehydrogenase, and malate dehydrogenase [909]. In another study performed in streptozotocin-induced diabetic rats, the ethanolic extracts of Catharanthus roseus (100 and 200 mg/kg) detrained the glucose transport system in the liver for 4 weeks and significantly amplified the expression of the GLUT gene [711].

5.1.16. Cecropia pachystachya (Urticaceae)

The hypoglycemic effect of the methanolic extract from the leaves of Cecropia pachystachya was tested in normal, glucose loading, and alloxan-induced diabetic rats [910]. The methanolic extract provoked a significant hypoglycemic effect, which resulted in a 68% reduction of blood glucose after 12 h of induction. Moreover, the extract presented relevant antioxidant activity with IC50 = 3.1 µg/mL (DPPH assay) and EC50 = 10.8 µg/mL (reduction power).

5.1.17. Ceriops decandra (Rhizophoraceae)

The antidiabetic effects of daily oral administration of an ethanolic extract from Ceriops decandra leaves (30, 60, and 120 mg/kg) for 30 days were evaluated in normal and alloxan-induced diabetic rats [911]. Oral administration of 120 mg/kg of the extract modulated all the determined parameters (blood glucose, hemoglobin, liver glycogen, and some carbohydrate metabolic enzymes) to levels seen in control rats. Furthermore, these dose effects were comparable to those of glibenclamide.

5.1.18. Chiliadenus iphionoides (Asteraceae)

The ethanolic extracts of Chiliadenus iphionoides aerial parts increased insulin secretion from β cells and glucose uptake by adipocytes and skeletal myotubes, in vitro [912]. Moreover, a 30-day oral starch tolerance test was performed on a sand rat, showing hypoglycemic activity.

5.1.19. Cinnamomum cassia and Cinnamomum japonica (Lauraceae)

Cinnamon bark extracts were administered at doses of 200 and 300 mg/kg for 14 days in high-fat, diet-fed, and low-dose streptozotocin-induced diabetic mice [913]. The results of this study showed that Cinnamomum cassia and Cinnamomum japonica bark extracts significantly decreased blood glucose concentration. Also, cinnamon extracts significantly increased the consumption of extracellular glucose in insulin-resistant HepG2 cells and normal HepG2 cells compared with controls, suggesting an insulin sensitivity improvement.

5.1.20. Citrullus colocynthis (Cucurbitaceae)

The effect of root extracts of Citrullus colocynthis was investigated on the biochemical parameters of normal and alloxan-induced diabetic rats [914]. Aqueous extracts of the roots showed a significant reduction in blood sugar levels when compared with chloroform and ethanol extracts. Moreover, the aqueous extract improved body weight and serum creatinine, urea, protein, and lipids and restored levels of total bilirubin, conjugated bilirubin, AST, ALT, and ALP. In another study in alloxan-induced diabetic rats, Citrullus colocynthis aqueous seed extract stabilized animal body weight and ameliorated hyperglycemia in a dose- and time-dependent manner, which was attributable to the regenerative effect on β cells and intra-islet vasculature [915].

5.1.21. Coscinium fenestratum (Menispermaceae)

Alcoholic extract of the stems of Coscinium fenestratum in streptozotocin-nicotinamide-induced diabetic rats regulates glucose homeostasis and decreased gluconeogenesis [916]. The drug also has a protective action on cellular antioxidant defense.

5.1.22. Eucalyptus citriodora (Myrtaceae)

Aqueous extract of Eucalyptus citriodora leaf in alloxan-induced diabetic rats (250 and 500 mg/kg, p.o. for 21 days) significantly reduced blood glucose levels [917].

5.1.23. Gymnema sylvestre (Apocynaceae)

An ethanolic extract of Gymnema sylvestre leaf (100 mg/kg, p.o. for 4 weeks) was examined in vitro and in vivo to investigate the role of antioxidants in streptozotocin-induced diabetic rats [918]. The ethanol extract showed antihyperglycemic activity and improved the antioxidant status in diabetic rats. Moreover, the extract showed in vitro antioxidant activity in thiobarbituric acid (TBA), SOD, and 2,2-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid assays.

5.1.24. Heinsia crinata (Rubiaceae)

Ethanolic extract of Heinsia crinata leaf in alloxan-induced diabetic rats (450–1350 mg/kg, p.o. for two weeks) significantly reduced the FBG levels [919].

5.1.25. Helicteres isora (Sterculiaceae)

Butanol and aqueous ethanol extracts of Helicteres isora root (250 mg/kg, p.o. for 10 days) were investigated in alloxan-induced diabetic rats [920]. The two treatments reduced blood glucose, TC, TG, and urea levels. Further histological examination showed the restoration of pancreatic islets, kidney glomeruli, and liver to their normal sizes.

5.1.26. Momordica charantia (Cucurbitaceae)

One study evaluated the antihyperglycemic and antioxidative potential of aqueous extracts of Momordic charantia pulp and Trigonella foenum-graecum seed in alloxan-induced diabetic rats [921]. The Momordica charantia extract treatment for 30 days significantly decreased the blood glucose levels and showed antioxidant potential to protect vital organs such as heart and kidney against damage caused by diabetes-induced oxidative stress. Furthermore, a similar activity was found with the Trigonella foenum-graecum extract treatment. In another study already reported [901], an antidiabetic effect from Momordica charantia leaves (200 mg/kg) was observed in rabbits 72 h after they were fed a methanolic extract. In a recent study performed in streptozotocin-induced diabetic rat, the treatment of 400 mg/kg of ethanol extract significantly decreased body weight, serum glucose, insulin TNF-α, and interleukin 6 (IL-6) [922].

5.1.27. Moringa oleifera (Moringaceae)

One study investigated the antidiabetic and antioxidant effects of methanol extracts of Moringa oleifera pods (150 and 300 mg/kg, p.o. for 21 days) in streptozotocin-induced diabetic rats [923]. Both doses induced a significant reduction in serum glucose and nitric oxide levels, with a concomitant increase in serum insulin and protein levels. Furthermore, the methanol extracts increased antioxidant levels in pancreatic tissue and concomitantly decreased TBA levels. Additionally, a histological pancreas examination showed that Moringa oleifera treatment significantly reversed the histoarchitectural damage to islet cells provoked by induced diabetes. In a recent study performed in alloxan-induced diabetic rats, the consumption of the Moringa oleifera leaves showed a hypoglycemic effect and prevented body weight loss [924].

5.1.28. Murraya koenigii (Rutaceae)

Aqueous extract of Murraya koenigii leaf in alloxan-induced diabetic rats (200, 300, and 400 mg/kg) significantly reduced blood glucose level and was found to have a beneficial effect on carbohydrate metabolism [458]. Moreover, the ethanolic extract of this plant, in mice, ameliorates dexamethasone-induced hyperglycemia and insulin resistance in part by increasing glucose disposal into skeletal muscle [925].

5.1.29. Opuntia ficus-indica (Cactaceae)

Various extracts from edible Opuntia ficus-indica (petroleum ether, ethyl acetate, butanolic, aqueous, and water parts) and a standard drug as a positive control (dimethyl biguanide, 100 mg/kg) were tested in streptozotocin-induced diabetic mice [926]. The results of this study showed that all extracts tested significantly decreased blood glucose levels and maintained body weight, except the aqueous extract. Mainly, the petroleum ether extract showed a remarkable decrease in blood glucose levels.

5.1.30. Origanum vulgare (Lamiaceae)

The phytochemical analysis of methanolic extract from Origanum vulgare showed an enriched composition in biophenols, and it has demonstrated in vitro antioxidant activity in DPPH assays [927]. An in vivo study performed in streptozotocin-induced diabetic mice with methanolic and aqueous extract showed that aqueous extract had no impact on diabetes induction, while methanolic extract reduced diabetes incidence and preserved normal insulin secretion. Moreover, methanolic extract upregulated antioxidant enzymes (SOD, CAT, glutathione reductase, and peroxidase), attenuated pro-inflammatory activity, and showed cytoprotective activity.

5.1.31. Passiflora nitida (Passifloraceae)

Hydroethanolic leaf extract from Passiflora nitida showed an α-glucosidase IC50 = 6.78 ± 0.31 μg/mL and α-amylase IC50 = 93.36 ± 4.37 in vitro [928]. Also, in vivo experiments testing different saccharide tolerances revealed significant glycemic control. Moreover, in alloxan-induced diabetic mice, these assays showed a decrease in TC, a hypoglycemic effect, and antioxidant activity based on the measurement of TBA.

5.1.32. Paspalum scrobiculatum (Poaceae)

Antidiabetic activity of aqueous and ethanolic extracts of grains of Paspalum scrobiculatum Linn. was evaluated in alloxan-induced diabetic rats [929]. The extracts at 250 and 500 mg/kg, p.o. for 15 days treatment, significantly reduced the blood glucose level and lipid parameters in a dose-related manner. Also, the extract treatment showed a significant increase in the liver glycogen and a significant decrease in glycated hemoglobin levels.

5.1.33. Persea americana (Lauraceae)

The hydroalcoholic extract of the leaves of Persea americana (0.15 and 0.3 g/kg, p.o. daily for 4 weeks) reduced blood glucose levels in streptozotocin-induced diabetic rats [930]. The extract did not affect the plasma insulin level, suggesting that the hypoglycemic effect was due to extrapancreatic activity, independent of insulin secretion. Additionally, the extract improved the metabolic state of diabetic animals and increased body weight. In another study, the aqueous extract of Persea americana seeds significantly decreased glucose levels and reversed the histopathological damage that occurred in alloxan-induced diabetic rats, comparable to the effects of glibenclamide [931].

5.1.34. Phoenix dactylifera (Arecaceae)

Antidiabetic effects of leaf extract of Phoenix dactylifera at 100, 200, and 400 mg/kg, p.o. and its fractions at 50, 100, and 200 mg/kg, p.o. for 14 days treatment were evaluated in alloxan-induced diabetic rats [932]. The treatment showed a significant reduction of blood glucose, TC, and TG levels and water intake and a significant increase of plasma insulin levels compared to the control group.

5.1.35. Phyllanthus niruri (Euphorbiaceae)

The methanol extract of aerial parts of Phyllanthus niruri was evaluated in alloxan-induced diabetic rats [933]. The results of this study showed a significant reduction of blood glucose, TC, and TG levels in a dose-related manner. Moreover, histological analyses showed that that extract had imparted cell regenerative power. In another study was observed that a Phyllanthus niruri leaf aqueous extract improves kidney functions; ameliorates kidney oxidative stress, inflammation, fibrosis, and apoptosis; and enhances kidney cell proliferation in adult male rats with diabetes [934].

5.1.36. Phyllanthus simplex (Euphorbiaceae)

The hypoglycemic effect of Phyllanthus simplex fractions was evaluated in normal and alloxan-diabetic diabetic rats [935]. Petroleum ether (200 and 400 mg/kg), ethyl acetate (100 and 200 mg/kg), methanol (125 and 250 mg/kg), and water fraction (150 and 300 mg/kg) were investigated for 21 days. Methanol and water fractions showed a significant antihyperglycemic effect and restored the antioxidant enzyme levels in liver and kidney.

5.1.37. Picralima nitida (Magnoliopsida)

The antidiabetic activity of Picralima nitida was tested in streptozotocin-induced diabetic mice [936]. In vitro examination of a hydroethanolic extract from the whole plant showed antioxidant activity using DPPH and showed an IC50 = 0.24 mg/mL. The extract (300 mg/kg) revealed significant hypoglycemic activity. Also, the measurement of stress markers in plasma, liver, and kidneys showed high antioxidant potential.

5.1.38. Piper longum (Piperaceae)

In a study with an aqueous extract from Piper longum root was administered a dose of 200 mg/kg in male albino rats, with diabetes induced by intraperitoneal administration of streptozotocin; these rats presented significant antidiabetic activity after 6 h of treatment, with better effectiveness than glibenclamide [937]. Administration of the aqueous extract at the same dose for 30 days in streptozotocin-induced diabetic rats resulted in a significant reduction in blood glucose levels and correction of diabetic dyslipidemia compared with untreated diabetic rats. There was a significant reduction in the activities of liver and renal function markers in treated diabetic rats compared with untreated diabetic rats, indicating that the extract has a protective effect against liver and kidney damage and that it is nontoxic. Therefore, the plant extract is capable of managing hyperglycemia and complications of diabetes in streptozotocin-induced diabetic rats.

5.1.39. Sonchus oleraceus (Asteraceae)

The antidiabetic activity of Sonchus oleraceus was tested in streptozotocin-induced diabetic mice [936]. In vitro examination of a hydroethanolic extract from the whole plant showed antioxidant activity using DPPH and showed an IC50 = 0.19 mg/mL. The extract showed significant antidiabetic activity, and measurement of stress markers in plasma, liver, and kidneys showed high antioxidant potential. The effects may be attributed to the significant free radical-scavenging capacity, hypoglycemic activity, and the ability to prevent oxidative stress in diabetic rats, which was determined by the decrease of MDA and H2O2 and the increase in CAT activity.

5.1.40. Syzygium jambolana (Myrtaceae)

As we have commented, a combination of Syzygium jambolana extract obtained from the seeds, fruits of Momordica charantia, and leaves of Azadirachta indica (200 mg/kg) showed a hypoglycemic effect in rabbits [901]. Treatment of diabetes with plant extracts was started at 8 days after alloxan injection. The antidiabetic effect was produced after 72 h in many of the rabbit’s groups. This effect may be due to enhanced endogenous insulin production, possibly through pancreatic β-cell regeneration or repair caused by higher insulin levels in the serum.

5.1.41. Tamarindus indica (Fabaceae)

In vitro assays of an alcoholic extract made from Tamarindus indica stem bark showed significant antioxidant activity in DPPH, nitric oxide, and hydroxyl radical [907]. Alloxan-induced diabetic rats were treated orally with the alcoholic extract from Tamarindus indica at 250 and 500 mg/kg doses for 21 days, and a significant decrease of blood glucose levels was observed. In another study, hydroethanolic seed coat extract of Tamarindus indica significantly reduced blood glucose levels in normoglycaemic, glucose loaded, and alloxan-induced diabetic rats [938].

5.1.42. Terminalia chebula (Combretaceae)

Chloroform extract of Terminalia chebula seed powder in streptozotocin-induced diabetic rats (100, 200, and 300 mg/kg) significantly reduced the blood glucose level in a dose-dependent manner and presented a potent renoprotective action [939].

5.1.43. Terminalia catappa (Combretaceae)

The antidiabetic potential of petroleum ether, methanol, and aqueous extract of Terminalia catappa fruits in alloxan-induced diabetic rats was performed [940]. All three extracts reduced FBG levels.

5.1.44. Trigonella foenum-graecum (Fabaceae)

The antidiabetic effects of ethanol extract of Trigonella foenum-graecum seeds in alloxan-induced diabetic rats at different doses (0.1, 0.5, 1, and 2 g/kg) were evidenced, showing significant blood glucose-lowering capacity [941]. Moreover, the hydroalcohol extract of Trigonella foenum-graecum seed attenuates markers of inflammation and oxidative stress while improving exocrine function in alloxan-induced diabetic rats [942].

5.1.45. Vaccinium arctostaphylos (Ericaceae)

The effects of ethanolic extract of Vaccinium arctostaphylos fruit was investigated in alloxan-diabetic rats for three weeks [943]. The treatment significantly decreased the blood glucose and TG levels and increased the erythrocyte SOD, glutathione peroxidase, CAT activities, and expression of GLUT-4 and insulin genes.

5.1.46. Vernonia amygdalina (Asteraceae)

One study investigated the antidiabetic activity of the various combinations of metformin (50 mg/kg) and aqueous extracts of Vernonia amygdalina leaves (100 mg/kg) in normoglycemic and alloxan-induced diabetic rats [944]. Results showed that the combinations of the extract and metformin caused more reduction in glycemia compared to any of the agents acting alone in either of the two categories of animals.

5.1.47. Witheringia solanacea (Solanaceae)

Normal rats were treated with an aqueous extract from Witheringia solanacea leaves at 250, 500, and 1000 mg/kg doses, and only the last two doses significantly decreased blood glucose levels after 1 h of a GTT [945]. Moreover, the 500 mg/kg dose significantly reduced blood glucose levels in alloxan-induced hyperglycemic rats at 4 h and 5 h of treatment.

5.1.48. Zaleya decandra (Aizoaceae)

Oral administration of an ethanolic extract from Zaleya decandra roots (200 mg/kg, for 15 days) significantly restored the levels of glucose, TC, TG, total proteins, urea, creatinine, lipid peroxidation, and antioxidant enzymes in alloxan-induced diabetic rats [946]. Moreover, histopathological analysis showed significant regenerative power in the extract-treated group compared to the control group, including effects in necrosis and degeneration in the liver and pancreas.

5.1.49. Zizyphus mauritiana (Rhamnaceae)

Petroleum ether and aqueous extract of Zizyphus mauritiana (200 and 400 mg/kg, p.o. for seven days) in alloxan-induced diabetic rats significantly restored elevated biochemical parameters such as glucose, urea, creatinine, TC, TG, HDL, LDL, hemoglobin, and glycosylated hemoglobin [947].

6. Phytochemicals with Antidiabetic Potential

Discovery of the new natural antidiabetic drugs could be great promise due to minimal efficacy and safety concerns of current antidiabetic drugs for the hundreds of millions of individuals which are currently seeking better management of diabetes [948]. In this relation, the investigation of phytochemicals responsible for antidiabetic effects has progressed in the last few decades. The antidiabetic effect of plant materials have been attributed to the mixture of phytochemicals or a single component of plant extracts. Medicinal plants produce a wide variety of phytochemicals, include alkaloids, phenolic acids, flavonoids, glycosides, saponins, polysaccharides, stilbenes, and tannin, which are intensively investigated for their antidiabetic effects. In Table 4 are represented sources, structures, and targets of some potential antidiabetic phytochemicals. The beneficial effect of phytochemicals can be through various mechanisms such as regulation of glucose and lipid metabolism, insulin secretion, stimulating β cells, NF-kB signalling pathway, inhibition of gluconeogenic enzymes, and reactive oxygen species (ROS) protective action.

6.1. Alkaloids

The following alkaloids—berberine, boldine, lupanine neferin, oxymatrine, piperine, and sanguinarine—are studied for their antidiabetic activity. Christodoulou et al. [949] discussed the antidiabetic impact of certain alkaloids, with special reference to their molecular targets throughout the insulin-signaling pathway: in vitro and in vivo evidence support the effects of berberine, trigonelline, piperine, oxymatrine, vindoneline, evodiamine, and neferine on insulin-signaling and related cascades in β cells, myocytes, adipocytes, hepatocytes, and other cells; the authors concluded that in-depth molecular studies are needed as well as large clinical trials to assess their potential as antidiabetic agents [949].
Berberine is an isoquinoline alkaloid, isolated from medicinal plants of Berberis (Berberidaceae). It has an antihyperglycaemic activity by decreasing absorption of glucose [950]. Berberine was reported to inhibit α-glucosidase and to decrease glucose transport through the intestinal epithelium [950,951]. It has a particular interest in the management of T2DM and cardiovascular diseases due to potent antioxidant, anti-inflammatory, glucose-lowering, and lipid-lowering properties [952].
Boldine is a benzylisoquinoline class alkaloid, isolated from Peumus boldus Moliba (Chilean boldo tree, family Monimiaceae) [953]. Boldine improves endothelial function in diabetic db/db mice through inhibition of angiotensin II-mediated BMP4 oxidative stress cascade. It reduces overproduction of ROS by inhibiting Ang II-stimulated BMP4 expression [954].
Lupanine is a quinolizidine alkaloid, isolated from Lupinus species, particularly from Lupinus perennis. It enhances insulin secretion [955]. Recently, Wiedemann et al. [956] showed how lupanine improves glucose homeostasis by influencing ATP-sensitive potassium (KATP) channels and insulin genes.
Another antidiabetic alkaloid molecule is neferine; it is a bisbenzyl isoquinoline alkaloid isolated from the Nelumbo nucifera (Nelumbonaceae). It decreased the expression of CCL5 and CCR5 mRNA in the superior cervical ganglion of T2DM rats. After treatment with neferine 4 mg/kg for 4 weeks, body weight, FBG, blood pressure, TC, and TG were reduced and high-density lipoprotein was increased [957].
Oxymatrine is an alkaloid of the class quinolizidine obtained from the root of Sophora flavescens (family Fabaceae). It decreased blood glucose, urinary protein and albumin excretion, serum creatinine, and blood urea nitrogen in a T2DM high-fat diet streptozotocin (HFD-STZ) nephropathy model at an oral dose of 150 mg/kg per day for 11 weeks [953,958].
Piperine is a natural alkaloid present in Piper species fruits. It has bio-enhancing effects with metformin in lowering blood glucose levels [959].
Sanguinarine is a benzophenanthridine alkaloid; it is an excellent intercalator of DNA and RNA. Sanguinarine was targeted as a candidate agent for T2DM treatment by a computational bioinformatics approach [960].

6.2. Flavonoids

Flavonoids represent a large class of plant secondary metabolites found in a wide range of fruits, vegetables, and herbs. Due to the presence of hydroxyl groups and aromatic rings of the flavonoid structures, they can play as natural antioxidants. Flavonoid-containing products are commonly used in antidiabetic diets. Many flavonoids such as catechins, fisetin, kaempferol, luteolin, naringenin, quercetin, rutin, morin, silymarin, chrysin, baicalein, icariin, isoliquiritigenin, diosmin, isoangustone A, genistein, and others were tested for their antidiabetic properties. For instance, the current work of Den Hartogh and Tsiani, [961] summarizes well the in vitro and in vivo animal studies on the antidiabetic effects of naringenin; as shown by authors among the effects reported, naringenin can reduce glucose adsorption by the intestinal brush border, reduce renal glucose reabsorption, and increase glucose uptake and use by muscle and fat tissues; in hepatocytes, naringenin treatment reduces TG production and gluconeogenesis, resulting in the attenuation of hyperglycemia and hyperlipidemia [961]. The authors concluded that naringenin could be seen as a prime candidate for medicinal use against insulin resistance and T2DM and highlighted how more human studies are required in this direction [961].
Catechins (catechin, epicatechin, and epigallocatechin gallate (EGCG)) are the major active components of tea and cacao products. The protective effects against oxidative damage and enhancing SOD, glutathione S-transferase (GST), and CAT activities of catechins are well demonstrated. However, some studies reported that they did not find a hypoglycemic effect of an extract of green and black tea in adults with T2DM [962].
The flavonoid fisetin presents in a wide variety of plants. Fisetin significantly reduces blood glucose, improves glucose homeostasis through the inhibition of gluconeogenic enzymes, and increases the level and activity of glyoxalase 1 [963,964,965].
Kaempferol as a natural flavonol is found in a variety of plants. It acts as an antioxidant by reducing oxidative stress. It promotes insulin sensitivity and preserves pancreatic β-cell mass [966].
Luteolin is a flavone, present in many aromatic flowering plants, including members of the Lamiaceae. It was recommended for treating diabetic nephropathy. Luteolin ameliorates cardiac failure in T1DM cardiomyopathy [967,968].
Naringenin is a naturally occurring flavanone predominantly found in grapefruit [953]. It attenuates diabetic nephropathy via its anti-inflammatory and anti-fibrotic activities [953,969]. Naringenin also decreased expression of interleukin (IL)-1β, IL-6, type IV collagen, fibronectin, and transforming growth factor β1 [969].
Quercetin is a natural flavonol; it is present in the composition of a number biological active additives as well as in food additives. The protective effects of quercetin on diabetes have been intensively investigated. It decreased the cell percentages of G(0)/G(1) phase, Smad 2/3 expression, laminin, and type IV collagen and TGF-β (1) mRNA levels. Quercetin also activated the Akt/cAMP response element-binding protein pathway [970,971].
Rutin is a natural flavonoid glycoside present in many types of fruits and vegetables. It improves glucose homeostasis by altering glycolytic and gluconeogenic enzymes. It is also involved in stimulatory effects on glucose uptake. Rutin enhances insulin-dependent glucose transporter and potentiates insulin receptor kinase [972,973,974].
Another natural flavonoid molecule, morin, is isolated from Morus alba, Maclura pomifera, Psidium guajava, Chlorophora tinctoria, Prunus dulcis, Maclura tinctoria, Castanea sativa, and many other plant species. It as an activator and sensitizer of the insulin receptor stimulating the metabolic pathways. It was also found to rescue endothelial dysfunction in a diabetic mouse model by activating the Akt/eNOS pathway [975,976]. Recently, Razavi et al. [977] showed how morin improves diabetic conditions through downregulation of the miR-29a level. Currently, Pandey et al. [978], by exploring the role of Morinin modulating ER stress in STZ/nicotinamide-induced type 2 diabetic male Wistar rats, demonstrated how morin attenuates ER stress throughout the downregulation of the PERK-eIF2α-ATF4 pathway (PERK endoplasmic reticulum kinase; eIF2α eukaryotic initiation factor 2 alpha; ATF4 activating transcription factor 4) by interacting with the PERK protein; the authors concluded that the anti-ER stress and antihyperglycemic potential of Morin opens new possibilities for the exploitation of the use of morin as a bioactive supplement in managing ER stress during type 2 diabetes.
Silymarin is a complex of flavonoids containing silybin, silydianin, and silychrisin isolated from the milk thistle plant [979,980,981]. It has nephroprotective effects in T2DM and can reduce blood glucose levels [982]. Currently, Meng et al. [983] showed that silymarin ameliorates diabetic cardiomyopathy through the inhibition of TGF-β1/Smad signaling, suggesting that silymarin could have a potential role in diabetic cardiomyopathy treatment.
Chrysin [984] is a naturally occurring flavone, predominantly found in Passiflora caerulea, Passiflora incarnata, and Oroxylum indicum [953]. It suppressed transforming growth factor-beta (TGF-β), fibronectin, and collagen-IV protein expressions in renal tissues. Chrysin also reduced the serum levels of pro-inflammatory cytokines, interleukin-1beta (IL-1β), and IL-6 [985]. Taslimi et al. [986] studied the antidiabetic and anticholinergic effects of chrysin on cyclophosphamide-induced multiple organ toxicity in rats by focusing on pharmacological evaluation of some metabolic enzyme activities: chrysin exhibited an ameliorative effect against CYP-induced brain, heart, liver, testis, and kidney toxicity.
Baicalein is a flavonoid found in Oroxylum indicum, Scutellaria baicalensis, and other species. It mitigates oxidative stress, suppresses the activation of NF-κB, and decreases expression of iNOS and TGF-β1. It also normalizes the levels of serum proinflammatory cytokines and liver function enzymes [953,987].

6.3. Terpenoids

6.3.1. Triterpenoids

The review of Hamid et al. [988] highlights recent findings on the chemistry and bioactivities of tetracyclic triterpenoids (i.e., dammarane, cucurbitane, cycloartane, lanostane, and protostane groups) from some plants such as Panax ginseng, Panax quinquefolium, Panax notoginseng, Gynostemma pentaphyllum, Astragalus membranaceus, Momordica charantia, and Ganoderma lucidum. Alqahtani et al. [989] summarized the multiple biological activities on glucose absorption; glucose uptake; insulin secretion; diabetic vascular dysfunction; and retinopathy and nephropathy of oleanolic acid, glycyrrhizin, glycyrrhetinic acid, ursolic acid, betulin, betulinic acid and lupeol, examples of pentacyclic triterpenoids.
Boswellic acids are pentacyclic triterpene found in the oleo-gum-resin from the trees of different Boswellia species (Boswellia serrata and Boswellia carteri). The activity has been attributed to stimulating β cells to release more insulin. They are used for the prophylaxis and treatment of damage and inflammation of the islets of langerhans [990,991].
The natural triterpene celastrol is found in Tripterygium wilfordii, Celastrus orbiculatus, Celastrus aculeatus, Celastrus reglii, Celastrus scandens, and other plant species. Protective effects of celastrol were investigated on diabetic liver injury via TLR4/MyD88/NF-kB signaling pathway in T2DM. It suppresses the obesity process via increasing antioxidant capacity and improving lipid metabolism. Celastrol is an NF-kB inhibitor, improves insulin resistance, and attenuates renal injury [992,993,994].
Oleanolic acid is a pentacyclic triterpenoid that exists widely in nature in fruits, herbs, and vegetables. Recent reports have highlighted the benefits of oleanolic acid in the prevention and treatment of T2DM [995]. Zeng et al. [996] reported that oleanolic acid reduces hyperglycemia beyond the treatment period with Akt/FoxO1-induced suppression of hepatic gluconeogenesis in T2DM mice.
Another pentacyclic triterpenoid is ursolic acid that can be extracted from berries, leaves, flowers, and fruits of medicinal plants such as Eriobotrya japonica, Calluna vulgaris, Rosmarinus officinalis, and Eugenia jambolana [948].
Many studies have shown that ursolic acid can directly inhibit PTP1B and improve insulin sensitivity [997,998]. It improves blood glucose levels in mice characterized by diet-induced obesity [999]. Ling reported that ursolic acid provides kidney protection in diabetic rats [1000].

6.3.2. Diterpenoids

Triptolide is a diterpenoid with three epoxide groups, isolated from Tripterygium wilfordii. Triptolide reduced the levels of phosphorylated protein kinase B and phosphorylated inhibitor of kappa B and increased caspases 3, 8, and 9. Triptolide treatment is accompanied by alleviated glomerular hypertrophy and podocyte injury [1001,1002].

6.3.3. Polysaccharides

Galactomannan is a polysaccharide isolated from the tubers of Amorphophallus konjac and seeds of Cyamopsis tetragonolobus. It can delay the rate of glucose absorption and, thereby, helps to reduce postprandial hyperglycemia [1003,1004].
Another carbohydrate is inulin; Helianthus tuberosus tubers contain 75 to 80% inulin. It is a well-known remedy in diabetic treatment. It can act as a biogenetic for the development of natural intestinal microflora after dysbacteriosis and in the modulation of blood metabolites and liver enzymes [1005,1006].

6.3.4. Miscellaneous

Resveratrol improves health and survival of mice on a high-calorie diet [1007]. Piceatannol, a resveratrol derivative, promotes glucose uptake through glucose transporter 4 translocation to the plasma membrane in L6 myocytes and suppresses blood glucose levels in T2DM model db/db mice [1008].
Piceatannol lowers the blood glucose level in diabetic mice [1009]. Intravascular administration of piceatannol enhanced glucose tolerance in freely moving healthy rats [1010]. Resveratrol analog piceatannol restores the palmitic acid-induced impairment of insulin signaling and production of endothelial nitric oxide via activation of anti-inflammatory and antioxidative heme oxygenase-1 in human endothelial cells [1011]. Vallianou et al. [1012] described how the antihyperglycemic effects of resveratrol seem to be the results of increased activity of the glucose transporter in the cytoplasmic membrane; the authors marked that the main antihyperglycemic actions of resveratrol are attributed to the activation of SIRT1 with the involvement of AMPK (5′ AMP-activated protein kinase). Szkudelski and Szkudelska [1013] gave an overview of the role of resveratrol in diabetes from animal models to human studies; in particular, the authors summarized the effect of resveratrol reported in animals models: improvement of glucose homeostasis, decrease of insulin resistance, protection of pancreatic β cells, improvement of insulin secretion, and amelioration of metabolic disorders [1013]. As marked by the same authors [1013], the antidiabetic activity of resveratrol can be related to the resveratrol capability to increase expression/activity of AMPK and SIRT1 in various tissues of diabetic subjects. Bagul and Banerjee described well the multi-target effects against diabetes of resveratrol [1014]. They illustrated the improvement of insulin sensitivity, enhancement of GLUT-4 translocation, reduction of oxidative stress, regulation of carbohydrate metabolizing enzymes, activation of SIRT1 and AMPK, and decrease of adipogenic genes. The current study of Öztürk et al. [1015] provides a critical overview of currently available clinical studies examining the effects of resveratrol in DM in last decade:
Butein is a natural phenolic chalcone, isolated from many plant species, including Toxicodendron vernicifluum, Dalbergia odorifera, Cyclopia subternata, Semecarpus anacardium, and Creopsis tungtoria. Butein inhibits central NF-kB signalling and improves glucose homeostasis [1016].
Curcumin is a natural polyphenol; it has two o-methoxy phenolic groups, one enone moiety and an α, β-unsaturated diketone group. It exhibits keto-enol tautomerism [1017].
Kunwar and Priyadarsini reported that curcumin reduces blood glucose and glycosylated hemoglobin levels and prevented weight loss. It was also reported to reduce several other complications associated with diabetes like fatty liver, diabetic neuropathy, diabetic nephropathy, vascular diseases, musculoskeletal diseases, and islet viability [1017,1018,1019].
Tocotrienol and tocopherol are commonly known as vitamin E. They are isomers and are found in a wide variety of plants [1020]. Haghighat et al. [1021] demonstrated that supplementation of tocotrienol at 15 mg daily for 4 weeks caused a significant reduction of the high-sensitivity C-reactive protein in a group of patients with T2DM. Kuhad and Chopra [1022] reported that tocotrienol attenuates diabetic nephropathy by the involvement of the NF-kB signaling pathway, oxidative-nitrosative stress, and inflammatory cascade in the experimental model.
Indole-3-carbinol is the nutritive phytochemical in members of the genus Brassica, like cabbage, broccoli, cauliflower, Brussels sprouts, kale, and bok choy [1023]. 3,3′-diindolylmethane is a condensation product of indole-3-carbinol. Indole-3-carbinol and 3,3′-diindolylmethane are classified as blocking agents, and they are proposed as potential preventive agents against chronic disease including diabetes. Treatments with indole-3-carbinol and 3,3′-diindolylmethane increase the antioxidant-scavenging action by increasing levels of SOD, CAT, glutathione peroxidase (GPx), vitamin C, vitamin E, and glutathione in diabetic mice [1024].
Chlorogenic acid is a natural polyphenol found in many varieties of plant species. It stimulates glucose transport in skeletal muscle via AMPK activation. Chlorogenic acid has shown effects on hepatic glucose release and glycemia [1025,1026,1027].
Another natural phenol is ellagic acid; it is a dilactone acid found in fruits and vegetables. The antidiabetic effect of ellagic acid is attributed to the action on β cells of the pancreas that stimulates insulin secretion and decreases glucose intolerance. It possesses superior antioxidant properties, genotoxicity prevention, and α-amylase-inhibitory activity. Ellagic acid reduced hyperglycemia and insulin resistance in T2DM [1028,1029,1030].
Embelin is a hydroxyl benzoquinone found in Embelia ribes, Lysimachia punctata, and Lysimachia erythrorhiza species. It reduces the elevated plasma glucose, glycosylated hemoglobin, and pro-inflammatory mediators (interleukin 6 and tumor necrosis factor α) [1031,1032].
Erianin is a natural phenolic compound with 4 aromatic ether groups isolated from Dendrobium chrysotoxum. It inhibits high glucose-induced retinal angiogenesis via blocking the ERK1/2-regulated HIF-1α-VEGF/VEGFR2 signaling pathway [1033].
Gambogic acid (syn. guttic acid, guttatic acid, β-guttilactone, and β-guttiferin) is a natural pyranoxanthone; it is found in Garcinia plant species (Garcinia hanburyi, Garcinia indica, and Garcinia cambogia). It ameliorates diabetes-induced proliferative retinopathy through inhibition of the HIF-1α/VEGF expression via targeting the PI3K/AKT pathway [1034].
Garcinol is polyisoprenylated benzophenone found in a Garcinia species plant (Garcinia indica). It decreases plasma insulin, homeostasis model assessment of β-cell function (HOMA-β-cell) functioning index, glycogen, high-density lipoprotein cholesterol, body weight, and antioxidant enzyme activities. Garcinol reduces elevated levels of blood glucose, glycosylated hemoglobin, and lipids [1035,1036].
Honokiol is a polyphenol lignan predominantly found in Magnolia plant species (Magnolia officinalis). It increases phosphorylations and downstream insulin signaling factors. Honokiol showed potential binding mode to PTP1B [1037,1038]. Recently, Li et al. [1039] showed how honokiol protects pancreatic β cell against high glucose and intermittent hypoxia-induced injury by activating the Nrf2/ARE pathway in vitro and in vivo Withanolidesare isolated from Withania somnifera. They are found in plant sources from the Dioscoreaceae, Fabaceae, Lamiaceae, Myrtaceae, and Taccaceae families. Withanolides exhibited hypoglycaemic and hypolipidaemic activities [1040].
In conclusion, sources, structure, and target of 38 phytochemicals are summarised as potential antidiabetic agents. Most of the reviewed phytochemicals belong to flavonoids, alkaloids, and triterpenoids.

7. In Human Evidence: Clinical Studies

Currently, available conventional therapies for diabetes are challenged by their inherent limitations and medicinal plants are being researched as a source of alternative therapies [1053]. Of note, medicinal plants have been described in traditional medicine for the treatment of diabetes and have been experimentally shown to have, with their active constituents, antihyperglycemic or antidiabetic activity [1054]. However, information about their trials in humans is poorly documented. We describe in this section human clinical trials of medicinal plants for their antihyperglycemic or antidiabetes efficacy, including Aloe vera, Cinnamomum burmanni, Cinnamomum cassia, Cinnamomum verum, Ginkgo biloba, Juglansregia, Malvastrumcoromandelia, Tinosporacordifolia, Trigonella foenum-graecum, Vitis vinifera, and Zingiber officinale.

7.1. Aloe vera (Asphodelaceae)

Different types of Aloe vera extracts has been investigated in clinical trials. Four studies have been documented that involve prediabetic and T2DM patients (total N = 348) and that span between 6 to 8 weeks. The diabetic studies illustrated that Aloe vera significantly reduced FBG alone or in combination with the Cnidoscoluschayamansa extract. The Aloe vera juice (80%) investigated alongside glibenclamide in 72 T2DM patients (49 men and 23 women, aged 35–70 years, with high FBG levels and a typical diabetic curve of glucose tolerance analysis) did not show a response to glibenclamide alone while Aloe vera juice significantly reduced levels of FBG within two weeks and was safe on both kidney and liver [1055]. Aloe vera high-molecular-weight fractions (AHM) obtained from water-washed gel parts of Aloe vera leaves, cultivated in Okinawa, Japan and containing less than 10 ppm of barbaloin and polysaccharide (MW: 1000 kDa) with the glycoprotein virectin (MW: 29 kDa), produced a significant decrease in blood glucose levels sustained for six weeks from the start of the study. This study was performed on 15 T2DM patients (nine men and six women, aged 42–55 years, with FBG > 200 mg/dL). The treatment was safe on kidney and liver functions and was suggested to relieve vascular complications probably via activation of immunosystem [1056]. An Aloe vera (AG) gel complex (Aloe QDM complex) assessed in a randomized control trial showed borderline significant reductions in body weight, body fat mass, FBG, fasting serum insulin, and Homeostasis Model of Assessment-Insulin Resistance (HOMA-IR) after eight weeks of treatment [1057]. This study was performed on 136 patients with prediabetes or early T2DM not on medication (96 men and 40 women, aged ≥ 20 years, with body mass index (BMI) ≥ 25 kg/m2 or waist circumference ≥90 cm for men or ≥85 for women, FBG between 100 and 180 mg/dL or 2-h GTT ≥ 140 mg/dL, and HbA1c < 8.0%). To validate the antidiabetic claims for AG and infusion of Cnidoscoluschayamansa (CC) McVaugh, three double-blind crossover procedures were used in 125 women with early metabolic syndrome (mean age of 46.8 ± 9.7 years and waist circumference ≥ 88 cm, FGB ≥ 100 mg/dL, arterial blood preassure ≥ 130/≥ 85 mmHg, TG ≥ 150 mg/dL, and HDL < 50 mg/dL) [1058]. Assay 1: AG and CC vs. placebo 1 and placebo 2; assay 2: AG and placebo 2 vs. placebo 1 and CC; or assay 3: TA (total process Aloe vera, 5:1) vs. placebo 3. All combinations were tolerated except AG and P2 for which patient complained of bad taste and mild stomach pain because of the double dose of this treatment. Changes in HbA1c (mmol/mol) were assay 1: −1.8 ± 7.5 vs. −1.6 ± 6.9, p > 0.05; assay 2: −1.3 ± 6.6 vs. −1.4 ± 7.6, p > 0.05; and assay 3: −4.9 ± 8.3 vs. 0.44 ± 5.4, p < 0.01, respectively. TA concomitantly reduced high-sensitivity C-reactive protein (hs-CRP) (p < 0.05) and suggested that the total process Aloe vera decreases blood glucose levels by reducing proinflammatory state. The infusion of microwave-dehydrated Cnidoscoluschayamansa CC leaves did not reduce blood glucose or HDL and TG levels [1058].

7.2. Cinnamon: Cinnamomum cassia, Cinnamomum verum, Cinnamomum burmanni, Cinnamomum zeylanicum (Lauraceae)

Cinnamon has a long history as an antidiabetic spice. Research has shown that adding cinnamon to the diet can help to lower the glucose level, but results from trials involving cinnamon supplements are conflicting amongst patients with diabetes and insulin-resistant patients, particularly the ability to reduce blood glucose levels and to inhibit protein glycation [1059,1060]. A review of six trials investigating the potential benefit of cinnamon in controlling diabetes reveals contradicting findings in 178 diabetic or prediabetic patients. Oral administration in 79 patients with diagnosed T2DM (44 men and 21 women, under oral antidiabetics or diet) of the aqueous cinnamon purified extract 3 g/day for 4 months in a double-blind study significantly decreased the plasma glucose level (10.3%) compared to the placebo group (3.4%), supporting a moderate hypoglycemic effect of cinnamon [1061]. The combination of a water-soluble cinnamon bark extract (Cinnamomumcassia and/or Cinnamomumburmanni standardized to 3% Type A Polymers) administered (500 mg/day) for 12 weeks on twenty-two subjects with prediabetes and the metabolic syndrome was studied. Participants recruited for this study were between 30–60 years old, had FBG between 100 and 125 mg/dL, had BMI < 40 kg/m2, had normal values for liver and kidney function tests, and maintained their usual dietary and physical activity habits. The treatment significantly decreased FBG (−8.4%: 116.3 ± 12.8 mg/dL (pre) to 106.5 ± 20.1 mg/dL (post), p < 0.01) compared with the placebo group and suggests that cinnamon can reduce risk factors associated with diabetes and cardiovascular diseases [1062]. Gutierrez et al. [1063] found that a 5-g dose of Cassia cinnamon significantly reduces the blood glucose level and improves glucose tolerance following GTT by 10.1% with regards to the placebo groups in 10 sedentary and obese females (22.7 ± 4 years, BMI 35.39 ± 5.36 kg/m2). However, the treatment failed to improve insulin resistance and sensitivity [1063].
Though these results agree with the inability of cinnamon to improve insulin resistance or sensitivity, they are in contraction to its blood glucose lowering potency. Other studies showed that cinnamon supplementation (Cinnamomum cassia, 1.5 g/day) failed to improve whole-body insulin sensitivity or GTT in 25 postmenopausal patients with T2DM (aged 62.9 ± 1.5 years, BMI 30.4 ± 0.9 kg/m2) after six weeks [1064]. This finding is in line with that of Hasanzade et al. [1060], where cinnamon did not significantly affect FBG and glycosylated hemoglobin levels (p = 0.738 and p = 0.87, respectively) in a randomized clinical trial involving 70 T2DM (140 < FBG < 250 mg/dL; HbAlc > 7%) [1060]. Also, the administration of cinnamon (1 g/day) for 90 days in 72 adolescents with T1DM (diagnosis for ≥18 months before enrollment, aged 13–18 years) using a prospective, double-blind, placebo-controlled design did not improve glycemic control [1065]. This stresses the need to assess the real health benefits of cinnamon supplementation [1064]. However, most of these studies were conducted no longer than three months compared with the four months required for the mild antidiabetic potency reported.

7.3. Ginkgo biloba (Ginkgoaceae)

Ginkgo biloba is a popular medicinal plant used against metabolic syndromes and has been studied in humans for its ability to lower blood glucose. Three-month ingestion of a daily dose of 120 mg of G. biloba extract in normal glucose tolerant individuals (6 men and 14 women, aged 21–57 years) caused a significant increase in pancreatic β-cell insulin, fasting plasma insulin, and C-peptide response when compared to the placebo group [1066]. Following a 2-h standard GTT, glucose levels changed from 136 ± 55 to 162 ± 94 µU/mL/h (p = 0.1232) and 9.67 ± 5.34 to 16.88 ± 5.20 ng/mL/h (p < 0.001), respectively. However dissimilar insulin/C-peptide response curves were linked with an increased rate of insulin clearance induce by G. biloba [1066]. This finding was supported by the ability of G. biloba extract to affect the hypothalamic-pituitary-adrenal axis, leading to reduced basal cortisol levels and reduced cortisol production in response to the acute hyperglycemic challenge in 30 healthy/non-diabetic glucose tolerant volunteers (10 men and 20 women, 45.7 ± 9.9 years) in a randomized, double-blind, placebo-controlled crossover study. Fasting plasma cortisol was significantly lower after the G. biloba cycle than the placebo cycle (326 ± 149 vs. 268 ± 121 nmol/L, respectively; p = 0.19) [1067]. A follow-up study carried out in T2DM patients showed that, in diet-controlled subjects (FBG 117 ± 16 mg/dL; fasting plasma insulin 29 ± 8 µU/mL; n = 6), ingestion of G. biloba produced no significant effect on the insulin before and after ingesting G. biloba, respectively [1068]. However, in hyperinsulinemic T2DM patients, co-administration of oral hypoglycemic medications (n = 6) (FBG 143 ± 48 mg/dL; fasting plasma insulin 46 ± 13 µU/mL) and G. biloba caused blunted plasma insulin levels from 30 to 120 min during the GTT, leading to a reduction of the insulin area under the curve (AUC; 199 ± 33 vs 147 ± 58 µU/mL/h, before and after G. biloba, respectively) whereas the C-peptide levels did not increase in a parallel manner with the insulin, indicating an enhanced hepatic extraction of insulin relative to C-peptide as previously reported in normal glucose tolerant individuals. This suggests that ingestion of G. biloba in individuals with maximally stimulated pancreatic β cells may lead to a reduction in plasma levels of insulin. However, T2DM patients with pancreatic exhaustion (FPG 152 ± 46 mg/dL; fasting plasma insulin 16 ± 8 µU/mL; n = 8), treated as above, showed a significant increase in pancreatic β-cell function in response to glucose loading (insulin AUC increased from 51 ± 29 to 98 ± 20 µU/mL/h, p < 0.0001), paralleled by a C-peptide AUC increase from 7.2 ± 2.8 to 13.7 ± 6.8 (p < 0.0001). The authors linked this effect to a plausible increase of the activity in the remaining functional islets or to a regeneration of previously exhausted islets. According to this study, the ingestion of G. biloba extract by T2DM patients may increase the hepatic metabolic clearance rate of not only insulin but also the hypoglycemic agents and, thereby, may reduce insulin-mediated glucose metabolism and elevated blood glucose [1068].

7.4. Juglans regia (Juglandaceae)

The Juglans regia leaf has been traditionally used for the treatmen of DM in Iran, and its effects on hyperglycemia and lipid profiles have been investigated in 61 T2DM patients [1069]. Select patients with FBG between 150 and 200 mg/dL, glycated hemoglobin (HbA1c) between 7% and 9% and aged between 40 and 60 years were randomly divided into J. regia and placebo treatment groups. J. regia treatment, with 100-mg capsules administered thrice a day for three months along with the standard anti-diabetic therapy (metformin and glibenclamide, and nutritional regimen), improves glucose control by significantly decreasing the FBG, HbA1c, TC, and TG levels compared to placebo and did not affect liver and kidney but rather showed gastrointestinal disorder [1069].

7.5. Malvastrum coromandelianum (Malvaceae)

The water extract from Malvastrum coromandelianum has been shown to have a glucose-lowering effect and short- and long-term safety in animal studies. A study in humans reveals its safety and the poor glycemic-lowering efficacy of M. coromandelianum in T2DM subjects. Tharavanij et al. [1070] conducted a multicenter randomized, double-blind, placebo-controlled trial with 71 diabetes subjects under either diet control or single oral antidiabetic drug (sulphonylurea or biguanide) with HbA1C between 6.5–9.0%. Subjects received a tablet of 1200 mg/day of M. coromandelianum or placebo for 12 weeks. M. coromandelianum failed to significantly lower the blood glucose level and affect body weight, insulin resistance, and insulin secretion [1070].

7.6. Sauropus androgynus (Phyllanthaceae)

Sauropus androgynus is one of the most popular herbs in South Asia, Southeast Asia, and China, where it was known as a slimming agent and was identified to have antidiabetic activity [1071,1072]. A clinical trial corroborates this result and its use as an antidiabetic agent in the Ayurvedic medical system (n = 18 non-insulin-dependent diabetic, aged 50–65 years and weighted 70–85 kg) [1053]. S. androgynus (10 g/200 mL water) significantly reduces blood glucose level with glycemic index (GI) scores (GI = 55) lower than that of the glucose control (GI = 100). The hypoglycaemic activity of S. androgynus supports further investigation to unveil compounds/extracts with antidiabetic activity [1053].

7.7. Tinospora cordifolia (Menispermaceae)

Antidiabetic properties of Tinospora cordifolia are highly appreciated in Ayurveda, and studies on its extracts revealed its antihyperglycemic, preventive, and curative antidiabetic efficacy [633] in addition to its safety profile [1073]. From the three clinical studies reviewed here, 148 T2DM patients were involved in randomized control trials. T. cordifolia extracts were shown to lower FBG. The blood glucose-lowering effect of the aqueous leaf digest prepared from T. cordifolia (10 g/200mL water) was demonstrated using GTT. T. cordifolia was found to exhibit a significant ability to reduce blood sugar (GI = 39) levels compared to that of the glucose control (GI = 100) in human subjects (aged 50–65 years and weighted 70–85 kg), with the glucose levels reverting to fasting levels after 2 h of administration in the experimental groups [1053]. Additionally, the aqueous leaf digest (10 g/200 mL water) on post-prandial blood glucose levels in T2DM was found to exhibit a significant ability to reduce blood sugar levels in human subjects. Its hypoglycaemic potential was substantiated by a similar response observed in another study, wherein two extracts exerted significant hypoglycemic and antihyperglycaemic activity. However, solidified aqueous extract was shown to be more effective than sedimented starchy aqueous extract to control glycemic levels [633]. The hypoglycaemic effect of T. cordifolia and its healing efficacy in diabetic foot ulcers along with decoction for regular dressing was investigated on 60 patients suffering from uncontrolled T2DM patients with a diabetic foot ulcers. They received Ayurvedic oral hypoglycaemic drugs or insulin if needed. The aqueous extract of T. cordifolia stems soaked overnight and administered twice a day (30 mL) lowered blood sugar level along with other oral hypoglycaemic drugs. Deep root infection with variable blood sugar involving the bone tissue needs more than three months to heal with 80% of good healing without amputation. However, patients with established vascular changes with gangrenous toes (20%) needed a minor amputation of toes, but the ulcer was healed up very quickly with the same therapy [1074]. T. cordifolia, at a dose of 500 mg/day, is safe and improved living functions by regulating carbohydrate and lipid metabolism in 30 healthy individuals for 21 days [633,1075]. Moreover, Mishra et al. [1073] showed that T. cordifolia, at a dose of 500 mg three times daily, along with their conventional medications, was effective in decreasing the fasting and post-prandial blood glucose levels in patients with T2DM with no significant effect on the kidneys and liver [1073].

7.8. Trigonella foenum-graecum (Fabaceae)

Trigonella foenum-graecum, commonly known as fenugreek, is a plant that has been extensively used in cooking and as a source of antidiabetic compounds from its seeds and leaf extracts. There is evidence of its effectiveness in lowering postprandial glucose levels, but the long-term effect remains unclear [1076,1077]. Preliminary human trials and animal experiments suggest that orally administered T. foenum-graecum seed powder could have hypoglycaemic and antihyperlipidemic properties comparable to that of insulin [1076]. Results from clinical trials using FBG, 2 h GTT, and HbA1c and randomized models demonstrated the ability of fenugreek to significantly reduce both FBG and HbA1c in T2DM patients as compared with control interventions [1077,1078,1079,1080,1081,1082]. The effects of T. foenum-graecum seeds on glycemic control and insulin resistance, determined by the HOMA model, in mild to moderate T2DM showed that 1 g/day hydroalcoholic extract of fenugreek seeds improves glycemic control with antihypertriglyceridemic and decreases insulin resistance (25 newly diagnosed T2DM patients, FBG < 200 mg/dL) [1083]. However, different treatment regimens were used in each case, the clinical trial was poorly designed, and the results achieved cannot be conclusive and warrants further studies.

7.9. Vitis vinifera (Vitaceae)

Vitis vinifera grape polyphenols (2 g/day) investigated in 38 healthy overweight/obese first-degree relatives of T2DM patients (aged 30–65 years, BMI between 25 and 35 kg/m2, waist circumference >94 cm for men and >80 cm for women, FBG < 110 mg/dL) in a randomized, double-blind controlled trial demonstrated that grape polyphenols at nutritional doses effectively prevent fructose-induced oxidative stress and insulin resistance [1084].

7.10. Zingiber officinale (Zingiberaceae)

Zingiber officinale is a medicinal plant and spice extensively used in the control of diabetes. Arablouet et al. [1085] demonstrated that Zingiber officinale consumption in 70 T2DM patients (aged 30–70 years, BMI between 20 and 35 kg/m2, and HbA1C between 7 and 10%) significantly reduced FBG, HbA1C, insulin, HOMA, TG, TC, CRP, and PGE2 compared to the placebo group, suggesting an improvement of insulin sensitivity and the prevention of complications in T2DM patients [1085]. This result correlates with that obtained by Mahluji et al. [1086], where the administration of ginger 2 g/day for two months in a randomized double-blind placebo-controlled trial including 64 patients with T2DM (aged 38–65 years, average BMI of 29.5 kg/m2) significantly lowered the levels of insulin (11.0 ± 2.3 versus 12.1 ± 3.3; p = 0.001), LDL-C (67.8 ± 27.2 vs. 89.2 ± 24.9; p = 0.04), TG (127.7 ± 43.7 vs. 128.2 ± 37.7; p = 0.03) and the HOMA index (3.9 ± 1.09 vs. 4.5 ± 1.8; p = 0.002) and increased the quantitative insulin-sensitivity check index (0.313 ± 0.012 vs. 0.308 ± 0.012; p = 0.005) in comparison to the control group [1086]. These achieved results support the use of ginger to control hyperglycemia.

7.11. DBCare® (Ace Continental Exports Inc., London, UK)

DBCare® is a traditional herbal food supplement marketed as an antidiabetic medicine composed of 11 herbal ingredients. DBcare investigation in 35 patients with T2DM under oral hypoglycemic treatment (20 male and 15 women, HbA1C > 7.0%) showed safety and seems to decline the level of HbA1C (0.4 ± 0.7% in the DBCare® group and 0.2% ± 0.8% in the placebo group; p = 0.806). However, no significant change was found in the fasting plasma glucose throughout the 12-weeks randomized, double-blind placebo-controlled trial, except episodic hypoglycemic effects observed in two patients. Though DBcare poorly controls blood glucose, a further study involving patients with HbA1C ≥ 8%, short (≤10 year) duration of diabetes, or young age, in particular, is commendable [1087].

8. Conclusions

The present review attempts to be useful to the scholars, scientists, and health professionals working in the field of pharmacology and therapeutics to develop antidiabetic drugs. In this work, we discussed traditional medicinal plants for the treatment of DM. Several plants with antidiabetic, antihyperglycemic, and hypoglycemic activities and with α-amylase and α-glucosidase inhibition are reported. The antidiabetic effect of plants is attributed to the mixture of phytochemicals or single components of the plant extracts. The phytochemicals responsible for antidiabetic properties mainly are alkaloids, phenolic acids, flavonoids, glycosides, saponins, polysaccharides, stilbenes, and tannins. In the several animal studies reported using different plants, there is a wide variety between the extraction methods, which is determinant in the phytochemical composition of the extracts. Moreover, phytochemical plant composition is highly dependent on several endogenous and exogenous factors, including genetic traits; plant organs used; and the growing, drying, and storing conditions. Stress factors, such as adverse climatology, and diseases affecting the plant also influence the phytochemicals obtained. Notwithstanding, these studies are still useful to discover a new natural antidiabetic drug which could be a great promise. As was discussed, low efficacy and safety concerns of current antidiabetic drugs of hundreds of millions of individuals have resulted in a current top-priority health-issue-seeking better management of diabetes.
Diverse mechanisms are described, explaining the beneficial effects of phytochemicals, such as regulation of glucose and lipid metabolism, insulin secretion, stimulating β cells, NF-kB signalling pathway, inhibition of gluconeogenic enzymes, and ROS protective action. In this relation, the investigation of phytochemicals responsible for the antidiabetic effects have progressed in the last few decades. Treating DM with plant-derived compounds, which are accessible and do not require laborious pharmaceutical synthesis, seems highly attractive.
Advances in traditional medicine research have significantly fuelled the drug development of novel entities for diabetes. It is worth noting that only a few medicinal plants have been studied for efficacy in humans. The majority of the reports failed to provide the authority name of herbs, the composition of the formulation, and preparation procedures. Most methods used for clinical trials were poorly designed, leading mostly to inconclusive findings. Therefore, more efficient clinical studies are warranted for further validation. On the other hand, efforts should be made to characterize antidiabetic active principles from antidiabetic plants. Moreover, as future perspectives, the medicinal plants described may be useful in the design of new functional foods with antidiabetic properties or for avoiding hyperglycemic effects of some foods like those rich in simple carbohydrates.

Author Contributions

All authors contributed to the manuscript. Conceptualization, B.S. and J.S.-R.; validation investigation, resources, data curation, and writing, all authors; review and editing, J.S.-R., W.C.C., M.M. and A.S. All the authors read and approved the final manuscript.

Funding

This research received no external funding.

Acknowledgments

This work was supported by CONICYT PIA/APOYO CCTE AFB170007 and by the Institute of Health Carlos III (CIBEROBN CB12/03/30038).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Soumya, D.; Srilatha, B. Late stage complications of diabetes and insulin resistance. J. Diabetes Metab. 2011, 2, 1000167. [Google Scholar]
  2. Arumugam, G.; Manjula, P.; Paari, N. A review: Anti diabetic medicinal plants used for diabetes mellitus. J. Acute Dis. 2013, 2, 196–200. [Google Scholar] [CrossRef] [Green Version]
  3. Murea, M.; Ma, L.; Freedman, B.I. Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications. Rev. Diabet. Stud. 2012, 9, 6–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  4. Buowari, O. Chapter 8: Diabetes mellitus in developing countries and case series. In Diabetes Mellitus—Insights and Perspectives; InTechOpen: Rijeka, Croatia, 2013. [Google Scholar]
  5. Folorunso, O.; Oguntibeju, O. Chapter 5: The role of nutrition in the management of diabetes mellitus. In Diabetes Mellitus—Insights and Perspectives; InTechOpen: Rijeka, Croatia, 2013. [Google Scholar]
  6. Salsali, A.; Nathan, M. A review of types 1 and 2 diabetes mellitus and their treatment with insulin. Am. J. 2006, 13, 349–361. [Google Scholar] [CrossRef]
  7. Sperling, M.; Tamborlane, M.; Batteling, T.; Weinzimer, S.; Phillip, M. Pediatric endocrinology. In Chapter 19: Diabetes mellitus, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
  8. Spellman, C.W. Pathophysiology of type 2 diabetes: Targeting islet cell dysfunction. J. Am. Osteopath. Assoc. 2010, 110, S2–S7. [Google Scholar]
  9. Tripathy, D.; Chavez, A.O. Defects in insulin secretion and action in the pathogenesis of type 2 diabetes mellitus. Curr. Diabetes Rep. 2010, 10, 184–191. [Google Scholar] [CrossRef]
  10. Bahijri, S.M.; Jambi, H.A.; Al Raddadi, R.M.; Ferns, G.; Tuomilehto, J. The prevalence of diabetes and prediabetes in the adult population of Jeddah, Saudi Arabia—A community-based survey. PLoS ONE 2016, 11, e0152559. [Google Scholar] [CrossRef]
  11. Kakkar, R. Rising burden of diabetes-public health challenges and way out. Nepal J. Epidemiol. 2016, 6, 557–559. [Google Scholar] [CrossRef]
  12. Chijioke, A.; Adamu, A.; Makusidi, A. Mortality pattern among type 2 diabetes patients in Ilorin, Nigeria. JEMDSA 2010, 15, 1–4. [Google Scholar] [CrossRef]
  13. Owoaje, E.E.; Rotimi, C.N.; Kaufman, J.S.; Tracy, J.; Cooper, R.S. Prevalence of adult diabetes in Ibadan, Nigeria. E. Afr. Med. J. 1997, 74, 299–302. [Google Scholar]
  14. Narayan, K.M.V.; Zhang, P.; Williams, D.; Engelgau, M.; Imperatore, G.; Kanaya, A.; Ramachandran, A. How should developing countries manage diabetes? Can. Med Assoc. J. 2006, 175, 733–736. [Google Scholar] [CrossRef] [PubMed]
  15. Levitt, N. Diabetes in africa: Epidemiology, management, and health care challenges. Heart 2008, 94, 1376–1382. [Google Scholar] [CrossRef] [PubMed]
  16. DeFronzo, R.A. Pharmacologic therapy for type 2 diabetes mellitus. Ann. Intern. Med. 1999, 131, 281–303. [Google Scholar] [CrossRef] [PubMed]
  17. Inzucchi, S.E. Oral antihyperglycemic therapy for type 2 diabetes—Scientific review. JAMA 2002, 287, 360–372. [Google Scholar] [CrossRef] [PubMed]
  18. Lebovitz, H.E. Alpha-glucosidase inhibitors. Endocrinol. Metab. Clin. N. Am. 1997, 26, 539–551. [Google Scholar] [CrossRef]
  19. Koski, R. Oral antidiabetic agents: A comparative review. J. Pharma. Pr. 2004, 17, 39–48. [Google Scholar] [CrossRef]
  20. Mayerson, A.B.; Inzucchi, S.E. Type 2 diabetes therapy. A pathophysiologically based approach. Postgrad. Med. 2002, 111, 83–95. [Google Scholar] [CrossRef]
  21. Rao, M.; Sreenivasulu, M.; Chengaiah, B.; Reddy, K.; Chetty, M. Herbal medicines for diabetes mellitus: A review. Int. J. Pharm. Tech. Res. 2010, 2, 1883–1892. [Google Scholar]
  22. Dey, L.; Attele, A.S.; Yuan, C.S. Alternative therapies for type 2 diabetes. Altern. Med. Rev. 2002, 7, 45–58. [Google Scholar]
  23. Wadkar, K.; Magdum, C.; Patil, S.; Naikwade, N. Antidiabetic potential and Indian medicinal plants. J. Herb. Med. Toxicol 2008, 2, 45–50. [Google Scholar]
  24. Sharifi-Rad, M.; Nazaruk, J.; Polito, L.; Morais-Braga, M.F.B.; Rocha, J.E.; Coutinho, H.D.M.; Salehi, B.; Tabanelli, G.; Montanari, C.; del Mar Contreras, M.; et al. Matricaria genus as a source of antimicrobial agents: From farm to pharmacy and food applications. Microbiol. Res. 2018, 215, 76–88. [Google Scholar] [CrossRef] [PubMed]
  25. Salehi, B.; Kumar, N.V.A.; Şener, B.; Sharifi-Rad, M.; Kılıç, M.; Mahady, G.B.; Vlaisavljevic, S.; Iriti, M.; Kobarfard, F.; Setzer, W.N. Medicinal plants used in the treatment of human immunodeficiency virus. Int. J. Mol. Sci. 2018, 19, 1459. [Google Scholar] [CrossRef] [PubMed]
  26. Sharifi-Rad, M.; Salehi, B.; Sharifi-Rad, J.; Setzer, W.N.; Iriti, M. Pulicaria vulgaris Gaertn. essential oil: An alternative or complementary treatment for leishmaniasis. Cell. Mol. Biol. 2018, 64, 18–21. [Google Scholar] [CrossRef] [PubMed]
  27. Arya, V.; Gupta, V.; Ranjeet, K. A review on fruits having anti-diabetic potential. J. Chem. Pharm. Res. 2011, 3, 204–212. [Google Scholar]
  28. Singab, A.; Youssef, F.; Ashour, M. Medicinal plants with potential antidiabetic activity and their assessment. Med. Aromat Plants 2014, 3. [Google Scholar] [CrossRef]
  29. Mishra, A.P.; Sharifi-Rad, M.; Shariati, M.A.; Mabkhot, Y.N.; Al-Showiman, S.S.; Rauf, A.; Salehi, B.; Župunski, M.; Sharifi-Rad, M.; Gusain, P. Bioactive compounds and health benefits of edible Rumex species—A review. Cell. Mol. Biol. 2018, 64, 27–34. [Google Scholar] [CrossRef]
  30. Mishra, A.P.; Saklani, S.; Salehi, B.; Parcha, V.; Sharifi-Rad, M.; Milella, L.; Iriti, M.; Sharifi-Rad, J.; Srivastava, M. Satyrium nepalense, a high altitude medicinal orchid of Indian Himalayan region: Chemical profile and biological activities of tuber extracts. Cell. Mol. Biol. 2018, 64, 35–43. [Google Scholar] [CrossRef]
  31. Abdolshahi, A.; Naybandi-Atashi, S.; Heydari-Majd, M.; Salehi, B.; Kobarfard, F.; Ayatollahi, S.A.; Ata, A.; Tabanelli, G.; Sharifi-Rad, M.; Montanari, C. Antibacterial activity of some lamiaceae species against Staphylococcus aureus in yoghurt-based drink (Doogh). Cell. Mol. Biol. 2018, 64, 71–77. [Google Scholar] [CrossRef]
  32. Mishra, A.P.; Saklani, S.; Sharifi-Rad, M.; Iriti, M.; Salehi, B.; Maurya, V.K.; Rauf, A.; Milella, L.; Rajabi, S.; Baghalpour, N. Antibacterial potential of Saussurea obvallata petroleum ether extract: A spiritually revered medicinal plant. Cell. Mol. Biol. 2018, 64, 65–70. [Google Scholar] [CrossRef]
  33. Sharifi-Rad, J.; Tayeboon, G.S.; Niknam, F.; Sharifi-Rad, M.; Mohajeri, M.; Salehi, B.; Iriti, M.; Sharifi-Rad, M. Veronica persica Poir. Extract—antibacterial, antifungal and scolicidal activities, and inhibitory potential on acetylcholinesterase, tyrosinase, lipoxygenase and xanthine oxidase. Cell. Mol. Biol. 2018, 64, 50–56. [Google Scholar] [CrossRef]
  34. Sharifi-Rad, M.; Roberts, T.H.; Matthews, K.R.; Bezerra, C.F.; Morais-Braga, M.F.B.; Coutinho, H.D.M.; Sharopov, F.; Salehi, B.; Yousaf, Z.; Sharifi-Rad, M.; et al. Ethnobotany of the genus Taraxacum—Phytochemicals and antimicrobial activity. Phytother. Res. 2018, 32, 2131–2145. [Google Scholar] [CrossRef] [PubMed]
  35. Durazzo, A.; D’Addezio, L.; Camilli, E.; Piccinelli, R.; Turrini, A.; Marletta, L.; Marconi, S.; Lucarini, M.; Lisciani, S.; Gabrielli, P. From plant compounds to botanicals and back: A current snapshot. Molecules 2018, 23, 1844. [Google Scholar] [CrossRef] [PubMed]
  36. Kooti, W.; Moradi, M.; Akbari, S.; Sharafi-Ahvazi, N.; AsadiSamani, M.; Ashtary-Larky, D. Therapeutic and pharmacological potential of Foeniculum vulgare Mill: A review. J. HerbMed Pharm. 2015, 4, 1–9. [Google Scholar]
  37. Afrisham, R.; Aberomand, M.; Ghaffari, M.; Siahpoosh, A.; Jamalan, M. Inhibitory effect of Heracleum persicum and Ziziphus jujuba on activity of alpha-amylase. J. Bot. 2015, 2015, 824683. [Google Scholar]
  38. Durazzo, A.; Lucarini, M. A current shot and re-thinking of antioxidant research strategy. Braz. J. Anal. Chem. 2017, 5, 9–11. [Google Scholar] [CrossRef]
  39. Durazzo, A. Study approach of antioxidant properties in foods: Update and considerations. Foods 2017, 6, 17. [Google Scholar] [CrossRef]
  40. Heo, H.J.; Kim, Y.J.; Chung, D.; Kim, D.-O. Antioxidant capacities of individual and combined phenolics in a model system. Food Chem. 2007, 104, 87–92. [Google Scholar] [CrossRef]
  41. Durazzo, A.; Turfani, V.; Azzini, E.; Maiani, G.; Carcea, M. Phenols, lignans and antioxidant properties of legume and sweet chestnut flours. Food Chem. 2013, 140, 666–671. [Google Scholar] [CrossRef]
  42. Tabart, J.; Kevers, C.; Pincemail, J.; Defraigne, J.-O.; Dommes, J. Comparative antioxidant capacities of phenolic compounds measured by various tests. Food Chem. 2009, 113, 1226–1233. [Google Scholar] [CrossRef]
  43. Saura-Calixto, F. Concept and health-related properties of nonextractable polyphenols: The missing dietary polyphenols. J. Agric. Food Chem. 2012, 60, 11195–11200. [Google Scholar] [CrossRef]
  44. Durazzo, A. Extractable and non-extractable polyphenols: An overview. In Non-Extractable Polyphenols and Carotenoids; Royal Society of Chemistry: London, UK, 2018; pp. 37–45. [Google Scholar]
  45. Durazzo, A.; Turfani, V.; Narducci, V.; Azzini, E.; Maiani, G.; Carcea, M. Nutritional characterisation and bioactive components of commercial carobs flours. Food Chem. 2014, 153, 109–113. [Google Scholar] [CrossRef] [PubMed]
  46. Diaconeasa, Z.; Leopold, L.; Rugină, D.; Ayvaz, H.; Socaciu, C. Antiproliferative and antioxidant properties of anthocyanin rich extracts from blueberry and blackcurrant juice. Int. J. Mol. Sci. 2015, 16, 2352–2365. [Google Scholar] [CrossRef] [PubMed]
  47. Gupta, P.; De, A. Diabetes mellitus and its herbal treatment. Int. J. Res. Pharm. Biomed. Sci. 2012, 3, 706–721. [Google Scholar]
  48. Ríos, J.L.; Francini, F.; Schinella, G.R. Natural products for the treatment of type 2 diabetes mellitus. Planta Med. 2015, 81, 975–994. [Google Scholar] [CrossRef] [PubMed]
  49. Jacob, B.; Narendhirakannan, R. Role of medicinal plants in the management of diabetes mellitus: A review. 3 Biotech 2019, 9, 4. [Google Scholar] [CrossRef]
  50. Asadi-Samani, M.; Moradi, M.T.; Mahmoodnia, L.; Alaei, S.; Asadi-Samani, F.; Luther, T. Traditional uses of medicinal plants to prevent and treat diabetes; an updated review of ethnobotanical studies in Iran. J. Nephropathol. 2017, 6, 118–125. [Google Scholar] [CrossRef] [Green Version]
  51. Bahmani, M.; Zargaran, A.; Rafieian-Kopaei, M.; Saki, K. Ethnobotanical study of medicinal plants used in the management of diabetes mellitus in the Urmia, Northwest Iran. Asian Pac. J. Trop. Med. 2014, 7, S348–S354. [Google Scholar] [CrossRef] [Green Version]
  52. Rashidi, A.A.; Mirhashemi, S.M.; Taghizadeh, M.; Sarkhail, P. Iranian medicinal plants for diabetes mellitus: A systematic review. Pak. J. Biol. Sci. 2013, 16, 401–411. [Google Scholar]
  53. Hasani-Ranjbar, S.; Larijani, B.; Abdollah, M. A systematic review of Iranian medicinal plants useful in diabetes mellitus. Arch. Med. Sci. 2008, 4, 285–292. [Google Scholar]
  54. Jarald, E.; Joshi, S.B.; Jain, D.C. Diabetes and herbal medicines. Iran. J. Pharmacol. Ther. 2008, 7, 97–106. [Google Scholar]
  55. Afifi-Yazar, F.U.; Kasabri, V.; Abu-Dahab, R. Medicinal plants from jordan in the treatment of diabetes: Traditional uses vs in vitro and in vivo evaluations part 2. Planta Med. 2011, 77, 1210–1220. [Google Scholar] [CrossRef] [PubMed]
  56. Al-Aboudi, A.; Afifi, F.U. Plants used for the treatment of diabetes in jordan: A review of scientific evidence. Pharm. Biol. 2011, 49, 221–239. [Google Scholar] [CrossRef] [PubMed]
  57. Al-Mustafa, A.H.; Al-Thunibat, O.Y. Antioxidant activity of some jordanian medicinal plants used traditionally for treatment of diabetes. Pak. J. Biol. Sci. 2008, 11, 351–358. [Google Scholar] [CrossRef] [PubMed]
  58. Chin, Y.X.; Lim, P.E.; Maggs, C.A.; Phang, S.M.; Sharifuddin, Y.; Green, B.D. Anti-diabetic potential of selected malaysian seaweeds. J. Appl. Phycol. 2015, 27, 2137–2148. [Google Scholar] [CrossRef]
  59. Sekar, M.; Bin Abdullah, M.Z.; Bin Nor Azlan, A.Y.H.; Binti Nasir, S.N.; Binti Zakaria, Z.; Bin Abdullah, M.S. Ten commonly available medicinal plants in malaysia used for the treatment of diabetes—A review. Asian J. Pharm. Clin. Res. 2014, 7, 1–5. [Google Scholar]
  60. Khookhor, O.; Sato, Y. Mongolian plant extracts with potential glucose absorption inhibiting effects in rats. J. Tradit. Med. 2009, 26, 74–79. [Google Scholar]
  61. Mina, E.C.; Mina, J.F. Ethnobotanical survey of plants commonly used for diabetes in tarlac of central luzon Philippines. Int. Med. J. Malays. 2017, 16, 21–28. [Google Scholar]
  62. Chichioco-Hernandez, C.; Wudarski, J.; Gevaert, L.; Verschaeve, L. Evaluation of cytotoxicity and genotoxicity of some Philippine medicinal plants. Pharmacogn. Mag. 2011, 7, 171–175. [Google Scholar] [CrossRef]
  63. Kamel, F.O.; Magadmi, R.M.; Hagras, M.M.; Magadmi, B.; AlAhmad, R.A. Knowledge, attitude, and beliefs toward traditional herbal medicine use among diabetics in Jeddah Saudi Arabia. Complement. Ther. Clin. Pract. 2017, 29, 207–212. [Google Scholar] [CrossRef]
  64. Al-Awamy, B.H. Evaluation of commonly used tribal and traditional remedies in Saudi Arabia. Saudi Med. J. 2001, 22, 1065–1068. [Google Scholar]
  65. Mossa, J.S. A study on the crude antidiabetic drugs used in arabian folk medicine. Pharm. Biol. 1985, 23, 137–145. [Google Scholar] [CrossRef]
  66. Kim, H.; Song, M.J. Analysis of traditional knowledge about medicinal plants utilized in communities of Jirisan National Park (Korea). J. Ethnopharmacol. 2014, 153, 85–89. [Google Scholar] [CrossRef] [PubMed]
  67. Park, H.; Kim, H.S. Korean traditional natural herbs and plants as immune enhancing, antidiabetic, chemopreventive, and antioxidative agents: A narrative review and perspective. J. Med. Food 2014, 17, 21–27. [Google Scholar] [CrossRef] [PubMed]
  68. Park, C.; Lee, J.S. Mini review: Natural ingredients for diabetes which are approved by Korean FDA. Biomed. Res. 2013, 24, 164–169. [Google Scholar]
  69. Attanayake, A.P.; Jayatilaka, K.A.P.W.; Pathirana, C.; Mudduwa, L.K.B. Phytochemical screening and in vitro antioxidant potentials of extracts of ten medicinal plants used for the treatment of diabetes mellitus in Sri Lanka. Afr. J. Trad. Complement. Altern. Med. 2015, 12, 28–33. [Google Scholar] [CrossRef]
  70. Alachkar, A.; Jaddouh, A.; Elsheikh, M.S.; Bilia, A.R.; Vincieri, F.F. Traditional medicine in Syria: Folk medicine in Aleppo governorate. Nat. Pro. Comm. 2011, 6, 79–84. [Google Scholar] [CrossRef]
  71. Dej-Adisai, S.; Pitakbut, T. Determination of α-glucosidase inhibitory activity from selected Fabaceae plants. Pak. J. Pharma. Sci. 2015, 28, 1679–1683. [Google Scholar]
  72. Kasempitakpong, B.; Kusirisin, W.; Jaikang, C.; Sermpanich, N. Antioxidant and acetylcholinesterase inhibitory potential of thai medicinal plants. Curr. Nutr. Food Sci. 2015, 11, 99–104. [Google Scholar] [CrossRef]
  73. Neamsuvan, O.; Madeebing, N.; Mah, L.; Lateh, W. A survey of medicinal plants for diabetes treating from Chana and Nathawee district, Songkhla province, Thailand. J. Ethnopharmacol. 2015, 174, 82–90. [Google Scholar] [CrossRef]
  74. Tangjitman, K.; Wongsawad, C.; Winijchaiyanan, P.; Sukkho, T.; Kamwong, K.; Pongamornkul, W.; Trisonthi, C. Traditional knowledge on medicinal plant of the Karen in Northern Thailand: A comparative study. J. Ethnopharmacol. 2013, 150, 232–243. [Google Scholar] [CrossRef]
  75. Kusirisin, W.; Srichairatanakool, S.; Lerttrakarnnon, P.; Lailerd, N.; Suttajit, M.; Jaikang, C.; Chaiyasut, C. Antioxidative activity, polyphenolic content and anti-glycation effect of some Thai medicinal plants traditionally used in diabetic patients. Med. Chem. 2009, 5, 139–147. [Google Scholar] [CrossRef] [PubMed]
  76. Durmuskahya, C.; Öztürk, M. Ethnobotanical survey of medicinal plants used for the treatment of diabetes in Manisa, Turkey. Sains Malays. 2013, 42, 1431–1438. [Google Scholar] [CrossRef]
  77. Bulut, G.; Biçer, M.; Tuzlaci, E. The folk medicinal plants of Yüksekova (Hakkari-Turkey). J. Pharm. Istanb. Univ. 2016, 46, 115–124. [Google Scholar]
  78. Kartal, Ç.; Güneş, F. Medicinal plants used in meriç town from Turkey. Indian J. Pharm. Educ. Res. 2017, 51, S249–S253. [Google Scholar] [CrossRef]
  79. Demirci, S.; Özhatay, N. An ethnobotanical study in Kahramanmaras (Turkey); wild plants used for medicinal purpose in Andirin, Kahramanmaraş. Turk. J. Pharm. Sci. 2012, 9, 75–92. [Google Scholar]
  80. Bulut, G. Folk medicinal plants of Silivri (Istanbul, Turkey). Marmara Pharm. J. 2011, 15, 25–29. [Google Scholar] [CrossRef]
  81. Sarikaya, S.; Öner, H.; Harput, U.S. Medicinal plants used for the treatment of diabetes in Turkey. Ank. Univ. Eczacilik Fak. Derg. 2010, 39, 317–342. [Google Scholar]
  82. Tuzlaci, E.; Şenkardeş, I. Turkish folk medicinal plants, X: Ürgüp (Nevşehir). Marmara Pharm. J. 2011, 15, 58–68. [Google Scholar] [CrossRef]
  83. Trinh, B.T.D.; Staerk, D.; Jäger, A.K. Screening for potential α-glucosidase and α-amylase inhibitory constituents from selected Vietnamese plants used to treat type 2 diabetes. J. Ethnopharmacol. 2016, 186, 189–195. [Google Scholar] [CrossRef]
  84. Hoa, N.K.; Phan, D.V.; Thuan, N.D.; Östenson, C.G. Screening of the hypoglycemic effect of eight Vietnamese herbal drugs. Methods Find. Exp. Clin. Pharmacol. 2009, 31, 165–169. [Google Scholar] [CrossRef]
  85. Tran, M.H.; Hoang, D.M.; Minh, P.T.H.; Ui, J.Y.; Na, M.; Won, K.O.; Byung, S.M.; Bae, K. α-amylase and protein tyrosine phosphatase 1B inhibitory of some Vietnamese medicinal plants used to treat diabetes. Nat. Prod. Sci. 2007, 13, 311–316. [Google Scholar]
  86. Bajpai, O.; Pandey, J.; Chaudhary, L.B. Ethnomedicinal uses of tree species by Tharu tribes in the Himalayan Terai region of India. Res. J. Med. Plant 2016, 10, 19–41. [Google Scholar] [CrossRef]
  87. Bansal, R.; Jat, R.S.; Kumbhani, S.; Rathod, J.H. Ethnomedicinal survey of medicinal plants use from Narmada, Gujarat, India. Med. Plants 2016, 8, 233–237. [Google Scholar] [CrossRef]
  88. Kumar, R.B.; Suryanarayana, B. Ethnomedicinal recipes for diabetes from tribals of Sriharikota island, Andhra Pradesh. Pharm. Lett. 2016, 8, 111–118. [Google Scholar]
  89. Kumari, S.J.; Sangeetha, M.; Pavithra, R. A retrospective review on Indian traditional herbs and its biocompounds in diabetes. Int. J. Pharm. Res. 2016, 9, 444–460. [Google Scholar]
  90. Purohit, K.; Rathore, H.S.; Köhler-Rollefson, I. Increased risk of type 2 diabetes mellitus in the Maru Raika community of Rajasthan: A cross-sectional study. Int. J. Diabetes Dev. Ctries. 2017, 37, 494–501. [Google Scholar] [CrossRef]
  91. Smruthi, G.; Mahadevan, V.; Sahayam, S.; Rajalakshmi, P.; Vadivel, V.; Brindha, P. Anti-diabetic potential of selected Indian traditional medicinal plants—An updated review. J. Pharm. Sci. Res. 2016, 8, 1144–1158. [Google Scholar]
  92. Arora, A.; Paliwal, V.; Jain, H. An inventory of traditional herbal medicines used in management of diabetes mellitus II by ethnic people of south-east Rajasthan (India). Int. J. Pharm. Sci. Rev. Res. 2015, 30, 200–204. [Google Scholar]
  93. Bhatia, H.; Sharma, Y.P.; Manhas, R.K.; Kumar, K. Ethnomedicinal plants used by the villagers of district Udhampur, J&K, India. J. Ethnopharmacol. 2014, 151, 1005–1018. [Google Scholar]
  94. Chellappandian, M.; Pandikumar, P.; Mutheeswaran, S.; Paulraj, M.G.; Prabakaran, S.; Duraipandiyan, V.; Ignacimuthu, S.; Al-Dhabi, N.A. Documentation and quantitative analysis of local ethnozoological knowledge among traditional healers of Theni district, Tamil Nadu, India. J. Ethnopharmacol. 2014, 154, 116–130. [Google Scholar] [CrossRef]
  95. Tarafdar, R.G.; Nath, S.; Talukdar, A.D.; Choudhury, M.D. Antidiabetic plants used among the ethnic communities of Unakoti district of Tripura, India. J. Ethnopharmacol. 2015, 160, 219–226. [Google Scholar] [CrossRef] [PubMed]
  96. Jerang, G.; Swamy, B.M.V.; Kotagiri, S.; Dey, T.; Fariyaz, S.M. Indian medicinal plants with antidiabetic and related beneficial effects: A review. Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 31–38. [Google Scholar]
  97. Nongdam, P. Ethno-medicinal uses of some orchids of Nagaland, North-east India. Res. J. Med. Plant 2014, 8, 126–139. [Google Scholar] [CrossRef]
  98. Thirumalai, T.; Beverly, C.D.; Sathiyaraj, K.; Senthilkumar, B.; David, E. Ethnobotanical study of anti-diabetic medicinal plants used by the local people in Javadhu hills Tamilnadu, India. Asian Pac. J. Trop. Biomed. 2012, 2, S910–S913. [Google Scholar] [CrossRef]
  99. Wang, Z.; Wang, J.; Chan, P. Treating type 2 diabetes mellitus with traditional Chinese and Indian medicinal herbs. Evid. Based Complement. Altern. Med. 2013, 2013, 343594. [Google Scholar] [CrossRef]
  100. Devi, W.I.; Devi, G.S.; Singh, C.B. Traditional herbal medicine used for the treatment of diabetes in Manipur, India. Res. J. Pharm. Biol. Chem. Sci. 2011, 2, 709–715. [Google Scholar]
  101. Joseph, B.; Jini, D. Insight into the hypoglycaemic effect of traditional Indian herbs used in the treatment of diabetes. Res. J. Med. Plant 2011, 5, 352–376. [Google Scholar] [CrossRef]
  102. Basha, S.K.; Sudarsanam, G.; Mohammad, M.S.; Parveen, D.N. Investigations on anti-diabetic medicinal plants used by Sugali tribal inhabitants of Yerramalais of Kurnool district, Andhra Pradesh, India. Stamford J. Pharm. Sci. 2011, 4, 19–24. [Google Scholar] [CrossRef]
  103. Khan, M.H.; Yadava, P.S. Antidiabetic plants used in Thoubal district of Manipur, Northeast India. Indian J. Trad. Knowl. 2010, 9, 510–514. [Google Scholar]
  104. Tarak, D.; Namsa, N.D.; Tangjang, S.; Arya, S.C.; Rajbonshi, B.; Samal, P.K.; Mandal, M. An inventory of the ethnobotanicals used as anti-diabetic by a rural community of Dhemaji district of Assam, Northeast India. J. Ethnopharmacol. 2011, 138, 345–350. [Google Scholar] [CrossRef]
  105. Thakur, G.; Pal, K.; Mitra, A.; Mukherjee, S.; Basak, A.; Rousseau, D. Some common antidiabetic plants of the Indian subcontinent. Food Rev. Int. 2010, 26, 364–385. [Google Scholar] [CrossRef]
  106. Xie, W.; Zhao, Y.; Zhang, Y. Traditional Chinese medicines in treatment of patients with type 2 diabetes mellitus. Evid.Based Complement. Altern. Med. 2011, 2011, 726723. [Google Scholar] [CrossRef] [PubMed]
  107. Ye, X.P.; Song, C.Q.; Yuan, P.; Mao, R.G. α-glucosidase and α-amylase inhibitory activity of common constituents from traditional Chinese medicine used for diabetes mellitus. Chin. J. Nat. Med. 2010, 8, 349–352. [Google Scholar] [CrossRef]
  108. Geng, S.Y.; Ouyang, X.Y.; Zhou, Q.; He, M.Z.; Qi, Y.R. Analysis of patents of antidiabetic traditional Chinese medicine. Chin. J. New Drugs 2016, 25, 1921–1927. [Google Scholar]
  109. Feng, S.; Song, L.; Liu, Y.; Lai, F.; Zuo, G.; He, G.; Chen, M.; Huang, D. Hypoglycemic activities of commonly-used traditional Chinese herbs. Am. J. Chin. Med. 2013, 41, 849–864. [Google Scholar] [CrossRef] [PubMed]
  110. Wang, H.J.; Chiang, B.H. Anti-diabetic effect of a traditional Chinese medicine formula. Food. Funct. 2012, 3, 1161–1169. [Google Scholar] [CrossRef]
  111. Zhang, J.Q. Progress of diabetes research in traditional Chinese medicine in recent years. J. Chin. Integr. Med. 2007, 5, 373–377. [Google Scholar] [CrossRef]
  112. Li, Z.; Qian, Y.C.; Gao, F.; Qian, H.; Wang, X.J. Research progress of daibetes treatment by traditional Chinese medicine. Chin. J. Pharm. Biotechnol. 2015, 22, 373–376. [Google Scholar]
  113. Kar, A.; Choudhary, B.K.; Bandyopadhyay, N.G. Comparative evaluation of hypoglycaemic activity of some Indian medicinal plants in alloxan diabetic rats. J. Ethnopharmacol. 2003, 84, 105–108. [Google Scholar] [CrossRef]
  114. Gopukumar, S.T.; Praseetha, P.K. Ficus benghalensis linn—The sacred Indian medicinal tree with potent pharmacological remedies. Int. J. Pharm. Sci. Rev. Res. 2015, 32, 223–227. [Google Scholar]
  115. Deepa, P.; Sowndhararajan, K.; Kim, S.; Park, S.J. A role of ficus species in the management of diabetes mellitus: A review. J. Ethnopharmacol. 2018, 215, 210–232. [Google Scholar] [CrossRef] [PubMed]
  116. Shahreen, S.; Banik, J.; Hafiz, A.; Rahman, S.; Zaman, A.T.; Shoyeb, M.A.; Chowdhury, M.H.; Rahmatullah, M. Antihyperglycemic activities of leaves of three edible fruit plants (Averrhoa carambola, Ficus hispida and Syzygium samarangense) of Bangladesh. Afr. J. Tradit. Complement. Altern. Med. 2012, 9, 287–291. [Google Scholar] [CrossRef] [PubMed]
  117. Rangika, B.S.; Dayananda, P.D.; Peiris, D.C. Hypoglycemic and hypolipidemic activities of aqueous extract of flowers from Nycantus arbor-tristis L. in male mice. BMC Complement. Altern. Med. 2015, 15, 289. [Google Scholar] [CrossRef] [PubMed]
  118. Doss, A.; Palaniswamy, M.; Angayarkanni, J.; Dhanabalan, R. Antidiabetic activity of water extract of Solanum trilobatum (Linn.) in alloxan-induced diabetes in rats. Afr. J. Biotechnol. 2009, 8, 5551–5553. [Google Scholar]
  119. Olaokun, O.O.; McGaw, L.J.; Awouafack, M.D.; Eloff, J.N.; Naidoo, V. The potential role of GLUT4 transporters and insulin receptors in the hypoglycaemic activity of Ficus lutea acetone leaf extract. BMC Complement. Altern. Med. 2014, 14, 269. [Google Scholar] [CrossRef]
  120. Zengin, G.; Mollica, A.; Aktumsek, A.; Picot, C.M.N.; Mahomoodally, M.F. In vitro and in silico insights of Cupressus sempervirens, Artemisia absinthium and Lippia triphylla: Bridging traditional knowledge and scientific validation. Eur. J. Integr. Med. 2017, 12, 135–141. [Google Scholar] [CrossRef]
  121. Liu, N.Q.; van der Kooy, F.; Verpoorte, R. Artemisia afra: A potential flagship for African medicinal plants? S. Afr. J. Bot. 2009, 75, 185–195. [Google Scholar] [CrossRef] [Green Version]
  122. Nedjimi, B.; Beladel, B. Assessment of some chemical elements in wild Shih (Artemisia herba-alba Asso) using INAA technique. J. Appl. Res. Med. Aromat. Plants 2015, 2, 203–205. [Google Scholar] [CrossRef]
  123. Al-Khazraji, S.M.; Al-Shamaony, L.A.; Twaij, H.A.A. Hypoglycaemic effect of Artemisia herba alba. I. Effect of different parts and influence of the solvent on hypoglycaemic activity. J. Ethnopharmacol. 1993, 40, 163–166. [Google Scholar] [CrossRef]
  124. Cruz, E.C.; Andrade-Cetto, A. Ethnopharmacological field study of the plants used to treat type 2 diabetes among the Cakchiquels in Guatemala. J. Ethnopharmacol. 2015, 159, 238–244. [Google Scholar] [CrossRef]
  125. Tag, H.; Kalita, P.; Dwivedi, P.; Das, A.K.; Namsa, N.D. Herbal medicines used in the treatment of diabetes mellitus in Arunachal Himalaya, Northeast, India. J. Ethnopharmacol. 2012, 141, 786–795. [Google Scholar] [CrossRef] [PubMed]
  126. Rafe, M.R. A review of five traditionally used anti-diabetic plants of Bangladesh and their pharmacological activities. Asian Pac. J. Trop. Med. 2017, 10, 933–939. [Google Scholar] [CrossRef] [PubMed]
  127. Saha, S.; Verma, R. Inhibitory potential of traditional herbs on α-amylase activity. Pharm. Biol. 2012, 50, 326–331. [Google Scholar] [CrossRef] [PubMed]
  128. Sudha, P.; Zinjarde, S.S.; Bhargava, S.Y.; Kumar, A.R. Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants. BMC Complement. Altern. Med. 2011, 11, 5. [Google Scholar]
  129. Ocvirk, S.; Kistler, M.; Khan, S.; Talukder, S.H.; Hauner, H. Traditional medicinal plants used for the treatment of diabetes in rural and urban areas of Dhaka, Bangladesh—An ethnobotanical survey. J. Ethnobiol. Ethnomedicine 2013, 9, 43. [Google Scholar] [CrossRef]
  130. Jokar, A.; Masoomi, F.; Sadeghpour, O.; Nassiri-Toosi, M.; Hamedi, S. Potential therapeutic applications for Terminalia chebula in Iranian traditional medicine. J. Tradit Chin Med. 2016, 36, 250–254. [Google Scholar] [CrossRef]
  131. Sharma, V. Microscopic studies and preliminary pharmacognostical evaluation of Euphorbia neriifolia L. Leaves. Ind. J. Nat. Prod. Resour. 2013, 4, 348–357. [Google Scholar]
  132. Goyal, M.; Sasmal, D.; Nagori, B.P. Review on medicinal plants used by local community of Jodhpur district of Thar desert. Int. J. Pharmacol. 2011, 7, 333–339. [Google Scholar] [CrossRef]
  133. Hossan, M.S.; Hanif, A.; Khan, M.; Bari, S.; Jahan, R.; Rahmatullah, M. Ethnobotanical survey of the Tripura tribe of Bangladesh. Am. Eurasian J. Sustain. Agric. 2009, 3, 253–261. [Google Scholar]
  134. Kim, S.J.; Jang, Y.W.; Hyung, K.E.; Lee, D.K.; Hyun, K.H.; Park, S.Y.; Park, E.S.; Hwang, K.W. Therapeutic effects of methanol extract from Euphorbia kansui radix on imiquimod-induced psoriasis. J. Immunol. Res. 2017, 2017, 7052560. [Google Scholar] [CrossRef]
  135. Dineshkumar, B.; Analava, M.; Manjunatha, M. Antidiabetic and hypolipidaemic effects of few common plants extract in type 2 diabetic patients at Bengal. Int. J. Diabetes Metabol. 2010, 18, 59–65. [Google Scholar] [CrossRef]
  136. Gulati, V.; Harding, I.H.; Palombo, E.A. Enzyme inhibitory and antioxidant activities of traditional medicinal plants: Potential application in the management of hyperglycemia. BMC Complement. Altern. Med. 2012, 12, 77. [Google Scholar] [CrossRef] [PubMed]
  137. Loizzo, M.R.; Saab, A.M.; Tundis, R.; Menichini, F.; Bonesi, M.; Piccolo, V.; Statti, G.A.; de Cindio, B.; Houghton, P.J.; Menichini, F. In vitro inhibitory activities of plants used in Lebanon traditional medicine against angiotensin converting enzyme (ACE) and digestive enzymes related to diabetes. J. Ethnopharmacol. 2008, 119, 109–116. [Google Scholar] [CrossRef] [PubMed]
  138. Soud, R.S.A.; Hamdan, I.I.; Afifi, F.U. Alpha amylase inhibitory activity of some plant extracts with hypoglycemic activity. Sci. Pharm. 2004, 72, 25–33. [Google Scholar] [CrossRef]
  139. Toma, A.; Makonnen, E.; Mekonnen, Y.; Debella, A.; Addisakwattana, S. Intestinal α-glucosidase and some pancreatic enzymes inhibitory effect of hydroalcholic extract of Moringa stenopetala leaves. BMC Complement. Altern. Med. 2014, 14, 180. [Google Scholar] [CrossRef]
  140. Liu, S.; Li, D.; Huang, B.; Chen, Y.; Lu, X.; Wang, Y. Inhibition of pancreatic lipase, α-glucosidase, α-amylase, and hypolipidemic effects of the total flavonoids from Nelumbo nucifera leaves. J. Ethnopharmacol. 2013, 149, 263–269. [Google Scholar] [CrossRef]
  141. Rege, A.; Ambaye, R.; Chowdhary, A. Effect of Costus pictus D. Don on carbohydrate hydrolyzing enzymes. Int. J. Pharmcy Pharm. Sci. 2014, 6, 278–280. [Google Scholar]
  142. Orhan, N.; Hoşbaş, S.; Orhan, D.D.; Aslan, M.; Ergun, F. Enzyme inhibitory and radical scavenging effects of some antidiabetic plants of Turkey. Iran. J. Basic Med. Sci. 2014, 17, 426–432. [Google Scholar]
  143. Nazir, I.; Rahman, N.U.; Alvi, Z.; Rahman, M.H.; Sendker, J.; Zhang, T.; Frankish, N.; Sheridan, H. Antidiabetic activities of an LC/MS fingerprinted aqueous extract of Fagonia cretica L. in preclinical models. Planta Med. 2017, 83, 1141–1148. [Google Scholar]
  144. Lelono, R.A.A.; Tachibana, S. Preliminary studies of indonesian eugenia polyantha leaf extracts as inhibitors of key enzymes for type 2 diabetes. J. Med. Sci. 2013, 13, 103–110. [Google Scholar] [CrossRef]
  145. Ramírez, G.; Zavala, M.; Pérez, J.; Zamilpa, A. In vitro screening of medicinal plants used in Mexico as antidiabetics with glucosidase and lipase inhibitory activities. Evid.Based Complement. Altern. Med. 2012, 2012, 701261. [Google Scholar] [CrossRef] [PubMed]
  146. Ohno, H.; Nagai, J.; Kurokawa, T.; Sonoda, M.; Yumoto, R.; Takano, M. Effect of aqueous extract from the root cortex of Aralia elata on intestinal α-glucosidases and postprandial glycemic response in mice. Int. J. Phytomed. 2012, 4, 567–572. [Google Scholar]
  147. Shihabudeen, H.M.S.; Priscilla, D.H.; Thirumurugan, K. Cinnamon extract inhibits α-glucosidase activity and dampens postprandial glucose excursion in diabetic rats. Nutr. Metab. 2011, 8, 46. [Google Scholar] [CrossRef] [PubMed]
  148. Saha, M.R.; Dey, P.; Sarkar, I.; de Sarker, D.; Haldar, B.; Chaudhuri, T.K.; Sen, A. Acacia nilotica leaf improves insulin resistance and hyperglycemia associated acute hepatic injury and nephrotoxicity by improving systemic antioxidant status in diabetic mice. J. Ethnopharmacol. 2018, 210, 275–286. [Google Scholar] [CrossRef]
  149. Rahmatullah, M.; Hossain, M.; Mahmud, A.; Sultana, N.; Rahman, S.M.; Islam, M.R.; Khatoon, M.S.; Jahan, S.; Islam, F. Antihyperglycemic and antinociceptive activity evaluation of ‘khoyer’ prepared from boiling the wood of Acacia catechu in water. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 1–5. [Google Scholar] [CrossRef]
  150. Kunwar, R.M.; Shrestha, K.P.; Bussmann, R.W. Traditional herbal medicine in Far-west Nepal: A pharmacological appraisal. J. Ethnobiol. Ethnomedicine 2010, 6, 35. [Google Scholar] [CrossRef]
  151. Rao, P.K.; Hasan, S.S.; Bhellum, B.L.; Manhas, R.K. Ethnomedicinal plants of Kathua district, J&K, India. J. Ethnopharmacol. 2015, 171, 12–27. [Google Scholar]
  152. Kingsley, B.; Jesuraj, S.A.V.; Brindha, P.; Subramoniam, A.; Atif, M. Anti-diabetes activity of Acacia farnesiana (L.) willd in alloxan diabetic rats. Int. J. Pharm. Res. 2013, 5, 112–118. [Google Scholar]
  153. Mukhtar, M.H.; Almalki, W.H.; Azmat, A.; Abdalla, M.R.; Ahmed, M. Evaluation of anti-diabetic activity of Acacia tortilis (Forssk.) hayne leaf extract in streptozotocin-induced diabetic rats. Int. J. Pharmacol. 2017, 13, 438–447. [Google Scholar]
  154. Hilmi, Y.; Abushama, M.F.; Abdalgadir, H.; Khalid, A.; Khalid, H. A study of antioxidant activity, enzymatic inhibition and in vitro toxicity of selected traditional sudanese plants with anti-diabetic potential. BMC Complement. Altern. Med. 2014, 14, 149. [Google Scholar] [CrossRef]
  155. Deb, J.; Dash, G.K. Review on Acacia ferruginea DC. (Mimosaceae): An endangered medicinal plant. Int. J. Pharm. Res. 2013, 5, 1–3. [Google Scholar]
  156. Vadivel, V.; Biesalski, H.K. Total phenolic content, in vitro antioxidant activity and type II diabetes relevant enzyme inhibition properties of methanolic extract of traditionally processed underutilized food legume, Acacia nilotica (L.) Willd ex. Delile. Int. Food Res. J. 2012, 19, 593–601. [Google Scholar]
  157. Jawla, S.; Kumar, Y.; Khan, M.S.Y. Antimicrobial and antihyperglycemic activities of Acacia modesta leaves. Pharmacologyonline 2011, 2, 331–347. [Google Scholar]
  158. Yasir, M.; Jain, P.; Debajyoti, D.; Kharya, M.D. Hypoglycemic and antihyperglycemic effect of different extracts of Acacia arabica lamk bark in normal and alloxan induced diabetic rats. Int. J. Phytomed. 2010, 2, 133–138. [Google Scholar] [CrossRef]
  159. Zahidin, N.S.; Saidin, S.; Zulkifli, R.M.; Muhamad, I.I.; Ya’akob, H.; Nur, H. A review of Acalypha indica L. (Euphorbiaceae) as traditional medicinal plant and its therapeutic potential. J. Ethnopharmacol. 2017, 207, 146–173. [Google Scholar] [CrossRef]
  160. Latiff, A.A.; Teoh, S.L.; Das, S. Wound healing in diabetes mellitus: Traditional treatment modalities. Clin. Ter. 2010, 161, 359–364. [Google Scholar]
  161. Ikewuchi, J.C.; Onyeike, E.N.; Uwakwe, A.A.; Ikewuchi, C.C. Effect of aqueous extract of the leaves of Acalypha wilkesiana ‘Godseffiana’ Muell Arg (Euphorbiaceae) on the hematology, plasma biochemistry and ocular indices of oxidative stress in alloxan induced diabetic rats. J. Ethnopharmacol. 2011, 137, 1415–1424. [Google Scholar] [CrossRef]
  162. Chang, I.A.; Shin, H.Y.; Youn, C.K.; Yun, Y.G.; Park, H. Immunostimulatory effect of Korean traditional medicine Acanthopanacis Cortex. Nat. Prod. Sci. 2007, 13, 283–288. [Google Scholar]
  163. Hong, C.E.; Lyu, S.Y. Evaluation of the mutagenic properties of two lignans from Acanthopanax koreanum Nakai. Toxicol. Res. 2013, 29, 279–283. [Google Scholar] [CrossRef]
  164. Saito, T.; Nishida, M.; Saito, M.; Tanabe, A.; Eitsuka, T.; Yuan, S.H.; Ikekawa, N.; Nishida, H. The fruit of Acanthopanax senticosus (Rupr. et Maxim.) Harms improves insulin resistance and hepatic lipid accumulation by modulation of liver adenosine monophosphate–activated protein kinase activity and lipogenic gene expression in high-fat diet–fed obese mice. Nutr. Res. 2016, 36, 1090–1097. [Google Scholar]
  165. Kim, J.H.; Shin, E.H.; Lee, H.Y.; Lee, B.G.; Park, S.H.; Moon, D.I.; Goo, G.C.; Kwon, D.Y.; Yang, H.J.; Kim, O.J.; et al. Immunostimulating effects of extract of Acanthopanax sessiliflorus. Exp. Anim. 2013, 62, 247–253. [Google Scholar] [CrossRef] [PubMed]
  166. Saeidnia, S.; Gohari, A.R.; Mokhber-Dezfuli, N.; Kiuchi, F. A review on phytochemistry and medicinal properties of the genus Achillea. DARU J. Pharm. Sci. 2011, 19, 173–186. [Google Scholar]
  167. Yazdanparast, R.; Ardestani, A.; Jamshidi, S. Experimental diabetes treated with Achillea santolina: Effect on pancreatic oxidative parameters. J. Ethnopharmacol. 2007, 112, 13–18. [Google Scholar] [CrossRef] [PubMed]
  168. Kasabri, V.; Afifi, F.U.; Hamdan, I. In vitro and in vivo acute antihyperglycemic effects of five selected indigenous plants from jordan used in traditional medicine. J. Ethnopharmacol. 2011, 133, 888–896. [Google Scholar] [CrossRef]
  169. Tian, T.; Chen, H.; Zhao, Y.Y. Traditional uses, phytochemistry, pharmacology, toxicology and quality control of Alisma orientale (Sam.) Juzep: A review. J. Ethnopharmacol. 2014, 158, 373–387. [Google Scholar] [CrossRef]
  170. Li, Q.; Qu, H. Study on the hypoglycemic activities and metabolism of alcohol extract of Alismatis Rhizoma. Fitoterapia 2012, 83, 1046–1053. [Google Scholar] [CrossRef]
  171. Rahimi-Madiseh, M.; Heidarian, E.; Kheiri, S.; Rafieian-Kopaei, M. Effect of hydroalcoholic Allium ampeloprasum extract on oxidative stress, diabetes mellitus and dyslipidemia in alloxan-induced diabetic rats. Biomed. Pharmacother. 2017, 86, 363–367. [Google Scholar] [CrossRef]
  172. Grover, J.K.; Yadav, S.; Vats, V. Medicinal plants of India with anti-diabetic potential. J. Ethnopharmacol. 2002, 81, 81–100. [Google Scholar] [CrossRef]
  173. Mootoosamy, A.; Mahomoodally, M.F. Ethnomedicinal application of native remedies used against diabetes and related complications in Mauritius. J. Ethnopharmacol. 2014, 151, 413–444. [Google Scholar] [CrossRef]
  174. Amel, B. Traditional treatment of high blood pressure and diabetes in Souk Ahras District. J. Pharmacogn. Phytother. 2013, 5, 12–20. [Google Scholar]
  175. Roman-Ramos, R.; Flores-Saenz, J.L.; Alarcon-Aguilar, F.J. Anti-hyperglycemic effect of some edible plants. J. Ethnopharmacol. 1995, 48, 25–32. [Google Scholar] [CrossRef]
  176. Aslan, M.; Orhan, N.; Orhan, D.D.; Ergun, F. Hypoglycemic activity and antioxidant potential of some medicinal plants traditionally used in Turkey for diabetes. J. Ethnopharmacol. 2010, 128, 384–389. [Google Scholar] [CrossRef] [PubMed]
  177. Sukandar, E.Y.; Adnyana, I.K.; Nurfitria, R.S. Antioxidant potential of garlic and turmeric mixture—A traditional Indonesian formulation. Indian J. Trad. Knowl. 2015, 14, 632–636. [Google Scholar]
  178. Moradabadi, L.; Kouhsari, S.M.; Sani, M.F. Hypoglycemic effects of three medicinal plants in experimental diabetes: Inhibition of rat intestinal α-glucosidase and enhanced pancreatic insulin and cardiac GLUT-4 mRNAs expression. Iran. J. Pharm. Res. 2013, 12, 385–397. [Google Scholar]
  179. Mesa, M.G. Hypolipidemic potential of plants used in Cuba. Pharmacologyonline 2014, 1, 73–80. [Google Scholar]
  180. Karou, S.D.; Tchacondo, T.; Tchibozo, M.A.D.; Abdoul-Rahaman, S.; Anani, K.; Koudouvo, K.; Batawila, K.; Agbonon, A.; Simpore, J.; de Souza, C. Ethnobotanical study of medicinal plants used in the management of diabetes mellitus and hypertension in the Central Region of Togo. Pharm. Biol. 2011, 49, 1286–1297. [Google Scholar] [CrossRef]
  181. Xie, W.; Du, L. Diabetes is an inflammatory disease: Evidence from traditional Chinese medicines. Diabetes Obes. Metab. 2011, 13, 289–301. [Google Scholar] [CrossRef]
  182. Bhaludra, C.S.S.; Bethapudi, R.R.; Murugulla, A.C.; Pullagummi, C.; Latha, T.; Venkatesh, K.; Bheemagani, A.J.; Pudutha, A.; Rani, A.R. Cultivation, phytochemical studies, biological activities and medicinal uses of Aloe ferox, grandfather of aloes an important amazing medicinal plant. Int. J. Pharmacol. 2013, 9, 405–415. [Google Scholar]
  183. Semenya, S.; Potgieter, M.; Erasmus, L. Ethnobotanical survey of medicinal plants used by Bapedi healers to treat diabetes mellitus in the Limpopo Province, South Africa. J. Ethnopharmacol. 2012, 141, 440–445. [Google Scholar] [CrossRef]
  184. Sharma, P.; Kharkwal, A.C.; Kharkwal, H.; Abdin, M.Z.; Varma, A. A review on pharmacological properties of Aloe vera. Int. J. Pharm. Sci. Rev. Res. 2014, 29, 31–37. [Google Scholar]
  185. Asase, A.; Yohonu, D.T. Ethnobotanical study of herbal medicines for management of diabetes mellitus in Dangme West District of southern Ghana. J. Herb. Med. 2016, 6, 204–209. [Google Scholar] [CrossRef]
  186. Mahomoodally, M.F.; Ramalingum, N. An investigation into the consumption patterns, attitude, and perception of Mauritians towards common medicinal food plants. J. Herb. Med. 2015, 5, 99–112. [Google Scholar] [CrossRef]
  187. Ssenyange, C.W.; Namulindwa, A.; Oyik, B.; Ssebuliba, J. Plants used to manage type II diabetes mellitus in selected districts of central Uganda. Afr. Health Sci. 2015, 15, 496–502. [Google Scholar] [CrossRef] [PubMed]
  188. Stanifer, J.W.; Lunyera, J.; Boyd, D.; Karia, F.; Maro, V.; Omolo, J.; Patel, U.D. Traditionalmedicine practices among communitymembers with chronic kidney disease in northern Tanzania: An ethnomedical survey. BMC Nephrol. 2015, 16, 170. [Google Scholar] [CrossRef] [PubMed]
  189. Lans, C.A. Ethnomedicines used in Trinidad and Tobago for urinary problems and diabetes mellitus. J. Ethnobiol. Ethnomedicine 2006, 2, 45. [Google Scholar] [CrossRef]
  190. Waqar, M.A.; Shaukat, S.; Sohail, T. Study of glibenclamide with some traditional herbs used for the treatment of diabetes in Pakistan. J. Chem. Soc. Pak. 2008, 30, 147–154. [Google Scholar]
  191. Tripathi, P.; Swain, S.N. In-vitro antioxidant and free radical scavenging activity of Alpinia calcarata in Andaman Islands. Plant Arch. 2016, 16, 685–694. [Google Scholar]
  192. Arawwawala, L.D.A.M.; Arambewela, L.S.R.; Ratnasooriya, W.D. Alpinia calcarata Roscoe: A rich source of phytopharmaceuticals in Sri Lanka. Nat. Prod. J. 2012, 2, 263–269. [Google Scholar]
  193. Ayyanar, M.; Ignacimuthu, S. Ethnobotanical survey of medicinal plants commonly used by Kani tribals in Tirunelveli hills of Western Ghats, India. J. Ethnopharmacol. 2011, 134, 851–864. [Google Scholar] [CrossRef]
  194. Kunyanga, C.N.; Imungi, J.K.; Okoth, M.W.; Biesalski, H.K.; Vadivel, V. Total phenolic content, antioxidant and antidiabetic properties of methanolic extract of raw and traditionally processed Kenyan indigenous food ingredients. LWT Food Sci. Technol. 2012, 45, 269–276. [Google Scholar] [CrossRef]
  195. Lin, J.Y.; Li, C.Y.; Lin, B.F. Amaranthus spinosus L. inhibits spontaneous and dexamethasone-induced apoptosis in murine primary splenocytes. J. Food Drug Anal. 2008, 16, 52–61. [Google Scholar]
  196. Mondal, A.; Guria, T.; Maity, T.K. A new ester of fatty acid from a methanol extract of the whole plant of Amaranthus spinosus and its α-glucosidase inhibitory activity. Pharm. Biol. 2015, 53, 600–604. [Google Scholar] [CrossRef] [PubMed]
  197. Leu, Y.L.; Chen, Y.W.; Yang, C.Y.; Huang, C.F.; Lin, G.H.; Tsai, K.S.; Yang, R.S.; Liu, S.H. Extract isolated from Angelica hirsutiflora with insulin secretagogue activity. J. Ethnopharmacol. 2009, 123, 208–212. [Google Scholar] [CrossRef] [PubMed]
  198. Ohnogi, H.; Kudo, Y.; Tahara, K.; Sugiyama, K.; Enoki, T.; Hayami, S.; Sagawa, H.; Tanimura, Y.; Aoi, W.; Naito, Y.; et al. Six new chalcones from Angelica keiskei inducing adiponectin production in 3T3-L1 adipocytes. Biosci. Biotechnol. Biochem. 2012, 76, 961–966. [Google Scholar] [CrossRef]
  199. Zhi, X.Y. Traditional Chinese medicine diagnosis and treatment of type 2 diabetes in Tianjin urban population. J. Chin. Integr. Med. 2009, 7, 823–826. [Google Scholar] [CrossRef]
  200. Bhat, Z.A.; Ali, M.; Ansari, S.H.; Naquvi, K.J. New phytoconstituents from the roots of Aralia cachemirica Decne. J. Saudi Chem. Soc. 2015, 19, 287–291. [Google Scholar] [CrossRef]
  201. Lee, Y.M.; Kim, H.; Choi, H.S.; Kang, B.H.; Han, Y.B.; Kim, S.J. Effects of water extract of 1:1 mixture of phellodendron cortex and aralia cortex on polyol pathway and oxidative damage in lenses of diabetic rats. Phytother. Res. 1999, 13, 555–560. [Google Scholar] [CrossRef]
  202. Shikov, A.N.; Pozharitskaya, O.N.; Makarov, V.G. Aralia elata var. Mandshurica (rupr. & maxim.) j.Wen: An overview of pharmacological studies. Phytomedicine 2016, 23, 1409–1421. [Google Scholar]
  203. Li, Y.; Park, J.; Wu, Y.; Cui, J.; Jia, N.; Xi, M.; Wen, A. Identification of ampk activator from twelve pure compounds isolated from aralia taibaiensis: Implication in antihyperglycemic and hypolipidemic activities. Korean J. Physiol. Pharmacol. 2017, 21, 279–286. [Google Scholar] [CrossRef]
  204. Dou, F.; Xi, M.; Wang, J.; Tian, X.; Hong, L.; Tang, H.; Wen, A. A glucosidase and α amylase inhibitory activities of saponins from traditional chinese medicines in the treatment of diabetes mellitus. Pharmazie 2013, 68, 300–304. [Google Scholar]
  205. Vouillamoz, J.F.; Carlen, C.; Taglialatela-Scafati, O.; Pollastro, F.; Appendino, G. The génépi artemisia species. Ethnopharmacology, cultivation, phytochemistry, and bioactivity. Fitoterapia 2015, 106, 231–241. [Google Scholar] [CrossRef] [PubMed]
  206. Dib, I.; Tits, M.; Angenot, L.; Wauters, J.N.; Assaidi, A.; Mekhfi, H.; Aziz, M.; Bnouham, M.; Legssyer, A.; Frederich, M.; et al. Antihypertensive and vasorelaxant effects of aqueous extract of Artemisia campestris L. From eastern morocco. J. Ethnopharmacol. 2017, 206, 224–235. [Google Scholar] [CrossRef] [PubMed]
  207. Islam, M.N.; Ishita, I.J.; Jung, H.A.; Choi, J.S. Vicenin 2 isolated from Artemisia capillaris exhibited potent anti-glycation properties. Food Chem. Toxicol. 2014, 69, 55–62. [Google Scholar] [CrossRef] [PubMed]
  208. Ota, A.; Ulrih, N.P. An overview of herbal products and secondary metabolites used for management of type two diabetes. Front. Pharmacol. 2017, 8, 436. [Google Scholar] [CrossRef] [PubMed]
  209. Abu-Darwish, M.S.; Cabral, C.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Zulfiqar, A.; Khan, I.A.; Efferth, T.; Salgueiro, L. Chemical composition and biological activities of Artemisia judaica essential oil from southern desert of jordan. J. Ethnopharmacol. 2016, 191, 161–168. [Google Scholar] [CrossRef] [PubMed]
  210. Abu-Darwish, M.S.; Cabral, C.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Efferth, T.; Salgueiro, L. Artemisia herba-alba essential oil from buseirah (south jordan): Chemical characterization and assessment of safe antifungal and anti-inflammatory doses. J. Ethnopharmacol. 2015, 174, 153–160. [Google Scholar] [CrossRef]
  211. Anaya-Eugenio, G.D.; Rivero-Cruz, I.; Rivera-Chávez, J.; Mata, R. Hypoglycemic properties of some preparations and compounds from Artemisia ludoviciana nutt. J. Ethnopharmacol. 2014, 155, 416–425. [Google Scholar] [CrossRef]
  212. Niranjan, A.; Barthwal, J.; Lehri, A.; Singh, D.P.; Govindrajan, R.; Rawat, A.K.S.; Amla, D.V. Development and validation of an hplc-uv-ms-ms method for identification and quantification of polyphenols in Artemisia pallens L. Acta Chromatogr. 2009, 21, 105–116. [Google Scholar] [CrossRef]
  213. Ahuja, J.; Suresh, J.; Paramakrishnan, N.; Mruthunjaya, K.; Naganandhini, M.N. An ethnomedical, phytochemical and pharmacological profile of Artemisia parviflora roxb. J. Essent. Oil Bear. Plant. 2011, 14, 647–657. [Google Scholar] [CrossRef]
  214. Yamamoto, N.; Kanemoto, Y.; Ueda, M.; Kawasaki, K.; Fukuda, I.; Ashida, H. Anti-obesity and anti-diabetic effects of ethanol extract of Artemisia princeps in c57bl/6 mice fed a high-fat diet. Food Funct. 2011, 2, 45–52. [Google Scholar] [CrossRef]
  215. Shah, M.R.; Ishtiaq, H.S.M.; Habtemariam, S.; Zarrelli, A.; Muhammad, A.; Collina, S.; Khan, I. Protein tyrosine phosphatase 1b inhibitors isolated from Artemisia roxburghiana. J. Enzym. Inhib. Med. Chem. 2016, 31, 563–567. [Google Scholar] [CrossRef] [PubMed]
  216. Yuan, H.D.; Yuan, H.Y.; Chung, S.H.; Jin, G.Z.; Piao, G.C. An active part of Artemisia sacrorum ledeb. Attenuates hepatic lipid accumulation through activating amp-activated protein kinase in human hepg2 cells. Biosci. Biotechnol. Biochem. 2010, 74, 322–328. [Google Scholar] [CrossRef] [PubMed]
  217. Wahyudin; Massi, M.N.; Natzir, R.; Alam, G.; Bukhari, A.S. Effect of sukun leaf extract [Artocarpus altilis (park.) fosberg] on insulin resistance in obese rats (rattus norvegicus): A study of free fatty acid (ffa) levels. Pak. J. Nutr. 2017, 16, 521–524. [Google Scholar]
  218. Adewole, S.O.; Ojewole, J.A.O. Artocarpus communis forst. Root-bark aqueous extract-and streptozotocin-induced ultrastructural and metabolic changes hepatic tissues of wistar rats. Afr. J. Trad. Complement. Altern. Med. 2007, 4, 397–410. [Google Scholar]
  219. Chandrika, U.G.; Wedage, W.S.; Wickramasinghe, S.M.D.N.; Fernando, W.S. Hypoglycaemic action of the flavonoid fraction of Artocarpus heterophyllus leaf. Afr. J. Trad. Complement. Altern. Med. 2006, 3, 42–50. [Google Scholar] [CrossRef]
  220. Kotowaroo, M.I.; Mahomoodally, M.F.; Gurib-Fakim, A.; Subratty, A.H. Screening of traditional antidiabetic medicinal plants of mauritius for possible α-amylase inhibitory effects in vitro. Phytother. Res. 2006, 20, 228–231. [Google Scholar] [CrossRef]
  221. Englberger, L.; Lorennij, R.; Taylor, M.; Tuia, V.S.; Aalbersberg, W.; Dolodolotawake, U.; Tibon, L.; Tibon, J.; Alfred, J. Carotenoid content and traditional knowledge of breadfruit cultivars of the republic of the marshall islands. J. Food Compos. Anal. 2014, 34, 192–199. [Google Scholar] [CrossRef]
  222. Fu, J.; Wang, Z.; Huang, L.; Zheng, S.; Wang, D.; Chen, S.; Zhang, H.; Yang, S. Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus (huangqi). Phytother. Res. 2014, 28, 1275–1283. [Google Scholar] [CrossRef]
  223. Liu, Y.; Nyberg, N.T.; Jäger, A.K.; Staerk, D. Facilitated visual interpretation of scores in principal component analysis by bioactivity-labeling of 1h-nmr spectra-metabolomics investigation and identification of a new α-glucosidase inhibitor in radix astragali. Molecules 2017, 22, 411. [Google Scholar] [CrossRef]
  224. Alhassan, A.; Ahmed, Q. Averrhoa bilimbi linn: A review of its ethnomedicinal uses, phytochemistry, and pharmacology. J. Pharm. Bioallied Sci. 2016, 8, 265–271. [Google Scholar]
  225. Khan, I.; Najeebullah, S.; Ali, M.; Shinwari, Z. Phytopharmacological and ethnomedicinal uses of the genus Berberis (berberidaceae): A review. Trop. J. Pharm. Res. 2016, 15, 2047–2057. [Google Scholar] [CrossRef]
  226. Mishra, R.; Shuaib, M.; Shravan; Mishra, P.S. A review on herbal antidiabetic drugs. J. Appl. Pharm. Sci. 2011, 1, 235–237. [Google Scholar]
  227. Maithani, A.; Parcha, V.; Kumar, D. Quantitative estimation of berberine content of berberis asiatica from different altitude of garhwal himalaya. Asian J. Pharm. Clin. Res. 2014, 7, 165–167. [Google Scholar]
  228. Rahimi-Madiseh, M.; Lorigoini, Z.; Zamani-Gharaghoshi, H.; Rafieian-Kopaei, M. Berberis vulgaris: Specifications and traditional uses. Iran. J. Basic Med. Sci. 2017, 20, 569–587. [Google Scholar] [PubMed]
  229. Cui, G.; Qin, X.; Zhang, Y.; Gong, Z.; Ge, B.; Zang, Y.Q. Berberine differentially modulates the activities of erk, p38 mapk, and jnk to suppress th17 and th1 t cell differentiation in type 1 diabetic mice. J. Biol. Chem. 2009, 284, 28420–28429. [Google Scholar] [CrossRef] [PubMed]
  230. Namsa, N.D.; Mandal, M.; Tangjang, S.; Mandal, S.C. Ethnobotany of the monpa ethnic group at arunachal pradesh, india. J. Ethnobiol. Ethnomed. 2011, 7, 31. [Google Scholar] [CrossRef]
  231. Maiti, R.; Rodriguez, H.G.; Kumari, C.A.; Sarkar, N.C. Macro and micro-nutrient contents of 18 medicinal plants used traditionally to alleviate diabetes in nuevo leon, northeast of mexico. Pak. J. Bot. 2016, 48, 271–276. [Google Scholar]
  232. Yun, J.L.; Dae, G.K.; Jin, S.K.; Ho, S.L. Buddleja officinalis inhibits high glucose-induced matrix metalloproteinase activity in human umbilical vein endothelial cells. Phytother. Res. 2008, 22, 1655–1659. [Google Scholar]
  233. Kumar, M.; Malik, J. Pharmacognostical studies and evaluation of quality parameters of butea frondosa leaves. Int. J. Pharmcy Pharm. Sci. 2012, 4, 610–614. [Google Scholar]
  234. Bhutkar, M.A.; Bhise, S.B. In vitro assay of alpha amylase inhibitory activity of some indigenous plants. Int. J. Chem. Sci. 2012, 10, 457–462. [Google Scholar]
  235. Wyrepkowski, C.C.; Da Costa, D.L.M.G.; Sinhorin, A.P.; Vilegas, W.; De Grandis, R.A.; Resende, F.A.; Varanda, E.A.; Dos Santos, L.C. Characterization and quantification of the compounds of the ethanolic extract from caesalpinia ferrea stem bark and evaluation of their mutagenic activity. Molecules 2014, 19, 16039–16057. [Google Scholar] [CrossRef]
  236. Ghosal, M.; Mandal, P. In-vitro antidiabetic and antioxidant activity of Calamus erectus roxb. Fruit: A wild plant of darjeeling himalaya. Int. J. Pharma Bio Sci. 2013, 4, P671–P684. [Google Scholar]
  237. Haque, M.M.; Choudhury, M.S.; Hossain, M.S.; Haque, M.A.; Debnath, K.; Hossain, S.; Mou, S.M.; Malek, I.; Rahmatullah, M. Evaluation of antihyperglycemic and antinociceptive properties of leaves of Calotropis gigantea R. Br. (asclepiadaceae)—A medicinal plant of bangladesh. Adv. Nat. Appl. Sci. 2012, 6, 1508–1514. [Google Scholar]
  238. Parihar, G.; Balekar, N. Calotropis procera: A phytochemical and pharmacological review. Thai J. Pharm. Sci. 2016, 40, 115–131. [Google Scholar]
  239. Dangi, K.S.; Mishra, S.N. Antihyperglycemic, antioxidant and hypolipidemic effect of Capparis aphylla stem extract in streptozotocin induced diabetic rats. Biol. Med. 2010, 2, 35–44. [Google Scholar]
  240. Goyal, M. Traditional plants used for the treatment of diabetes mellitus in sursagar constituency, jodhpur, rajasthan—An ethnomedicinal survey. J. Ethnopharmacol. 2015, 174, 364–368. [Google Scholar] [CrossRef]
  241. Zia-Ul-Haq, M.; Ćavar, S.; Qayum, M.; Imran, I.; de Feo, V. Compositional studies: Antioxidant and antidiabetic activities of Capparis decidua (forsk.) edgew. Int. J. Mol. Sci. 2011, 12, 8846–8861. [Google Scholar] [CrossRef]
  242. Selvamani, P.; Latha, S.; Elayaraja, K.; Babu, P.; Gupta, J.; Pal, T.; Ghosh, L.; Sen, D. Antidiabetic activity of the ethanol extract of Capparis sepiaria L. leaves. Indian J. Pharm. Sci. 2008, 70, 378–380. [Google Scholar] [CrossRef]
  243. Sher, H.; Alyemeni, M.N. Ethnobotanical and pharmaceutical evaluation of Capparis spinosa L., validity of local folk and unani system of medicine. J. Med. Plant Res. 2010, 4, 1751–1756. [Google Scholar]
  244. Adnan, M.; Jan, S.; Mussarat, S.; Tariq, A.; Begum, S.; Afroz, A.; Shinwari, Z.K. A review on ethnobotany, phytochemistry and pharmacology of plant genus Caralluma R. Br. J. Pharm. Pharmacol. 2014, 66, 1351–1368. [Google Scholar] [CrossRef]
  245. Maheshu, V.; Priyadarsini, D.T.; Sasikumar, J.M. Antioxidant capacity and amino acid analysis of Caralluma adscendens (roxb.) haw var. Fimbriata (wall.) grav. & mayur. Aerial parts. J. Food Sci. Technol. 2012, 51, 2415–2424. [Google Scholar]
  246. Bellamakondi, P.K.; Godavarthi, A.; Ibrahim, M. Anti-hyperglycemic activity of Caralluma umbellata haw. BioImpacts 2014, 4, 113–116. [Google Scholar] [CrossRef] [PubMed]
  247. Singh, A.; Uppal, G.K. A review on carissa carandas-phytochemistry, ethno-pharmacology, and micropropagation as conservation strategy. Asian J. Pharm. Clin. Res. 2015, 8, 26–30. [Google Scholar]
  248. Maobe, M.A.G.; Gitu, L.; Gatebe, E.; Rotich, H.; Karanja, P.N.; Votha, D.M.; Nderitu, I.W.; Kungu, W. Antifungal activity of eight selected medicinal herbs used for the treatment of diabetes, malaria and pneumonia in kisii region, southwest kenya. World J. Med. Sci. 2013, 8, 74–78. [Google Scholar]
  249. Ayyanar, M.; Ignacimuthu, S. Pharmacological actions of Cassia auriculata L. And Cissus quadrangularis wall: A short review. J. Pharmacol. Toxicol. 2008, 3, 213–221. [Google Scholar]
  250. Moshi, M.J.; Mbwambo, Z.H. Experience of tanzanian traditional healers in the management of non-insulin dependent diabetes mellitus. Pharm. Biol. 2002, 40, 552–560. [Google Scholar] [CrossRef]
  251. Thakur, M.; Asrani, R.K.; Thakur, S.; Sharma, P.K.; Patil, R.D.; Lal, B.; Parkash, O. Observations on traditional usage of ethnomedicinal plants in humans and animals of kangra and chamba districts of himachal pradesh in north-western himalaya, india. J. Ethnopharmacol. 2016, 191, 280–300. [Google Scholar] [CrossRef]
  252. He, Z.W.; Wei, W.; Li, S.P.; Ling, Q.; Liao, K.J.; Wang, X. Anti-allodynic effects of obtusifolin and gluco-obtusifolin against inflammatory and neuropathic pain: Possible mechanism for neuroinflammation. Biol. Pharm. Bull. 2014, 37, 1606–1616. [Google Scholar] [CrossRef]
  253. Salihu Shinkafi, T.; Bello, L.; Wara Hassan, S.; Ali, S. An ethnobotanical survey of antidiabetic plants used by hausa-fulani tribes in sokoto, northwest nigeria. J. Ethnopharmacol. 2015, 172, 91–99. [Google Scholar] [CrossRef]
  254. Garg, R.; Mohana, D.C.; Manjunath, K. In vitro antibacterial activity and phytochemical analysis of some traditional herbs. Int. J. Pharma Bio Sci. 2013, 4, 994–1003. [Google Scholar]
  255. Dalar, A.; Uzun, Y.; Mukemre, M.; Turker, M.; Konczak, I. Centaurea karduchorum boiss. From eastern anatolia: Phenolic composition, antioxidant and enzyme inhibitory activities. J. Herb. Med. 2015, 5, 211–216. [Google Scholar] [CrossRef]
  256. Moradi, M.; Mojab, F.; Bidgoli, S.A. Toxicity assessment of asteraceae centaurea repens l extract in mice. Iran. J. Pharm. Res. 2017, 16, 1073–1081. [Google Scholar]
  257. Tüzün, B.S.; Hajdú, Z.; Orbán-Gyapai, O.; Zomborszki, Z.P.; Jedlinszki, N.; Forgo, P.; Vçak, B.; Hohmann, J. Isolation of chemical constituents of centaurea virgata lam. And xanthine oxidase inhibitory activity of the plant extract and compounds. Med. Chem. 2017, 13, 498–502. [Google Scholar] [CrossRef] [PubMed]
  258. Alkofahi, A.S.; Abdul-Razzak, K.K.; Alzoubi, K.H.; Khabour, O.F. Screening of the anti-hyperglycemic activity of some medicinal plants of jordan. Pak. J. Pharma. Sci. 2017, 30, 907–912. [Google Scholar]
  259. Dalar, A.; Konczak, I. Cichorium intybus from eastern anatolia: Phenolic composition, antioxidant and enzyme inhibitory activities. Ind. Crop. Prod. 2014, 60, 79–85. [Google Scholar] [CrossRef]
  260. Al-Dhubiab, B.E. Pharmaceutical applications and phytochemical profile of cinnamomum burmannii. Pharmacogn. Rev. 2012, 6, 125–131. [Google Scholar] [CrossRef]
  261. Zaidi, S.F.; Aziz, M.; Muhammad, J.S.; Kadowaki, M. Diverse pharmacological properties of Cinnamomum cassia: A review. Pak. J. Pharma. Sci. 2015, 28, 1433–1438. [Google Scholar]
  262. Boaduo, N.K.K.; Katerere, D.; Eloff, J.N.; Naidoo, V. Evaluation of six plant species used traditionally in the treatment and control of diabetes mellitus in south africa using in vitro methods. Pharm. Biol. 2014, 52, 756–761. [Google Scholar] [CrossRef]
  263. Mustaffa, F.; Hassan, Z.; Yusof, N.A.; Razak, K.N.A.; Asmawi, M.Z. Antidiabetic and antihyperlipidemic potential of standardized extract, fraction and subfraction of cinnamomum iners leaves. Int. J. Pharmcy Pharm. Sci. 2014, 6, 220–225. [Google Scholar]
  264. Seo, E.J.; Kuete, V.; Kadioglu, O.; Krusche, B.; Schröder, S.; Greten, H.J.; Arend, J.; Lee, I.S.; Efferth, T. Antiangiogenic activity and pharmacogenomics of medicinal plants from traditional Korean medicine. Evid. Based Complement. Altern. Med. 2013, 2013. [Google Scholar] [CrossRef]
  265. Gallo, M.; Ferracane, R.; Graziani, G.; Ritieni, A.; Fogliano, V. Microwave assisted extraction of phenolic compounds from four different spices. Molecules 2010, 15, 6365–6374. [Google Scholar] [CrossRef]
  266. Orhan, N.; Aslan, M.; Şüküroǧlu, M.; Deliorman Orhan, D. In vivo and in vitro antidiabetic effect of Cistus laurifolius L. And detection of major phenolic compounds by uplc-tof-ms analysis. J. Ethnopharmacol. 2013, 146, 859–865. [Google Scholar] [CrossRef] [PubMed]
  267. El Kabbaoui, M.; Chda, A.; El-Akhal, J.; Azdad, O.; Mejrhit, N.; Aarab, L.; Bencheikh, R.; Tazi, A. Acute and sub-chronic toxicity studies of the aqueous extract from leaves of Cistus ladaniferus L. In mice and rats. J. Ethnopharmacol. 2017, 209, 147–156. [Google Scholar] [CrossRef] [PubMed]
  268. Sayah, K.; Marmouzi, I.; Naceiri Mrabti, H.; Cherrah, Y.; Faouzi, M.E.A. Antioxidant activity and inhibitory potential of Cistus salviifolius (L.) and Cistus monspeliensis (L.) aerial parts extracts against key enzymes linked to hyperglycemia. BioMed Res. Int. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
  269. Choi, E.K.; Kim, K.S.; Yang, H.J.; Shin, M.H.; Suh, H.W.; Lee, K.B.; Ahn, K.S.; Um, J.Y.; Lee, S.G.; Lee, B.C.; et al. Hexane fraction of Citrus aurantium L. Stimulates glucagon-like peptide-1 (glp-1) secretion via membrane depolarization in nci-h716 cells. Bioch. J. 2012, 6, 41–47. [Google Scholar] [CrossRef]
  270. Tzeng, Y.M.; Rao, Y.K.; Lee, M.J.; Chen, K.; Lee, Y.C.; Wu, W.S. Insulin-mimetic action of rhoifolin and cosmosiin isolated from Citrus grandis (L.) osbeck leaves: Enhanced adiponectin secretion and insulin receptor phosphorylation in 3t3-l1 cells. Evid. Based Complement. Altern. Med. 2011, 2011. [Google Scholar] [CrossRef]
  271. Adeneye, A.A. Methanol seed extract of Citrus paradisi macfad lowers blood glucose, lipids and cardiovascular disease risk indices in normal wistar rats. Niger. Q. J. Hosp. Med. 2008, 18, 16–20. [Google Scholar] [CrossRef]
  272. Shakthi Deve, A.; Sathish kumar, T.; Kumaresan, K.; Rapheal, V.S. Extraction process optimization of polyphenols from indian Citrus sinensis—As novel antiglycative agents in the management of diabetes mellitus. J. Diabetes Metab. Disord. 2014, 13, 11. [Google Scholar] [CrossRef]
  273. Jadeja, R.N.; Thounaojam, M.C.; Ramani, U.V.; Devkar, R.V.; Ramachandran, A.V. Anti-obesity potential of clerodendron glandulosum.Coleb leaf aqueous extract. J. Ethnopharmacol. 2011, 135, 338–343. [Google Scholar] [CrossRef]
  274. Idoh, K.; Agbonon, A.; Potchoo, Y.; Gbeassor, M. Toxicological assessment of the hydroethanolic leaf extract of Clerodendrum capitatum in wistar rats. Pan Afr. Med. J. 2016, 24. [Google Scholar] [CrossRef]
  275. Gurudeeban, S.; Satyavani, K.; Shanmugapriya, R.; Ramanathan, T.; Umamaheswari, G.; Muthazagan, K. Antioxidant and radical scavenging effect of Clerodendrum inerme (L.). Glob. J. Pharmacol. 2010, 4, 91–94. [Google Scholar]
  276. Barman, T.K.; Kalita, P.; Pal, T.K. Comparative evaluation of total flavonoid content and antioxidant activity of methanolic root extract of Clerodendrum infortunatum and methanolic whole plant extract of biophytum sensitivum. Int. J. Pharm. Sci. Rev. Res. 2013, 22, 62–66. [Google Scholar]
  277. Mohan Maruga Raja, M.K.; Mishra, S.H. Comprehensive review of Clerodendrum phlomidis: A traditionally used bitter. J. Chin. Integr. Med. 2010, 8, 510–524. [Google Scholar] [CrossRef] [PubMed]
  278. Kuriyan, R.; Rajendran, R.; Bantwal, G.; Kurpad, A.V. Effect of supplementation of Coccinia cordifolia extract on newly detected diabetic patients. Diabetes Care 2008, 31, 216–220. [Google Scholar] [CrossRef] [PubMed]
  279. Waisundara, V.Y.; Watawana, M.I. Evaluation of the antioxidant activity and additive effects of traditional medicinal herbs from sri lanka. Aust. J. Herb. Med. 2014, 26, 22–28. [Google Scholar]
  280. Attanayake, A.P.; Jayatilaka, K.A.P.W.; Pathirana, C.; Mudduwa, L.K.B. Antihyperglycemic activity of Coccinia grandis (L.) voigt in streptozotocin induced diabetic rats. Indian J. Trad. Knowl. 2015, 14, 376–381. [Google Scholar]
  281. Pulbutr, P.; Saweeram, N.; Ittisan, T.; Intrama, H.; Jaruchotikamol, A.; Cushnie, B. In vitro α-amylase and α-glucosidase inhibitory activities of Coccinia grandis aqueous leaf and stem extracts. J. Biol. Sci. 2017, 17, 61–68. [Google Scholar] [CrossRef]
  282. Yang, W.; She, L.; Yu, K.; Yan, S.; Zhang, X.; Tian, X.; Ma, S.; Zhang, X. Jatrorrhizine hydrochloride attenuates hyperlipidemia in a high-fat diet-induced obesity mouse model. Mol. Med. Rep. 2016, 14, 3277–3284. [Google Scholar] [CrossRef]
  283. Wang, M.F.; Zhu, Q.H.; He, Y.G. Treatment with cordyceps sinensis enriches treg population in peripheral lymph nodes and delays type i diabetes development in nod mice. Pharmazie 2013, 68, 768–771. [Google Scholar]
  284. Tian, J.Y.; Chen, L.; Zhang, X.L.; Li, J.; Han, J.; Fu, J.Y.; Yang, X.M.; Zhang, P.C.; Ye, F. Investigation of a compound, compatibility of rhodiola crenulata, cordyceps militaris, and rheum palmatum, on metabolic syndrome treatment ii-improving obesity. Zhongguo Zhongyao Zazhi 2013, 38, 1411–1415. [Google Scholar]
  285. Wang, W.; Xu, J.; Li, L.; Wang, P.; Ji, X.; Ai, H.; Zhang, L.; Li, L. Neuroprotective effect of morroniside on focal cerebral ischemia in rats. Brain Res. Bull. 2010, 83, 196–201. [Google Scholar] [CrossRef]
  286. Park, C.H.; Noh, J.S.; Tanaka, T.; Uebaba, K.; Cho, E.J.; Yokozawa, T. The effects of corni fructus extract and its fractions against α-glucosidase inhibitory activities in vitro and sucrose tolerance in normal rats. Am. J. Chin. Med. 2011, 39, 367–380. [Google Scholar] [CrossRef] [PubMed]
  287. Kim, D.; Park, K.K.; Lee, S.K.; Lee, S.E.; Hwang, J.K. Cornus kousa F. Buerger ex miquel increases glucose uptake through activation of peroxisome proliferator-activated receptor γ and insulin sensitization. J. Ethnopharmacol. 2011, 133, 803–809. [Google Scholar] [CrossRef] [PubMed]
  288. Soltani, R.; Gorji, A.; Asgary, S.; Sarrafzadegan, N.; Siavash, M. Evaluation of the effects of Cornus mas L. Fruit extract on glycemic control and insulin level in type 2 diabetic adult patients: A randomized double-blind placebo-controlled clinical trial. Evid. Based Complement. Altern. Med. 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
  289. Turner, N.J.; Hebda, R.J. Contemporary use of bark for medicine by two salishan native elders of southeast vancouver island, canada. J. Ethnopharmacol. 1990, 29, 59–72. [Google Scholar] [CrossRef]
  290. McCune, L.M.; Johns, T. Antioxidant activity in medicinal plants associated with the symptoms of diabetes mellitus used by the indigenous peoples of the north american boreal forest. J. Ethnopharmacol. 2002, 82, 197–205. [Google Scholar] [CrossRef]
  291. Krishnan, K.; Mathew, L.E.; Vijayalakshmi, N.R.; Helen, A. Anti-inflammatory potential of β-amyrin, a triterpenoid isolated from costus igneus. Inflammopharmacology 2014, 22, 373–385. [Google Scholar] [CrossRef] [PubMed]
  292. Maciel, M.A.M.; Pinto, A.C.; Arruda, A.C.; Pamplona, S.G.S.R.; Vanderlinde, F.A.; Lapa, A.J.; Echevarria, A.; Grynberg, N.F.; Côlus, I.M.S.; Farias, R.A.F.; et al. Ethnopharmacology, phytochemistry and pharmacology: A successful combination in the study of croton cajucara. J. Ethnopharmacol. 2000, 70, 41–55. [Google Scholar] [CrossRef]
  293. Biscaro, F.; Parisotto, E.B.; Zanette, V.C.; Günther, T.M.F.; Ferreira, E.A.; Gris, E.F.; Correia, J.F.G.; Pich, C.T.; Mattivi, F.; Filho, D.W.; et al. Anticancer activity of flavonol and flavan-3-ol rich extracts from croton celtidifolius latex. Pharm. Biol. 2013, 51, 737–743. [Google Scholar] [CrossRef]
  294. Govindarajan, R.; Vijayakumar, M.; Rao, C.V.; Pushpangadan, P.; Asare-Anane, H.; Persaud, S.; Jones, P.; Houghton, P.J. Antidiabetic activity of croton klozchianus in rats and direct stimulation of insulin secretion in-vitro. J. Pharm. Pharmacol. 2008, 60, 371–376. [Google Scholar] [CrossRef]
  295. Okokon, J.E.; Bassey, A.L.; Obot, J. Antidiabetic activity of ethanolic leaf extract of croton zambesicus muell. (thunder plant) in alloxan diabetic rats. Afr. J. Trad. Complement. Altern. Med. 2006, 3, 21–26. [Google Scholar] [CrossRef]
  296. Panwar, N.S.; Pradheep, K.; Bhatt, K.C.; Deswal, R.P.S. Ethnobotany of a threatened medicinal plant “indravan” (Cucumis callosus) from central india. Med. Plants 2014, 6, 307–309. [Google Scholar] [CrossRef]
  297. Jamal, P.; Barkat, A.A.; Amid, A. Response surface optimization of the process conditions for anti-diabetic compounds from cucumis sativus. Afr. J. Biotechnol. 2011, 10, 18788–18794. [Google Scholar]
  298. Bayat, A.; Azizi-Soleiman, F.; Heidari-Beni, M.; Feizi, A.; Iraj, B.; Ghiasvand, R.; Askari, G. Effect of cucurbita ficifolia and probiotic yogurt consumption on blood glucose, lipid profile, and inflammatory marker in type 2 diabetes. Int. J. Prev. Med. 2016, 2016. [Google Scholar]
  299. Miranda-Perez, M.E.; Ortega-Camarillo, C.; Del Carmen Escobar-Villanueva, M.; Blancas-Flores, G.; Alarcon-Aguilar, F.J. Cucurbita ficifolia bouché increases insulin secretion in rinm5f cells through an influx of ca2+ from the endoplasmic reticulum. J. Ethnopharmacol. 2016, 188, 159–166. [Google Scholar] [CrossRef]
  300. Andrade-Cetto, A.; Heinrich, M. Mexican plants with hypoglycaemic effect used in the treatment of diabetes. J. Ethnopharmacol. 2005, 99, 325–348. [Google Scholar] [CrossRef]
  301. Sheh-Hong, L.; Darah, I. Assessment of anticandidal activity and cytotoxicity of root extract from curculigo latifolia on pathogenic candida albicans. J. Med. Sci. 2013, 13, 193–200. [Google Scholar] [CrossRef]
  302. Thakur, M.; Chauhan, N.S.; Sharma, V.; Dixit, V.K.; Bhargava, S. Effect of curculigo orchioides on hyperglycemia-induced oligospermia and sexual dysfunction in male rats. Int. J. Impot. Res. 2012, 24, 31–37. [Google Scholar] [CrossRef]
  303. Sushma, S.M.; Sharath, R.; Sujan Ganapathy, P.S.; Sivakamisundari, P.; Preetham, J. Pharmacognostic and phytochemical evaluation of Curcuma angustifolia roxb. (rhizome) indigenous ethno-medicinal plant used by tribal soliga community of biligirirangana hills. Int. J. Pharmacogn. Phytochem. Res. 2015, 7, 820–824. [Google Scholar]
  304. Yadav, K.D.; Chaudhury, A.K. Anti-obesity mechanism of Curcuma longa L.—An over view. Ind. J. Nat. Prod. Resour. 2016, 7, 99–106. [Google Scholar]
  305. Mahabub, A.H.; Hossain, M.; Karim, M.; Khan, M.; Jahan, R.; Rahmatullah, M. An ethnobotanical survey of jessore district in khulna division, bangladesh. Am. Eurasian J. Sustain. Agric. 2009, 3, 238–243. [Google Scholar]
  306. Peltzer, K.; Sydara, K.; Pengpid, S. Traditional, complementary and alternative medicine use in a community population in lao pdr. Afr. J. Trad. Complement. Altern. Med. 2016, 13, 95–100. [Google Scholar] [CrossRef]
  307. Salleh, N.; Ismail, S.; Ab Halim, M.R. Effects of Curcuma xanthorrhiza extracts and their constituents on phase ii drug-metabolizing enzymes activity. Pharmacogn. Res. 2016, 8, 309–315. [Google Scholar]
  308. Yasni, S.; Imaizumi, K.; Sugano, M. Effects of an indonesian medicinal plant, Curcuma xanthorrhiza roxb., on the levels of serum glucose and triglyceride, fatty acid desaturation, and bile acid excretion in streptozotocin-induced diabetic rats. Agric. Biol. Chem. 1991, 55, 3005–3010. [Google Scholar] [CrossRef]
  309. Gao, J.M.; Li, R.; Zhang, L.; Jia, L.L.; Ying, X.X.; Dou, D.Q.; Li, J.C.; Li, H.B. Cuscuta chinensis seeds water extraction protecting murine osteoblastic mc3t3-e1 cells against tertiary butyl hydroperoxide induced injury. J. Ethnopharmacol. 2013, 148, 587–595. [Google Scholar] [CrossRef]
  310. Cui, Z.; Guo, Z.; Miao, J.; Wang, Z.; Li, Q.; Chai, X.; Li, M. The genus cynomorium in china: An ethnopharmacological and phytochemical review. J. Ethnopharmacol. 2013, 147, 1–15. [Google Scholar] [CrossRef]
  311. Sudipta, B.; Kumar, D.S.; Goutam, P.; Monalisha, D. Evaluation of antidiabetic activity and histological study of cyperus kyllinga endl. Roots. Ind. J. Nat. Prod. Resour. 2012, 3, 343–346. [Google Scholar]
  312. Elshamy, A.I.; El-Shazly, M.; Yassine, Y.M.; El-Bana, M.A.; Farrag, A.R.; Nassar, M.I.; Singab, A.N.; Noji, M.; Umeyama, A. Phenolic constituents, anti-inflammatory and antidiabetic activities of Cyperus laevigatus L. Pharm. J. 2014, 9, 828–833. [Google Scholar] [CrossRef]
  313. Pirzada, A.M.; Ali, H.H.; Naeem, M.; Latif, M.; Bukhari, A.H.; Tanveer, A. Cyperus rotundus L.: Traditional uses, phytochemistry, and pharmacological activities. J. Ethnopharmacol. 2015, 174, 540–560. [Google Scholar] [CrossRef]
  314. Rahman, M.M.; Hasan, M.N.; Das, A.K.; Hossain, M.T.; Jahan, R.; Khatun, M.A.; Rahmatullah, M. Effect of delonix regia leaf extract on glucose tolerance in glucose-induced hyperglycemic mice. Afr. J. Trad. Complement. Altern. Med. 2011, 8, 34–36. [Google Scholar]
  315. Nithya Devi, M.; Brindha, P. Herbal nutraceuticals in the management of cancer and chronic diseases—A select study. Int. J. Pharmcy Pharm. Sci. 2014, 6, 104–106. [Google Scholar]
  316. Yoo, S.R.; Jeong, S.J.; Lee, N.R.; Shin, H.K.; Seo, C.S. Simultaneous determination and anti-inflammatory effects of four phenolic compounds in dendrobii herba. Nat. Prod. Res. 2017, 31, 2923–2926. [Google Scholar] [CrossRef] [PubMed]
  317. Lu, Y.; Kuang, M.; Hu, G.P.; Wu, R.B.; Wang, J.; Liu, L.; Lin, Y.C. Loddigesiinols g-j: A-glucosidase inhibitors from Dendrobium loddigesii. Molecules 2014, 19, 8544–8555. [Google Scholar] [CrossRef] [PubMed]
  318. Rastogi, S.; Pandey, M.M.; Rawat, A.K.S. An ethnomedicinal, phytochemical and pharmacological profile of Desmodium gangeticum (L.) DC. And Desmodium adscendens (Sw.) DC. J. Ethnopharmacol. 2011, 136, 283–296. [Google Scholar] [CrossRef] [PubMed]
  319. Ma, X.; Zheng, C.; Hu, C.; Rahman, K.; Qin, L. The genus Desmodium (fabaceae)-traditional uses in chinese medicine, phytochemistry and pharmacology. J. Ethnopharmacol. 2011, 138, 314–332. [Google Scholar] [CrossRef]
  320. Wang, T.S.; Lii, C.K.; Huang, Y.C.; Chang, J.Y.; Yang, F.Y. Anticlastogenic effect of aqueous extract from water yam (Dioscorea alata L.). J. Med. Plant Res. 2011, 5, 6192–6202. [Google Scholar]
  321. Chopade, B.A.; Ghosh, S.; Ahire, M.; Patil, S.; Jabgunde, A.; Bhat Dusane, M.; Joshi, B.N.; Pardesi, K.; Jachak, S.; Dhavale, D.D. Antidiabetic activity of gnidia glauca and dioscorea bulbifera: Potent amylase and glucosidase inhibitors. Evid.-Based Complement. Altern. Med. 2012, 2012. [Google Scholar] [CrossRef]
  322. Kim, N.; Kim, S.H.; Kim, Y.J.; Kim, J.K.; Nam, M.K.; Rhim, H.; Yoon, S.K.; Choi, S.Z.; Son, M.; Kim, S.Y.; et al. Neurotrophic activity of da-9801, a mixture extract of Dioscorea japonica thunb. And Dioscorea nipponica makino, in vitro. J. Ethnopharmacol. 2011, 137, 312–319. [Google Scholar] [CrossRef]
  323. Wan Woo, K.; Wook Kwon, O.; Yeou Kim, S.; Zin Choi, S.; Won Son, M.; Hyun Kim, K.; Ro Lee, K. Phenolic derivatives from the rhizomes of Dioscorea nipponica and their anti-neuroinflammatory and neuroprotective activities. J. Ethnopharmacol. 2014, 155, 1164–1170. [Google Scholar] [CrossRef]
  324. Pi, W.X.; Feng, X.P.; Ye, L.H.; Cai, B.C. Combination of morroniside and diosgenin prevents high glucose-induced cardiomyocytes apoptosis. Molecules 2017, 22, 163. [Google Scholar] [CrossRef]
  325. Kuete, V.; Efferth, T. Pharmacogenomics of cameroonian traditional herbal medicine for cancer therapy. J. Ethnopharmacol. 2011, 137, 752–766. [Google Scholar] [CrossRef]
  326. Cho, B.O.; Yin, H.H.; Park, S.H.; Byun, E.B.; Ha, H.Y.; Jang, S.I. Anti-inflammatory activity of myricetin from Diospyros lotus through suppression of nf-κb and stat1 activation and nrf2-mediated ho-1 induction in lipopolysaccharide-stimulated raw264.7 macrophages. Biosci. Biotechnol. Biochem. 2016, 80, 1520–1530. [Google Scholar] [CrossRef] [PubMed]
  327. Kiran Kumar, A.N.D.E.; Gowrishankar, N.L.; Manju Bhargavi, V.; Nagarjuna, M.; Rajani, G.; Swetha, Y.; Vinay Reddy, P. Evaluation of anti ulcer activity of ethanol extract of Diospyros melanoxylon (roxb). Bark. Int. J. Pharmcy Pharm. Sci. 2012, 4, 537–539. [Google Scholar]
  328. Dewanjee, S.; Maiti, A.; Sahu, R.; Dua, T.K.; Mandal, V. Effective control of type 2 diabetes through antioxidant defense by edible fruits of diospyros peregrina. Evid.-Based Complement. Altern. Med. 2011, 2011. [Google Scholar] [CrossRef] [PubMed]
  329. Das, M.; Bandyopadhyay, A. Promising phytomedicines from Elephantopus scaber L: A review. Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 1508–1518. [Google Scholar]
  330. Ooi, K.L.; Muhammad, T.S.T.; Tan, M.L.; Sulaiman, S.F. Cytotoxic, apoptotic and anti-α-glucosidase activities of 3,4-di-o-caffeoyl quinic acid, an antioxidant isolated from the polyphenolic-rich extract of elephantopus mollis kunth. J. Ethnopharmacol. 2011, 135, 685–695. [Google Scholar] [CrossRef]
  331. Miura, T.; Kato, A. Hypoglycémie action ofembelia madagascariensis in normal and diabetic mice. Am. J. Chin. Med. 1997, 25, 169–173. [Google Scholar] [CrossRef]
  332. Bhandari, U.; Jain, N.; Ansari, M.N.; Pillai, K.K. Beneficial effect of embelia ribes ethanolic extract on blood pressure and glycosylated hemoglobin in streptozotocin-induced diabetes in rats. Fitoterapia 2008, 79, 351–355. [Google Scholar] [CrossRef]
  333. Ratnasooriya, W.D.; Somarathna, K.I.W.K.; Premakumara, G.A.S.; Ediriweera, E.R.H.S.S. Lack of antiglycation activity of fresh juice of whole plant of Enicostema axillare (lam.) raynal. J. Pharm. Negat. Results 2011, 2, 55–57. [Google Scholar] [CrossRef]
  334. Tripathi, A.K.; Bhoyar, P.K.; Baheti, J.R.; Biyani, D.M.; Khalique, M.; Kothmire, M.S.; Amgaonkar, Y.M.; Bhanarkar, A.B. Herbal antidiabetics: A review. Int. J. Res. Pharm. Sci. 2011, 2, 30–37. [Google Scholar]
  335. Sen, B.; Kessler, S.; Gurdal, B.; Kiemer, A.; Mat, A. The difference between the extracts of erica manipuliflora in flowering and fruiting periods in terms of the cytotoxic effects. J. Pharm. Istanb. Univ. 2016, 46, 71–78. [Google Scholar]
  336. Vadivel, V.; Biesalski, H.K. Phenolic content in traditionally processed Erythrina indica L. Seeds: Antioxidant potential and type ii diabetes related functionality. Curr. Nutr. Food Sci. 2011, 7, 200–208. [Google Scholar] [CrossRef]
  337. Bokaeian, M.; Nakhaee, A.; Moodi, B.; Khazaei, H.A. Eucalyptus globulus (eucalyptus) treatment of candidiasis in normal and diabetic rats. Iran. Biomed. J. 2010, 14, 121–126. [Google Scholar] [PubMed]
  338. Asgharpour, F.; Pouramir, M.; Moghadamnia, A.A. Evaluation of viscosity of traditional medicinal antihyperglycemic plant extracts and relationship with glucose diffusion in vitro. J. Med. Plants 2012, 11, 166–176. [Google Scholar]
  339. Ogunwande, I.A.; Matsui, T.; Fujise, T.; Matsumoto, K. A-glucosidase inhibitory profile of nigerian medicinal plants in immobilized assay system. Food Sci. Technol. Res. 2007, 13, 169–172. [Google Scholar] [CrossRef]
  340. Guillén, A.; Granados, S.; Rivas, K.E.; Estrada, O.; Echeverri, L.F.; Balcázar, N. Antihyperglycemic activity of eucalyptus tereticornis in insulin-resistant cells and a nutritional model of diabetic mice. Adv. Pharmacol. Sci. 2015, 2015. [Google Scholar] [CrossRef]
  341. Kumar, P.; Mehta, M.; Satija, S.; Garg, M. Enzymatic in vitro anti-diabetic activity of few traditional indian medicinal plants. J. Biol. Sci. 2013, 13, 540–544. [Google Scholar]
  342. Matsumura, T.; Kasai, M.; Hayashi, T.; Arisawa, M.; Momose, Y.; Arai, I.; Amagaya, S.; Komatsu, Y. A-glucosidase inhibitors from paraguayan natural medicine, nangapiry, the leaves of eugenia uniflora. Pharm. Biol. 2000, 38, 302–307. [Google Scholar] [CrossRef]
  343. Nguyen, Q.V.; Nguyen, N.H.; Wang, S.L.; Nguyen, V.B.; Nguyen, A.D. Free radical scavenging and antidiabetic activities of euonymus laxiflorus champ. Extract. Res. Chem. Intermed. 2017, 1–10, 5615–5624. [Google Scholar] [CrossRef]
  344. Hao, G.M.; Liu, Y.G.; Wu, Y.; Xing, W.; Guo, S.Z.; Wang, Y.; Wang, Z.L.; Li, C.; Lv, T.T.; Wang, H.L.; et al. The protective effect of the active components of erpc on diabetic peripheral neuropathy in rats. J. Ethnopharmacol. 2017, 202, 162–171. [Google Scholar] [CrossRef]
  345. Cristians, S.; Osuna-Fernández, H.R.; Ramírez-Ávila, G.; Muñóz-Ocotero, V.; Laguna-Hernández, G.; Brechú-Franco, A.E. Euphorbia dioeca kunth as a novel source for α-glucosidase inhibitors. Bol. Lat. Y Del Caribe De Plant. Med. Y Aromat. 2015, 14, 483–490. [Google Scholar]
  346. Gulati, V.; Gulati, P.; Harding, I.H.; Palombo, E.A. Exploring the anti-diabetic potential of australian aboriginal and indian ayurvedic plant extracts using cell-based assays. BMC Complement. Altern. Med. 2015, 15, 8. [Google Scholar] [CrossRef] [PubMed]
  347. Sheliya, M.A.; Rayhana, B.; Ali, A.; Pillai, K.K.; Aeri, V.; Sharma, M.; Mir, S.R. Inhibition of α-glucosidase by new prenylated flavonoids from Euphorbia hirta L. Herb. J. Ethnopharmacol. 2015, 176, 1–8. [Google Scholar] [CrossRef] [PubMed]
  348. Alarcon-Aguilara, F.J.; Roman-Ramos, R.; Perez-Gutierrez, S.; Aguilar-Contreras, A.; Contreras-Weber, C.C.; Flores-Saenz, J.L. Study of the anti-hyperglycemic effect of plants used as antidiabetics. J. Ethnopharmacol. 1998, 61, 101–110. [Google Scholar] [CrossRef]
  349. Kareparamban, J.A.; Nikam, P.H.; Jadhav, A.P.; Kadam, V.J. Ferula foetida “hing”: A review. Res. J. Pharm. Biol. Chem. Sci. 2012, 3, 775–786. [Google Scholar]
  350. Zare, A.R.; Omidi, M.; Fallah Hoseini, H.; Yazdani, D.; Sh, R.; Irvani, N.; Oladzad, A. A review on pharmacological effects of Ferula assa-foetida L.: A systematic review. J. Med. Plants 2011, 10, 17–25. [Google Scholar]
  351. Sattar, Z.; Iranshahi, M. Phytochemistry and pharmacology of ferula hermonis boiss—A review. Drug Res. 2017, 67, 437–446. [Google Scholar] [CrossRef]
  352. Hamdan, I.I.; Afifi, F.U. Studies on the in vitro and in vivo hypoglycemic activities of some medicinal plants used in treatment of diabetes in jordanian traditional medicine. J. Ethnopharmacol. 2004, 93, 117–121. [Google Scholar] [CrossRef]
  353. Arunachalam, K.; Parimelazhagan, T. Antidiabetic activity of ficus amplissima smith. Bark extract in streptozotocin induced diabetic rats. J. Ethnopharmacol. 2013, 147, 302–310. [Google Scholar] [CrossRef]
  354. Joseph, B.; Justin Raj, S. Phytopharmacological and phytochemical properties of three ficus species—An overview. Int. J. Pharma Bio Sci. 2010, 1, 246–253. [Google Scholar]
  355. Joseph, B.; Justin Raj, S. An overview—Ficus bengalensis linn. Int. J. Pharm. Sci. Rev. Res. 2011, 6, 21–24. [Google Scholar]
  356. Marwat, S.K.; Fazal Ur, R.; Khan, E.A.; Khakwani, A.A.; Ullah, I.; Khan, K.U.; Khan, I.U. Useful ethnophytomedicinal recipes of angiosperms used against diabetes in south east asian countries (india, pakistan & sri lanka). Pak. J. Pharma. Sci. 2014, 27, 1333–1358. [Google Scholar]
  357. Joseph, B.; Justin Raj, S. Pharmacognostic and phytochemical properties of Ficus carica linn—An overview. Int. J. Pharm. Res. 2011, 3, 8–12. [Google Scholar]
  358. Badgujar, S.B.; Patel, V.V.; Bandivdekar, A.H.; Mahajan, R.T. Traditional uses, phytochemistry and pharmacology of ficus carica: A review. Pharm. Biol. 2014, 52, 1487–1503. [Google Scholar] [CrossRef] [PubMed]
  359. Sheikh, Y.; Maibam, B.C.; Biswas, D.; Laisharm, S.; Deb, L.; Talukdar, N.C.; Borah, J.C. Anti-diabetic potential of selected ethno-medicinal plants of north east india. J. Ethnopharmacol. 2015, 171, 37–41. [Google Scholar] [CrossRef] [PubMed]
  360. Misbah, H.; Aziz, A.A.; Aminudin, N. Antidiabetic and antioxidant properties of ficus deltoidea fruit extracts and fractions. BMC Complement. Altern. Med. 2013, 13, 118. [Google Scholar] [CrossRef]
  361. Farsi, E.; Shafaei, A.; Hor, S.Y.; Ahamed, M.B.K.; Yam, M.F.; Asmawi, M.Z.; Ismail, Z. Genotoxicity and acute and subchronic toxicity studies of a standardized methanolic extract of ficus deltoidea leaves. Clinics 2013, 68, 865–875. [Google Scholar] [CrossRef]
  362. Choo, C.Y.; Sulong, N.Y.; Man, F.; Wong, T.W. Vitexin and isovitexin from the leaves of ficus deltoidea with in-vivo α-glucosidase inhibition. J. Ethnopharmacol. 2012, 142, 776–781. [Google Scholar] [CrossRef]
  363. Ahmed, F.; Mueen Ahmed, K.; Abedin, M.; Karim, A. Traditional uses and pharmacological potential of ficus exasperata vahl. Syst. Rev. Pharm. 2012, 3, 15–23. [Google Scholar] [CrossRef]
  364. Vaishnav, R.; Agrawal, R.D.; Sandeep, S. Medicinal value and future perspective of some therapeutically important plants from indian western region. Int. J. Pharm. Sci. Rev. Res. 2015, 34, 88–93. [Google Scholar]
  365. Madubunyi, I.I.; Onoja, S.O.; Asuzu, I.U. In vitro antioxidant and in vivo antidiabetic potential of the methanol extract of ficus glumosa del (moraceae) stem bark in alloxan-induced diabetic mice. Comp. Clin. Pathol. 2012, 21, 389–394. [Google Scholar] [CrossRef]
  366. Fidele, N.; Abakar, D.; Emmanuel, T.; Sélestin, S.D.; Paulin, N.; Hamadjida, A.; Marcel, N.R.; Christian, B.; Samuel, G.; Nicolas, N.Y.; et al. Hypolipidemic and anti-atherogenic effect of aqueous extract leaves of Ficus glumosa (moraceae) in rats. Exp. Gerontol. 2015, 62, 53–62. [Google Scholar]
  367. Zayyanu Usman, U.; Mohammed, A.; Binti Mohamed, M. Role of ethanol leaf extracts of ficus glumosa on fasting blood glucose and liver function test results of diabetes treated rats. J. Med. Biomed. Res. 2015, 14, 64–71. [Google Scholar]
  368. Ali, M.; Chaudhary, N. Ficus hispida linn.: A review of its pharmacognostic and ethnomedicinal properties. Pharmacogn. Rev. 2011, 5, 96–102. [Google Scholar] [PubMed]
  369. Akhtar, N.; Syed, D.N.; Khan, M.I.; Adhami, V.M.; Mirza, B.; Mukhtar, H. The pentacyclic triterpenoid, plectranthoic acid, a novel activator of ampk induces apoptotic death in prostate cancer cells. Oncotarget 2016, 7, 3819–3831. [Google Scholar] [CrossRef] [PubMed]
  370. Chan, E.W.C.; Tangah, J.; Inoue, T.; Kainuma, M.; Baba, K.; Oshiro, N.; Kezuka, M.; Kimura, N. Botany, uses, chemistry and pharmacology of ficus microcarpa: A short review. Syst. Rev. Pharm. 2017, 8, 103–111. [Google Scholar] [CrossRef]
  371. Singh, D.; Mukhija, M.; Singh, S.; Aggarwal, A.; Sundriyal, A. Anti-diabetic effect of hydroalcoholic extract of Ficus palmata forsk leaves in streptozotocin-induced diabetic rats. Int. J. Green Pharm. 2014, 8, 276–282. [Google Scholar]
  372. Shah, S.K.; Garg, G.; Jhade, D.; Pandey, H. Ficus racemosa linn: Its potentials food security and rural medicinal management. J. Pharm. Sci. Res. 2016, 8, 317–322. [Google Scholar]
  373. Solanki, N.D.; Bhavsar, S.K. Evaluation of phytochemical profile and antidiabetic activity of Ficus racemosa (linn.) stem bark in rats. Indian Drugs 2017, 54, 49–54. [Google Scholar]
  374. Patil, V.V.; Sutar, N.G.; Pimprikar, R.B.; Patil, A.P.; Chaudhari, R.Y.; Patil, V.R. Antihyperglycemic and hypoglycemic effect of ficus racemosa leaves. J. Nat. Rem. 2010, 10, 11–16. [Google Scholar]
  375. Sophia, D.; Manoharan, S. Hypolipidemic activities of Ficus racemosa linn. Bark in alloxan induced diabetic rats. Afr. J. Trad. Complement. Altern. Med. 2007, 4, 279–288. [Google Scholar] [CrossRef]
  376. Basar, M.H.; Hossain, S.J.; Sadhu, S.K.; Rahman, M.H. A comparative study of antioxidant potential of commonly used antidiabetic plants in bangladesh. Orient. Pharm. Exp. Med. 2013, 13, 21–28. [Google Scholar] [CrossRef]
  377. Singh, D.; Singh, B.; Goel, R.K. Traditional uses, phytochemistry and pharmacology of ficus religiosa: A review. J. Ethnopharmacol. 2011, 134, 565–583. [Google Scholar] [CrossRef] [PubMed]
  378. Awolola, G.V.; Koorbanally, N.A.; Chenia, H.; Shode, F.O.; Baijnath, H. Antibacterial and anti-biofilm activity of flavonoids and triterpenes isolated from the extracts of Ficus sansibarica warb. Subsp. Sansibarica (moraceae) extracts. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 124–131. [Google Scholar] [CrossRef] [PubMed]
  379. Babu, K.; Gokul Shankar, S.; Rai, S. Comparative pharmacognostic studies on the barks of four ficus species. Turk. J. Bot. 2010, 34, 215–224. [Google Scholar]
  380. Hoshovs’ka, I.V.; Korkach, I.P.; Shymans’ka, T.V.; Kotsiuruba, A.V.; Sahach, V.F. Effects of uncoupling proteins on nitric oxide synthesis and oxidative stress development in ishemia-reperfusion of old rat hearts. Fiziolohichnyi zhurnal 2009, 55, 3–11. [Google Scholar] [PubMed]
  381. Suh, H.W.; Lee, K.B.; Kim, K.S.; Yang, H.J.; Choi, E.K.; Shin, M.H.; Park, Y.S.; Na, Y.C.; Ahn, K.S.; Jang, Y.P.; et al. A bitter herbal medicine gentiana scabra root extract stimulates glucagon-like peptide-1 secretion and regulates blood glucose in db/db mouse. J. Ethnopharmacol. 2015, 172, 219–226. [Google Scholar] [CrossRef] [PubMed]
  382. Ikeda, T.; Tanaka, Y.; Yamamoto, K.; Morii, H.; Kamisako, T.; Ogawa, H. Geranium dielsianum extract powder (miskamiskatm) improves the intestinal environment through alteration of microbiota and microbial metabolites in rats. J. Funct. Foods 2014, 11, 12–19. [Google Scholar] [CrossRef]
  383. Kasabri, V.; Abu-Dahab, R.; Afifi, F.U.; Naffa, R.; Majdalawi, L.; Shawash, H. In vitro effects of geranium graveolens, sarcopoterium spinosum and varthemia iphionoides extracts on pancreatic min6 proliferation and insulin secretion and on extrapancreatic glucose diffusion. Int. J. Diabetes Dev. Ctries. 2013, 33, 170–177. [Google Scholar] [CrossRef]
  384. Pandit, S.; Ponnusankar, S.; Bandyopadhyay, A.; Ota, S.; Mukherjee, P.K. Exploring the possible metabolism mediated interaction of glycyrrhiza glabra extract with cyp3a4 and cyp2d6. Phytother. Res. 2011, 25, 1429–1434. [Google Scholar] [CrossRef]
  385. Lee, M.; Son, M.; Ryu, E.; Shin, Y.S.; Kim, J.G.; Kang, B.W.; Cho, H.; Kang, H. Quercetin-induced apoptosis prevents ebv infection. Oncotarget 2015, 6, 12603–12624. [Google Scholar] [CrossRef]
  386. Shukla, R.; Sharma, D.C.; Baig, M.H.; Bano, S.; Roy, S.; Provazník, I.; Kamal, M.A. Antioxidant, antimicrobial activity and medicinal properties of Grewia asiatica L. Med. Chem. 2016, 12, 211–216. [Google Scholar] [CrossRef] [PubMed]
  387. Natarajan, A.; Sugumar, S.; Bitragunta, S.; Balasubramanyan, N. Molecular docking studies of (4z, 12z)-cyclopentadeca-4, 12-dienone from grewia hirsuta with some targets related to type 2 diabetes. BMC Complement. Altern. Med. 2015, 15, 73. [Google Scholar] [CrossRef] [PubMed]
  388. Meena, S.N.; Ghadi, S.C.; Janarthanam, M.K. Evaluation of medicinal properties of Grewia nervosa (lour.) panigrahi. Int. J. Pharma Bio Sci. 2013, 4, P821–P828. [Google Scholar]
  389. Xu, B.Q.; Zhang, Y.Q. Bioactive components of gynura divaricata and its potential use in health, food and medicine: A mini-review. Afr. J. Tradit. Complement. Altern. Med. AJTCAM 2017, 14, 113–127. [Google Scholar] [CrossRef]
  390. Ma, J.; Guo, C.; Pan, Y.; Lin, D.; Qiu, L.; Wen, L. Antioxidant and anti-inflammatory activities of ethyl acetate extract of Gynura formosana (kitam) leaves. Exp. Ther. Med. 2017, 14, 2303–2309. [Google Scholar] [CrossRef]
  391. Kusuma, D.Y.; Kristanti, A.N.; Wulan Manuhara, Y.S. Effect of sucrose and immersion frequency on production of adventitious roots and secondary metabolites of Gynura procumbens (lour.) merr in temporary immersion bioreactors. Asian J. Plant Sci. 2017, 16, 24–36. [Google Scholar]
  392. Vejanan, V.; Latip, J.; Chin, L.P.; Embi, N.; Sidek, H.M. In vitro and in vivo anti-plasmodial activities of gynura procumbens. Sains Malays. 2012, 41, 1535–1542. [Google Scholar]
  393. Puangpronpitag, D.; Kaewseejan, N.; Nakornriab, M. Evaluation of phytochemical composition and antibacterial property of gynura procumbens extract. Asian J. Plant Sci. 2012, 11, 77–82. [Google Scholar] [CrossRef]
  394. Kwak, H.R.; Go, W.R.; Kim, M.; Kim, C.S.; Choi, H.S.; Seo, J.K.; Kim, J.G.; Kim, J.S. First report of broad bean wilt virus 2 in gynura procumbens in Korea. Plant Dis. 2017, 101, 514. [Google Scholar] [CrossRef]
  395. Yuandani; Jantan, I.; Husain, K. 4,5,4′-trihydroxychalcone, 8,8′-(ethene-1,2-diyl)-dinaphtalene-1,4,5-triol and rutin from gynura segetum inhibit phagocytosis, lymphocyte proliferation, cytokine release and nitric oxide production from phagocytic cells. BMC Complement. Altern. Med. 2017, 17, 211. [Google Scholar]
  396. Dong, Y.; Tang, D.; Zhang, N.; Li, Y.; Zhang, C.; Li, L.; Li, M. Phytochemicals and biological studies of plants in genus Hedysarum. Chem. Cent. J. 2013, 7, 124. [Google Scholar] [CrossRef]
  397. Pereira, C.G.; Barreira, L.; Bijttebier, S.; Pieters, L.; Neves, V.; Rodrigues, M.J.; Rivas, R.; Varela, J.; Custódio, L. Chemical profiling of infusions and decoctions of helichrysum italicum subsp. Picardii by uhplc-pda-ms and in vitro biological activities comparatively with green tea (Camellia sinensis) and rooibos tisane (Aspalathus linearis). J. Pharm. Biomed. Anal. 2017, 145, 593–603. [Google Scholar] [CrossRef] [PubMed]
  398. Pham, H.N.T.; Vuong, Q.V.; Bowyer, M.C.; Scarlett, C.J. Optimum conventional extraction conditions for phenolics, flavonoids, and antioxidant capacity of Helicteres hirsuta lour. Asia-Pac. J. Chem. Eng. 2017, 12, 332–347. [Google Scholar] [CrossRef]
  399. Varghese, E.; Pappachen, K.L.; Narayanan, S.S. Isolation and evaluation of antimicrobial properties of isolated phytoconstituents of fruits of Helicteres isora linn. Res. J. Pharm., Biol. Chem. Sci. 2012, 3, 959–964. [Google Scholar]
  400. Sinha, S.; Sharma, A.; Hemalatha Reddy, P.; Rathi, B.; Prasad, N.V.S.R.K.; Vashishtha, A. Evaluation of phytochemical and pharmacological aspects of Holarrhena antidysenterica (wall.): A comprehensive review. J. Pharm. Res. 2013, 6, 488–492. [Google Scholar] [CrossRef]
  401. Ogbole, O.O.; Aliu, L.O.; Abiodun, O.O.; Ajaiyeoba, E.O. Alpha-amylase inhibition and brine shrimp lethality activities of nine medicinal plant extracts from south-west nigerian ethnomedicine. J. Herbs Spices Med. Plants 2016, 22, 319–326. [Google Scholar] [CrossRef]
  402. Balamurugan, R.; Vendan, S.E.; Aravinthan, A.; Kim, J.H. Isolation and structural characterization of 2r, 3r taxifolin 3-o-rhamnoside from ethyl acetate extract of hydnocarpus alpina and its hypoglycemic effect by attenuating hepatic key enzymes of glucose metabolism in streptozotocin-induced diabetic rats. Biochimie 2015, 111, 70–81. [Google Scholar] [CrossRef]
  403. Reddy, S.V.; Tiwari, A.K.; Kumar, U.S.; Rao, R.J.; Rao, J.M. Free radical scavenging, enzyme inhibitory constituents from antidiabetic ayurvedic medicinal plant hydnocarpus wightiana blume. Phytother. Res. 2005, 19, 277–281. [Google Scholar] [CrossRef]
  404. Orhan, N.; Aslan, M.; Pekcan, M.; Orhan, D.D.; Bedir, E.; Ergun, F. Identification of hypoglycaemic compounds from berries of juniperus oxycedrus subsp. Oxycedrus through bioactivity guided isolation technique. J. Ethnopharmacol. 2012, 139, 110–118. [Google Scholar] [CrossRef]
  405. Gulfraz, M.; Ahmad, A.; Asad, M.J.; Sadiq, A.; Afzal, U.; Imran, M.; Anwar, P.; Zeenat, A.; Abbasi, K.S.; Maqsood, S.; et al. Antidiabetic activities of leaves and root extracts of Justicia adhatoda linn against alloxan induced diabetes in rats. Afr. J. Biotechnol. 2011, 10, 6101–6106. [Google Scholar]
  406. Periyanayagam, K.; Umamaheswari, B.; Suseela, L.; Padmini, M.; Ismail, M. Evaluation of antiangiogenic effect of the leaves of Justicia gendarussa (burm. F) (acanthaceae) by chrio allontoic membrane method. Am. J. Infect. Dis. 2009, 5, 187–189. [Google Scholar] [CrossRef]
  407. Carrington, S.; Cohall, D.H.; Gossell-Williams, M.; Lindo, J.F. The antimicrobial screening of a barbadian medicinal plant with indications for use in the treatment of diabetic wound infections. West Indian Med. J. 2012, 61, 861–864. [Google Scholar] [CrossRef] [PubMed]
  408. Ortiz-Andrade, R.; Cabañas-Wuan, A.; Arana-Argáez, V.E.; Alonso-Castro, A.J.; Zapata-Bustos, R.; Salazar-Olivo, L.A.; Domínguez, F.; Chávez, M.; Carranza-Álvarez, C.; García-Carrancá, A. Antidiabetic effects of Justicia spicigera schltdl (acanthaceae). J. Ethnopharmacol. 2012, 143, 455–462. [Google Scholar] [CrossRef] [PubMed]
  409. Hanif, A.; Hossan, M.S.; Mia, M.M.K.; Islam, M.J.; Jahan, R.; Rahmatullah, M. Ethnobotanical survey of the rakhain tribe inhabiting the chittagong hill tracts region of bangladesh. Am. Eurasian J. Sustain. Agric. 2009, 3, 172–180. [Google Scholar]
  410. Bavarva, J.H.; Narasimhacharya, A.V.R.L. Leucas cephalotes regulates carbohydrate and lipid metabolism and improves antioxidant status in iddm and niddm rats. J. Ethnopharmacol. 2010, 127, 98–102. [Google Scholar] [CrossRef] [PubMed]
  411. Xiao, Z.Q.; Wang, Y.L.; Gan, S.R.; Chen, J.C. Polysaccharides from liriopes radix ameliorates hyperglycemia via various potential mechanisms in diabetic rats. J. Sci. Food Agric. 2014, 94, 975–982. [Google Scholar] [CrossRef]
  412. Liu, Y.; Wan, L.; Xiao, Z.; Wang, J.; Wang, Y.; Chen, J. Antidiabetic activity of polysaccharides from tuberous root of Liriope spicata var. Prolifera in kkay mice. Evid. Based Complement. Altern. Med. 2013, 2013. [Google Scholar] [CrossRef]
  413. Svarcova, I.; Heinrich, J.; Valentova, K. Berry fruits as a source of biologically active compounds: The case of lonicera caerulea. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2007, 151, 163–174. [Google Scholar] [CrossRef]
  414. Chang, Y.X.; Ge, A.H.; Donnapee, S.; Li, J.; Bai, Y.; Liu, J.; He, J.; Yang, X.; Song, L.J.; Zhang, B.L.; et al. The multi-targets integrated fingerprinting for screening anti-diabetic compounds from a chinese medicine jinqi jiangtang tablet. J. Ethnopharmacol. 2015, 164, 210–222. [Google Scholar] [CrossRef]
  415. Dashora, N.; Chauhan, L.S.; Kumar, N. Luffa acutangula (linn.) roxb. Var. Amara (roxb.) a consensus review. Int. J. Pharma Bio Sci. 2013, 4, P835–P846. [Google Scholar]
  416. Balakrishnan, N.; Sharma, A. Preliminary phytochemical and pharmacological activities of Luffa cylindrica L. Fruit. Asian J. Pharm. Clin. Res. 2013, 6, 113–116. [Google Scholar]
  417. Modi, A.; Kumar, V. Luffa echinata roxb.-a review on its ethanomedicinal, phytochemical and pharmacological perspective. Asian Pac. J. Trop. Dis. 2014, 4, S7–S12. [Google Scholar] [CrossRef]
  418. Potterat, O. Goji (Lycium barbarum and L. Chinense): Phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Med. 2010, 76, 7–19. [Google Scholar] [CrossRef] [PubMed]
  419. Wang, D.; Ye, Z. Cortex lycii radicis extracts protect pancreatic beta cells under high glucose conditions. Curr. Mol. Med. 2016, 16, 591–595. [Google Scholar] [CrossRef] [PubMed]
  420. Chan, J.Y.W.; Lam, F.C.; Leung, P.C.; Che, C.T.; Fung, K.P. Antihyperglycemic and antioxidative effects of a herbal formulation of radix astragali, radix codonopsis and cortex lycii in a mouse model of type 2 diabetes mellitus. Phytother. Res. 2009, 23, 658–665. [Google Scholar] [CrossRef] [PubMed]
  421. Dhar, P.; Tayade, A.; Ballabh, B.; Chaurasia, O.P.; Bhatt, R.P.; Srivastava, R.B. Lycium ruthenicum murray: A less-explored but high-value medicinal plant from trans-himalayan cold deserts of ladakh, india. Plant Arch. 2011, 11, 583–586. [Google Scholar]
  422. Aderibigbe, A.O.; Emudianughe, T.S.; Lawal, B.A.S. Antihyperglycaemic effect of mangifera indica in rat. Phytother. Res. 1999, 13, 504–507. [Google Scholar] [CrossRef]
  423. Nguyen, H.X.; Le, T.C.; Do, T.N.V.; Le, T.H.; Nguyen, N.T.; Nguyen, M.T.T. A-glucosidase inhibitors from the bark of mangifera mekongensis. Chem. Cent. J. 2016, 10, 45. [Google Scholar] [CrossRef]
  424. Abd El-Mohsen, M.M.; Rabeh, M.A.; Abou-Setta, L.; El-Rashedy, A.A.; Hussein, A.A. Marrubiin: A potent α-glucosidase inhibitor from marrubium alysson. Int. J. Appl. Res. Nat. Prod. 2014, 7, 21–27. [Google Scholar]
  425. Edziri, H.; Mastouri, M.; Aouni, M.; Verschaeve, L. Polyphenols content, antioxidant and antiviral activities of leaf extracts of marrubium deserti growing in tunisia. South Afr. J. Bot. 2012, 80, 104–109. [Google Scholar] [CrossRef]
  426. Sweidan, N.I.; Zarga, M.H.A. Acylated flavonoid glucoside from marrubium vulgare. Lett. Org. Chem. 2016, 13, 277–282. [Google Scholar] [CrossRef]
  427. Boudjelal, A.; Henchiri, C.; Siracusa, L.; Sari, M.; Ruberto, G. Compositional analysis and in vivo anti-diabetic activity of wild algerian Marrubium vulgare L. Infusion. Fitoterapia 2012, 83, 286–292. [Google Scholar] [CrossRef] [PubMed]
  428. Ranganathan, R.; Vijayalakshmi, R.; Parameswari, P. Ethnomedicinal survey of jawadhu hills in tamil nadu. Asian J. Pharm. Clin. Res. 2012, 5, 45–49. [Google Scholar]
  429. Marimuthu, S.; Padmaja, B.; Nair, S. Phytochemical screening studies on melia orientalis by gc-ms analysis. Pharmacogn. Res. 2013, 5, 216–218. [Google Scholar]
  430. Baliga, M.; Rao, S. Radioprotective potential of mint: A brief review. J. Cancer Res. Ther. 2010, 6, 255–262. [Google Scholar] [CrossRef] [PubMed]
  431. Manosroi, J.; Zaruwa, M.Z.; Manosroi, A. Potent hypoglycemic effect of nigerian anti-diabetic medicinal plants. J. Complement. Integr. Med. 2011, 8. [Google Scholar] [CrossRef] [PubMed]
  432. Ahmed, T.; Imam, K.M.S.U.; Rahman, S.; Mou, S.M.; Choudhury, M.S.; Mahal, M.J.; Jahan, S.; Hossain, M.S.; Rahmatullah, M. Antihyperglycemic and antinociceptive activity of fabaceae family plants—An evaluation of Mimosa pigra L. Stems. Adv. Nat. Appl. Sci. 2012, 6, 1490–1495. [Google Scholar]
  433. Manosroi, J.; Moses, Z.Z.; Manosroi, W.; Manosroi, A. Hypoglycemic activity of thai medicinal plants selected from the thai/lanna medicinal recipe database manosroi ii. J. Ethnopharmacol. 2011, 138, 92–98. [Google Scholar] [CrossRef]
  434. Ganu, G.P.; Jadhav, S.S.; Deshpande, A.D. Antioxidant and antihyperglycemic potential of methanolic extract of bark of Mimusops elengi L. In mice. Int. J. Phytomed. 2010, 2, 116–123. [Google Scholar]
  435. Kumar, K.P.S.; Bhowmik, D. Traditional medicinal uses and therapeutic benefits of Momordica charantia linn. Int. J. Pharm. Sci. Rev. Res. 2010, 4, 23–28. [Google Scholar]
  436. Akharaiyi, F.C.; Akinyemi, A.J.; Isitua, C.C.; Ogunmefun, O.T.; Opakunle, S.O.; Fasae, J.K. Some antidiabetic medicinal plants used by traditional healers in Ado Ekiti, Nigeria. Bratisl. Med. J. 2017, 118, 504–505. [Google Scholar] [CrossRef]
  437. Wang, H.Y.; Kan, W.C.; Cheng, T.J.; Yu, S.H.; Chang, L.H.; Chuu, J.J. Differential anti-diabetic effects and mechanism of action of charantin-rich extract of taiwanese momordica charantia between type 1 and type 2 diabetic mice. Food Chem. Toxicol. 2014, 69, 347–356. [Google Scholar] [CrossRef] [PubMed]
  438. Giovannini, P.; Howes, M.J.R.; Edwards, S.E. Medicinal plants used in the traditional management of diabetes and its sequelae in central america: A review. J. Ethnopharmacol. 2016, 184, 58–71. [Google Scholar] [CrossRef] [PubMed]
  439. Rammal, H.; Bouayed, J.; Desor, F.; Younos, C.; Soulimani, R. A study of the anti-hyperglycaemic effects of the medicinal plant, Momordica charantia L.: Validation and contribution. Phytotherapie 2009, 7, 191–196. [Google Scholar] [CrossRef]
  440. Balkhande, S.V.; Surwase, B.S. Antimicrobial activity of tuberous root extracts of momordica cymbalaria hook. Asian J. Pharm. Clin. Res. 2013, 6, 201–203. [Google Scholar]
  441. Van de Venter, M.; Roux, S.; Bungu, L.C.; Louw, J.; Crouch, N.R.; Grace, O.M.; Maharaj, V.; Pillay, P.; Sewnarian, P.; Bhagwandin, N.; et al. Antidiabetic screening and scoring of 11 plants traditionally used in south africa. J. Ethnopharmacol. 2008, 119, 81–86. [Google Scholar] [CrossRef]
  442. Di, R.; Huang, M.T.; Ho, C.T. Anti-inflammatory activities of mogrosides from momordica grosvenori in murine macrophages and a murine ear edema model. J. Agric. Food Chem. 2011, 59, 7474–7481. [Google Scholar] [CrossRef]
  443. Umar, A.N.; Mann, A.; Ajiboso, O.S.O. Ethnodietetics of moringa oleifera leaves amongst the ethnic groups in bida, niger state, nigeria and its hypoglycaemic effects in rats. Am. Eurasian J. Sustain. Agric. 2011, 5, 107–114. [Google Scholar]
  444. Geleta, B.; Makonnen, E.; Debella, A.; Abebe, A.; Fekadu, N. In vitro vasodilatory activity and possible mechanisms of the crude extracts and fractions of Moringa stenopetala (baker f.) cufod. Leaves in isolated thoracic aorta of guinea pigs. J. Exp. Pharm. 2016, 8, 35–42. [Google Scholar] [CrossRef]
  445. Dièye, A.M.; Sarr, A.; Diop, S.N.; Ndiaye, M.; Sy, G.Y.; Diarra, M.; Rajraji-Gaffary, I.; Ndiaye-Sy, A.; Faye, B. Medicinal plants and the treatment of diabetes in senegal: Survey with patients. Fundam. Clin. Pharmacol. 2008, 22, 211–216. [Google Scholar] [CrossRef]
  446. Ullah, M.F.; Bhat, S.H.; Abuduhier, F.M. Antidiabetic potential of hydro-alcoholic extract of moringa peregrina leaves: Implication as functional food for prophylactic intervention in prediabetic stage. J. Food Biochem. 2015, 39, 360–367. [Google Scholar] [CrossRef]
  447. Devi, B.; Sharma, N.; Kumar, D.; Jeet, K. Morus alba linn: A phytopharmacological review. Int. J. Pharmcy Pharm. Sci. 2013, 5, 14–18. [Google Scholar]
  448. Cai, S.; Sun, W.; Fan, Y.; Guo, X.; Xu, G.; Xu, T.; Hou, Y.; Zhao, B.; Feng, X.; Liu, T. Effect of mulberry leaf (folium mori) on insulin resistance via irs-1/pi3k/glut-4 signalling pathway in type 2 diabetes mellitus rats. Pharm. Biol. 2016, 54, 2685–2691. [Google Scholar] [CrossRef] [PubMed]
  449. Mussarat, S.; Abdel-Salam, N.M.; Tariq, A.; Wazir, S.M.; Ullah, R.; Adnan, M. Use of ethnomedicinal plants by the people living around indus river. Evid.-Based Complement. Altern. Med. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
  450. Oh, K.S.; Ryu, S.Y.; Lee, S.; Seo, H.W.; Oh, B.K.; Kim, Y.S.; Lee, B.H. Melanin-concentrating hormone-1 receptor antagonism and anti-obesity effects of ethanolic extract from morus alba leaves in diet-induced obese mice. J. Ethnopharmacol. 2009, 122, 216–220. [Google Scholar] [CrossRef]
  451. Lemus, I.; García, R.; Delvillar, E.; Knop, G. Hypoglycaemic activity of four plants used in chilean popular medicine. Phytother. Res. 1999, 13, 91–94. [Google Scholar] [CrossRef]
  452. Adisakwattana, S.; Ruengsamran, T.; Kampa, P.; Sompong, W. In vitro inhibitory effects of plant-based foods and their combinations on intestinal α-glucosidase and pancreatic α-amylase. BMC Complement. Altern. Med. 2012, 12, 110. [Google Scholar] [CrossRef]
  453. Yin, N.; Hong, X.; Han, Y.; Duan, Y.; Zhang, Y.; Chen, Z. Cortex mori radicis extract induces neurite outgrowth in pc12 cells activating erk signaling pathway via inhibiting ca2+ influx. Int. J. Clin. Exp. Med. 2015, 8, 5022–5032. [Google Scholar]
  454. Vadivel, V.; Biesalski, H.K. Total phenolic content, antioxidant activity, and type ii diabetes related functionality of traditionally processed ox-eye bean [Mucuna gigantea (Willd) DC.] seeds: An indian underutilized food legume. Food Sci. Biotechnol. 2011, 20, 783–791. [Google Scholar] [CrossRef]
  455. Kamat, N.; Pearline, D.; Thiagarajan, P. Murraya koenigii (L.) (curry leaf): A traditional indian plant. Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 691–697. [Google Scholar]
  456. Dineshkumar, B.; Mitra, A.; Mahadevappa, M. Antidiabetic and hypolipidemic effects of mahanimbine (carbazole alkaloid) from murraya koenigii (rutaceae) leaves. Int. J. Phytomed. 2010, 2, 22–30. [Google Scholar]
  457. Narkhede, M.B. Evaluation of alpha amylase inhibitory potential of four traditional culinary leaves. Asian J. Pharm. Clin. Res. 2012, 5, 75–76. [Google Scholar]
  458. Kesari, A.N.; Gupta, R.K.; Watal, G. Hypoglycemic effects of murraya koenigii on normal and alloxan-diabetic rabbits. J. Ethnopharmacol. 2005, 97, 247–251. [Google Scholar] [CrossRef] [PubMed]
  459. Yadav, S.; Vats, V.; Dhunnoo, Y.; Grover, J.K. Hypoglycemic and antihyperglycemic activity of murraya koenigii leaves in diabetic rats. J. Ethnopharmacol. 2002, 82, 111–116. [Google Scholar] [CrossRef]
  460. Venkatesh, K.V.; Girish Kumar, K.; Pradeepa, K.; Santosh Kumar, S.R. Antibacterial activity of ethanol extract of musa paradisiaca cv. Puttabale and musa acuminate cv. Grand naine. Asian J. Pharm. Clin. Res. 2013, 6, 167–170. [Google Scholar]
  461. Jayamurthy, P.; Aparna, B.; Gayathri, G.; Nisha, P. Evaluation of antioxidant potential of inflorescence and stalk of plantain (Musa sapientum). J. Food Biochem. 2013, 37, 2–7. [Google Scholar] [CrossRef]
  462. Parimala, M. In vitro antimicrobial activity and hptlc analysis of hydroalcoholic seed extract of nymphaea nouchali burm. F. BMC Complement. Altern. Med. 2014, 14, 361. [Google Scholar] [CrossRef] [PubMed]
  463. Mohan Maruga Raja, M.K.; Sethiya, N.K.; Mishra, S.H. A comprehensive review on nymphaea stellata: A traditionally used bitter. J. Adv. Pharm. Technol. Res. 2010, 1, 311–319. [Google Scholar] [CrossRef] [PubMed]
  464. Huang, Y.N.; Zhao, Y.L.; Gao, X.L.; Zhao, Z.F.; Jing, Z.; Zeng, W.C.; Yang, R.; Peng, R.; Tong, T.; Wang, L.F.; et al. Intestinal α-glucosidase inhibitory activity and toxicological evaluation of nymphaea stellata flowers extract. J. Ethnopharmacol. 2010, 131, 306–312. [Google Scholar] [CrossRef] [PubMed]
  465. Rajagopal, K.; Sasikala, K.; Ragavan, B. Hypoglycemic and antihyperglycemic activity of nymphaea stellata flowers in normal and alloxan diabetic rats. Pharm. Biol. 2008, 46, 654–659. [Google Scholar] [CrossRef]
  466. Berhow, M.A.; Affum, A.O.; Gyan, B.A. Rosmarinic acid content in antidiabetic aqueous extract of ocimum canum sims grown in ghana. J. Med. Food 2012, 15, 611–620. [Google Scholar] [CrossRef]
  467. Nyarko, A.K.; Asare-Anane, H.; Ofosuhene, M.; Addy, M.E. Extract of ocimum canum lowers blood glucose and facilitates insulin release by isolated pancreatic β-islet cells. Phytomedicine 2002, 9, 346–351. [Google Scholar] [CrossRef] [PubMed]
  468. Egesie, U.G.; Adelaiye, A.B.; Ibu, J.O.; Egesie, O.J. Safety and hypoglycaemic properties of aqueous leaf extract of ocimum gratissimum in streptozotocin induced diabetic rats. Niger. J. Physiol. Sci. 2006, 21, 31–35. [Google Scholar] [CrossRef] [PubMed]
  469. Upadhyay, R.K. Tulsi: A holy plant with high medicinal and therapeutic value. Int. J. Green Pharm. 2017, 11, S1–S12. [Google Scholar]
  470. Mahajan, N.; Rawal, S.; Verma, M.; Poddar, M.; Alok, S. A phytopharmacological overview on ocimum species with special emphasis on ocimum sanctum. Biomed. Prev. Nutr. 2013, 3, 185–192. [Google Scholar] [CrossRef]
  471. Mahabub, A.H.; Hossain, M.; Karim, M.; Khan, M.; Jahan, R.; Rahmatullah, M. An ethnobotanical survey of rajshahi district in rajshahi division, bangladesh. Am. Eurasian J. Sustain. Agric. 2009, 3, 143–150. [Google Scholar]
  472. Sethi, J.; Sood, S.; Seth, S.; Talwar, A. Evaluation of hypoglycemic and antioxidant effect of ocimum sanctum. Indian J. Clin. Biochem. 2004, 19, 152–155. [Google Scholar] [CrossRef]
  473. Mousavi, L.; Salleh, R.M.; Murugaiyah, V.; Asmawi, M.Z. Hypoglycemic and anti-hyperglycemic study of Ocimum tenuiflorum L. Leaves extract in normal and streptozotocin-induced diabetic rats. Asian Pac. J. Trop. Biomed. 2016, 6, 1029–1036. [Google Scholar] [CrossRef]
  474. Shikov, A.N.; Pozharitskaya, O.N.; Makarov, V.G.; Yang, W.Z.; Guo, D.A. Oplopanax elatus (nakai) nakai: Chemistry, traditional use and pharmacology. Chin. J. Nat. Med. 2014, 12, 721–729. [Google Scholar] [CrossRef]
  475. Tai, J.; Cheung, S.; Cheah, S.; Chan, E.; Hasman, D. In vitro anti-proliferative and antioxidant studies on devil’s club oplopanax horridus. J. Ethnopharmacol. 2006, 108, 228–235. [Google Scholar] [CrossRef]
  476. Tepe, B.; Cakir, A.; Sihoglu Tepe, A. Medicinal uses, phytochemistry, and pharmacology of Origanum onites (L.): A review. Chem. Biodivers. 2016, 13, 504–520. [Google Scholar] [CrossRef]
  477. McCue, P.; Vattem, D.; Shetty, K. Inhibitory effect of clonal oregano extracts against porcine pancreatic amylase in vitro. Asia Pac. J. Clin. Nutr. 2004, 13, 401–408. [Google Scholar] [PubMed]
  478. Singh, M.K.; Gidwani, B.; Gupta, A.; Dhongade, H.; Kaur, C.D.; Kashyap, P.P.; Tripathi, D.K. A review of the medicinal plants of genus Orthosiphon (lamiaceae). Int. J. Biol. Chem. 2015, 9, 318–331. [Google Scholar] [CrossRef]
  479. Man, S.; Kiong, L.S.; Ab’lah, N.A.; Abdullah, Z. Differentiation of the white and purple flower forms of Orthosiphon aristatus (blume) miq. By 1d and 2d correlation ir spectroscopy. J. Teknol. 2015, 77, 81–86. [Google Scholar] [CrossRef]
  480. Muhammad, H.; Gomes-Carneiro, M.R.; Poa, K.S.; De-Oliveira, A.C.A.X.; Afzan, A.; Sulaiman, S.A.; Ismail, Z.; Paumgartten, F.J.R. Evaluation of the genotoxicity of orthosiphon stamineus aqueous extract. J. Ethnopharmacol. 2011, 133, 647–653. [Google Scholar] [CrossRef] [PubMed]
  481. Ebrahimpoor-Mashhadi, M.R.; Khaksar, Z.; Noorafshan, A.; Mogheisi, B. Stereological study of the effects of orally administrated otostegia persica extract on pancreatic beta cells in male diabetic rats. Comp. Clin. Pathol. 2014, 23, 761–767. [Google Scholar] [CrossRef]
  482. Shewamene, Z.; Abdelwuhab, M.; Birhanu, Z. Methanolic leaf exctract of otostegia integrifolia benth reduces blood glucose levels in diabetic, glucose loaded and normal rodents. BMC Complement. Altern. Med. 2015, 15, 19. [Google Scholar] [CrossRef]
  483. Wang, L.; Jiang, Y.; Han, T.; Zheng, C.; Qin, L. A phytochemical, pharmacological and clinical profile of paederia foetida and p. Scandens. Nat. Pro. Comm. 2014, 9, 879–886. [Google Scholar] [CrossRef]
  484. Yoon, I.S.; Jung, Y.; Kim, H.J.; Lim, H.J.; Cho, S.S.; Shim, J.H.; Kang, B.Y.; Cheon, S.H.; Kim, S.N.; Yoon, G. Hypoglycemic effect of paeonia lactiflora in high fat diet-induced type 2 diabetic mouse model. Korean J. Pharmacogn. 2014, 45, 194–199. [Google Scholar]
  485. Chen, J.; Hou, X.F.; Wang, G.; Zhong, Q.X.; Liu, Y.; Qiu, H.H.; Yang, N.; Gu, J.F.; Wang, C.F.; Zhang, L.; et al. Terpene glycoside component from moutan cortex ameliorates diabetic nephropathy by regulating endoplasmic reticulum stress-related inflammatory responses. J. Ethnopharmacol. 2016, 193, 433–444. [Google Scholar] [CrossRef]
  486. Chiabchalard, A.; Nooron, N. Antihyperglycemic effects of Pandanus amaryllifolius roxb. Leaf extract. Pharmacogn. Mag. 2015, 11, 117–122. [Google Scholar] [CrossRef]
  487. Madhavan, V.; Nagar, J.C.; Murali, A.; Mythreyi, R.; Yoganarasimhan, S.N. Antihyperglycemic activity of alcohol and aqueous extracts of pandanus fascicularis lam. Roots in alloxan induced diabetic rats. Pharmacologyonline 2008, 3, 529–536. [Google Scholar]
  488. Englberger, L.; Schierle, J.; Hofmann, P.; Lorens, A.; Albert, K.; Levendusky, A.; Paul, Y.; Lickaneth, E.; Elymore, A.; Maddison, M.; et al. Carotenoid and vitamin content of micronesian atoll foods: Pandanus (Pandanus tectorius) and garlic pear (crataeva speciosa) fruit. J. Food Compos. Anal. 2009, 22, 1–8. [Google Scholar] [CrossRef]
  489. Lee, H.; Choi, J.; Shik Shin, S.; Yoon, M. Effects of korean red ginseng (panax ginseng) on obesity and adipose inflammation in ovariectomized mice. J. Ethnopharmacol. 2016, 178, 229–237. [Google Scholar] [CrossRef] [PubMed]
  490. Xia, P.; Guo, H.; Liang, Z.; Cui, X.; Liu, Y.; Liu, F. Nutritional composition of sanchi (panax notoginseng) seed and its potential for industrial use. Genet. Resour. Crop. Evol. 2014, 61, 663–667. [Google Scholar] [CrossRef]
  491. Yang, C.Y.; Wang, J.; Zhao, Y.; Shen, L.; Jiang, X.; Xie, Z.G.; Liang, N.; Zhang, L.; Chen, Z.H. Anti-diabetic effects of panax notoginseng saponins and its major anti-hyperglycemic components. J. Ethnopharmacol. 2010, 130, 231–236. [Google Scholar] [CrossRef]
  492. Mucalo, I.; Rahelić, D.; Jovanovski, E.; Božikov, V.; Romić, Z.; Vuksan, V. Effect of american ginseng (Panax quinquefolius L.) on glycemic control in type 2 diabetes. Coll. Antropol. 2012, 36, 1435–1440. [Google Scholar]
  493. Tokunaga, M.; Matsuda, H.; Iwahashi, H.; Naruto, S.; Tsuruoka, T.; Yagi, H.; Masuko, T.; Kubo, M. Studies on palauan medicinal herbs. Iv. Immunopotentiatory activities of ongael, leaves of phaleria cumingii (meisn.) f. Vill. In diabetic mice. J. Tradit. Med. 2006, 23, 24–26. [Google Scholar]
  494. Kavitha, N.; Ein Oon, C.; Chen, Y.; Kanwar, J.R.; Sasidharan, S. Phaleria macrocarpa (boerl.) fruit induce g0/g1 and g2/m cell cycle arrest and apoptosis through mitochondria-mediated pathway in mda-mb-231 human breast cancer cell. J. Ethnopharmacol. 2017, 201, 42–55. [Google Scholar] [CrossRef]
  495. Altaf, R.; Asmawi, M.Z.B.; Dewa, A.; Sadikun, A.; Umar, M.I. Phytochemistry and medicinal properties of Phaleria macrocarpa (scheff.) boerl. Extracts. Pharmacogn. Rev. 2013, 7, 73–80. [Google Scholar] [CrossRef]
  496. Nor Fariza, I.; Fadzureena, J.; Zunoliza, A.; Luqman Chuah, A.; Pin, K.Y.; Adawiah, I. Anti-inflammatory activity of the major compound from methanol extract of phaleria macrocarpa leaves. J. Appl. Sci. 2012, 12, 1195–1198. [Google Scholar] [CrossRef]
  497. Sabina, E.; Zaidul, I.S.M.; Ghafoor, K.; Jaffri, J.M.; Sahena, F.; Babiker, E.E.; Perumal, V.; Hamed, M.; Amid, M.; Khatib, A. Screening of various parts of phaleria macrocarpa plant for α-glucosidase inhibitory activity. J. Food Biochem. 2016, 40, 201–210. [Google Scholar] [CrossRef]
  498. Graz, B.; Kitalong, C.; Yano, V. Traditional local medicines in the republic of palau and non-communicable diseases (ncd), signs of effectiveness. J. Ethnopharmacol. 2015, 161, 233–237. [Google Scholar] [CrossRef] [PubMed]
  499. Sarin, B.; Verma, N.; Martín, J.P.; Mohanty, A. An overview of important ethnomedicinal herbs of phyllanthus species: Present status and future prospects. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
  500. Joseph, B.; Raj, S.J. An overview: Phannacognostic properties of Phyllanthus atnarus linn. Int. J. Pharmacol. 2011, 7, 40–45. [Google Scholar]
  501. Adedapo, A.A.; Ofuegbe, S.O. The evaluation of the hypoglycemic effect of soft drink leaf extract of Phyllanthus amarus (euphorbiaceae) in rats. J. Basic Clin. Physiol. Pharmacol. 2014, 25, 47–57. [Google Scholar] [CrossRef]
  502. Ali, H.; Houghton, P.J.; Soumyanath, A. A-amylase inhibitory activity of some malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. J. Ethnopharmacol. 2006, 107, 449–455. [Google Scholar] [CrossRef]
  503. Baliga, M.S.; Meera, S.; Mathai, B.; Rai, M.P.; Pawar, V.; Palatty, P.L. Scientific validation of the ethnomedicinal properties of the ayurvedic drug triphala: A review. Chin. J. Integr. Med. 2012, 18, 946–954. [Google Scholar] [CrossRef]
  504. Moshi, M.J.; Mbwambo, Z.H.; Nondo, R.S.O.; Masimba, P.J.; Kamuhabwa, A.; Kapingu, M.C.; Thomas, P.; Richard, M. Evaluation of ethnomedical claims and brine shrimp toxicity of some plants used in tanzania as traditional medicines. Afr. J. Tradit. Complement. Altern. Med. 2006, 3, 48–58. [Google Scholar]
  505. Ali, A.; Jameel, M.; Ali, M. New fatty acid and acyl glycoside from the aerial parts of Phyllanthus fraternus webster. J. Pharm. Bioallied Sci. 2016, 8, 43–46. [Google Scholar] [CrossRef]
  506. Muthulakshmi, S.; Bhavani, K.; Manju, R.; Mohamed Shahila, N.A. Hepatoprotective activity of Phyllanthus gardnerianus (wight) baill. Against d-galactosamine induced hepatotoxicity. Biomedicine 2014, 34, 36–44. [Google Scholar]
  507. Bharati, D.; Rawat, S.; Sharma, P.; Shrivastava, B. Comparative evaluation of antidiabetic antihypertensive activity of Cynodon dactylon L. and Phyllanthus niruri L in ratswith simultaneous type 2 diabetic and hypertension. Der Pharm. Lett. 2016, 8, 255–263. [Google Scholar]
  508. Fernández, G.A.I.; Rodríguez, I.E.R.; Camarillo, E.E.S.; Urdaneta, M.A.M. Hypoglycemic effect of Azadirachta indica A. Juss. And Phyllanthus niruri L. and their combined use in normal rats. Rev. Cuba. Plantas Med. 2011, 16, 183–189. [Google Scholar]
  509. Hashim, A.; Khan, M.S.; Khan, M.S.; Baig, M.H.; Ahmad, S. Antioxidant and α; ylase inhibitory property of Phyllanthus virgatus L.: An in vitro and molecular interaction study. BioMed Res. Int. 2013, 2013, 729393. [Google Scholar] [CrossRef] [PubMed]
  510. Ramasamy, S.; Abdul Wahab, N.; Zainal Abidin, N.; Manickam, S. Effect of extracts from Phyllanthus watsonii airy shaw on cell apoptosis in cultured human breast cancer mcf-7 cells. Exp. Toxicol. Pathol. 2013, 65, 341–349. [Google Scholar] [CrossRef] [PubMed]
  511. Sharma, N.; Bano, A.; Dhaliwal, H.S.; Sharma, V. A pharmacological comprehensive review on ‘rassbhary’ Physalis angulata (L.). Int. J. Pharmcy Pharm. Sci. 2015, 7, 34–38. [Google Scholar]
  512. Ranilla, L.G.; Kwon, Y.I.; Apostolidis, E.; Shetty, K. Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresour. Technol. 2010, 101, 4676–4689. [Google Scholar] [CrossRef] [PubMed]
  513. Kumar, N.; Misra, P.; Dube, A.; Bhattacharya, S.; Dikshit, M.; Ranade, S. Piper betle linn. A maligned pan-asiatic plant with an array of pharmacological activities and prospects for drug discovery. Curr. Sci. 2010, 99, 922–932. [Google Scholar]
  514. Arambewela, L.S.R.; Arawwawala, L.D.A.M.; Ratnasooriya, W.D. Antidiabetic activities of aqueous and ethanolic extracts of Piper betle leaves in rats. J. Ethnopharmacol. 2005, 102, 239–245. [Google Scholar] [CrossRef]
  515. Srividya, S.; Roshana Devi, V.; Subramanian, S. Hypoglycemic and hypolipidemic properties of hydroxychavicol, a major phenolic compound from the leaves of Piper betlelinn. Studied in high fat diet fed- low dose stz induced experimental type 2 diabetes in rats. Der Pharm. Lett. 2015, 7, 130–140. [Google Scholar]
  516. Safithri, M.E.G.A.; Fahma, F. Potency of Piper crocatum decoction as an antihiperglycemia in rat strain sprague dawley. Hayati J. Biosci. 2008, 15, 45–48. [Google Scholar] [CrossRef]
  517. Sh Ahmed, A.; Ahmed, Q.U.; Saxena, A.K.; Jamal, P. Evaluation of in vitro antidiabetic and antioxidant characterizations of Elettaria cardamomum (L.) maton (zingiberaceae), Piper cubeba L. F. (piperaceae), and Plumeria rubra L. (apocynaceae). Pak. J. Pharma. Sci. 2017, 30, 113–126. [Google Scholar]
  518. Srivastava, A.; Karthick, T.; Joshi, B.D.; Mishra, R.; Tandon, P.; Ayala, A.P.; Ellena, J. Spectroscopic (far or terahertz, mid-infrared and Raman) investigation, thermal analysis and biological activity of piplartine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 184, 368–381. [Google Scholar] [CrossRef] [PubMed]
  519. Manoharan, S.; Silvan, S.; Vasudevan, K.; Balakrishnan, S. Antihyperglycemic and antilipidperoxidative effects of Piper longum (linn.) dried fruits in alloxan induced diabetic rat. J. Biol. Sci. 2007, 7, 161–168. [Google Scholar]
  520. Ashish, B.; Swapnil, G. Hypoglycemic effect of polyherbal formulation in alloxan induced diabetic rats. Pharmacologyonline 2011, 3, 764–773. [Google Scholar]
  521. Zar, C.T.; Teoh, S.L.; Das, S.; Zaiton, Z.; Farihah, H.S. Use Piper sarmentosum as an effective antidiabetic supplement in South East Asia: A review. Clin. Ter. 2012, 163, 505–510. [Google Scholar]
  522. Fairus, A.; Ima Nirwana, S.; Elvy Suhana, M.R.; Tan, M.H.; Santhana, R.; Farihah, H.S. Piper sarmentosum is comparable to glycyrrhizic acid in reducing visceral fat deposition in adrenalectomised rats given dexamethasone. Clin. Ter. 2013, 164, 5–10. [Google Scholar]
  523. Uddin, G.; Rauf, A.; Al-Othman, A.M.; Collina, S.; Arfan, M.; Ali, G.; Khan, I. Pistagremic acid, a glucosidase inhibitor from Pistacia integerrima. Fitoterapia 2012, 83, 1648–1652. [Google Scholar] [CrossRef]
  524. Wang, D.; Qi, M.; Yang, Q.; Tong, R.; Wang, R.; Bligh, S.W.A.; Yang, L.; Wang, Z. Comprehensive metabolite profiling of plantaginis semen using ultra high performance liquid chromatography with electrospray ionization quadrupole time-of-flight tandem mass spectrometry coupled with elevated energy technique. J. Sep. Sci. 2016, 39, 1842–1852. [Google Scholar] [CrossRef]
  525. Dalar, A.; Konczak, I. Phenolic contents, antioxidant capacities and inhibitory activities against key metabolic syndrome relevant enzymes of herbal teas from Eastern Anatolia. Ind. Crop. Prod. 2013, 44, 383–390. [Google Scholar] [CrossRef]
  526. Zoua, K.; Batomayena, B.; Kossi, M.; Lawson-Evi, P.; Kwashie, E.G.; Kodjo, A.; Messanvi, G. Effects of Plumeria alba roots hydro alcoholic extract on some parameters of type 2 diabetes. Res. J. Med. Plant 2014, 8, 140–148. [Google Scholar]
  527. Muruganantham, N.; Solomon, S.; Senthamilselvi, M.M. Anti-oxidant and anti-inflammatory activity of Plumeria rubra (flowers). Int. J. Pharm. Sci. Rev. Res. 2015, 30, 132–135. [Google Scholar]
  528. Narasimhulu, G.; Reddy, K.K.; Mohamed, J. The genus polygonum (polygonaceae): An ethnopharmacological and phytochemical perspectives—Review. Int. J. Pharmcy Pharm. Sci. 2014, 6, 21–45. [Google Scholar]
  529. Zhao, Y.; Chen, M.X.; Kongstad, K.T.; Jäger, A.K.; Staerk, D. Potential of Polygonum cuspidatum root as an antidiabetic food: Dual high-resolution α-glucosidase and ptp1b inhibition profiling combined with HPLC-HRMS and NMR for identification of antidiabetic constituents. J. Agric. Food Chem. 2017, 65, 4421–4427. [Google Scholar] [CrossRef] [PubMed]
  530. Deng, H.; Wu, C.Q.; Jiang, T.; Wang, Q.J. Progress in microbiome and its application to pharmacological and toxicological research of traditional chinese materia medica. Chin. J. Pharmacol. Toxicol. 2016, 30, 975–982. [Google Scholar]
  531. Rodrigues, M.J.; Custódio, L.; Lopes, A.; Oliveira, M.; Neng, N.R.; Nogueira, J.M.F.; Martins, A.; Rauter, A.P.; Varela, J.; Barreira, L. Unlocking the in vitro anti-inflammatory and antidiabetic potential of Polygonum maritimum. Pharm. Biol. 2017, 55, 1348–1357. [Google Scholar] [CrossRef]
  532. Tang, W.; Li, S.; Liu, Y.; Huang, M.T.; Ho, C.T. Anti-inflammatory effects of trans-2,3,5,4′-tetrahydroxystilbene 2-O-β-glucopyranoside (THSG) from Polygonum multiflorum (PM) and hypoglycemic effect of cis-THSG enriched pm extract. J. Funct. Foods 2017, 34, 1–6. [Google Scholar] [CrossRef]
  533. Bothon, F.T.D.; Debiton, E.; Avlessi, F.; Forestier, C.; Teulade, J.C.; Sohounhloue, D.K.C. In vitro biological effects of two anti-diabetic medicinal plants used in Benin as folk medicine. BMC Complement. Altern. Med. 2013, 13, 51. [Google Scholar] [CrossRef]
  534. Im, I.; Park, K.R.; Kim, S.M.; Kim, C.; Park, J.H.; Nam, D.; Jang, H.J.; Shim, B.S.; Ahn, K.S.; Mosaddik, A.; et al. The butanol fraction of guava (Psidium cattleianum sabine) leaf extract suppresses MMP-2 and MMP-9 expression and activity through the suppression of the ERK1/2 mapk signaling pathway. Nutr. Cancer 2012, 64, 255–266. [Google Scholar] [CrossRef]
  535. Deguchi, Y.; Miyazaki, K. Anti-hyperglycemic and anti-hyperlipidemic effects of guava leaf extract. Nutr. Metab. 2010, 7, 9. [Google Scholar] [CrossRef]
  536. Cheng, J.T.; Yang, R.S. Hypoglycemic effect of guava juice in mice and human subjects. Am. J. Chin. Med. 1983, 11, 74–76. [Google Scholar] [CrossRef]
  537. Owen, P.L.; Martineau, L.C.; Caves, D.; Haddad, P.S.; Matainaho, T.; Johns, T. Consumption of guava (Psidium guajava L) and noni (Morinda citrifolia L) may protect betel quid-chewing papua new guineans against diabetes. Asia Pac. J. Clin. Nutr. 2008, 17, 635–643. [Google Scholar] [PubMed]
  538. Bulle, S.; Reddyvari, H.; Nallanchakravarthula, V.; Vaddi, D.R. Therapeutic potential of Pterocarpus santalinus L.: An update. Pharmacogn. Rev. 2016, 10, 43–49. [Google Scholar] [PubMed]
  539. Modak, M.; Dixit, P.; Londhe, J.; Ghaskadbi, S.; Devasagayam, T.P.A. Indian herbs and herbal drugs used for the treatment of diabetes. J. Clin. Biochem. Nutr. 2007, 40, 163–173. [Google Scholar] [CrossRef] [PubMed]
  540. Tchamadeu, M.C.; Dzeufiet, P.D.D.; Nana, P.; Kouambou Nouga, C.C.; Ngueguim Tsofack, F.; Allard, J.; Blaes, N.; Siagat, R.; Zapfack, L.; Girolami, J.P.; et al. Acute and sub-chronic oral toxicity studies of an aqueous stem bark extract of Pterocarpus soyauxii taub (papilionaceae) in rodents. J. Ethnopharmacol. 2011, 133, 329–335. [Google Scholar] [CrossRef]
  541. Hephzibah Christabel, P.; Gopalakrishnan, V.K. Enzyme inhibitors from Prunus persica (L.) batsch: An alternate approach to treat diabetes. Intl. J. Pharma Bio Sci. 2013, 4, B1021–B1029. [Google Scholar]
  542. Pinto, M.D.S.; Ranilla, L.G.; Apostolidis, E.; Lajolo, F.M.; Genovese, M.I.; Shetty, K. Evaluation of antihyperglycemia and antihypertension potential of native peruvian fruits using in vitro models. J. Med. Food 2009, 12, 278–291. [Google Scholar] [CrossRef]
  543. Tu, X.; Xie, C.; Wang, F.; Chen, Q.; Zuo, Z.; Zhang, Q.; Wang, X.; Zhong, S.; Jordan, J.B. Fructus mume formula in the treatment of type 2 diabetes mellitus: A randomized controlled pilot trial. Evid.-Based Complement. Altern. Med. 2013, 2013, 787459. [Google Scholar] [CrossRef]
  544. Li, H.; Zhao, L.; Zhang, B.; Jiang, Y.; Wang, X.; Guo, Y.; Liu, H.; Li, S.; Tong, X. A network pharmacology approach to determine active compounds and action mechanisms of ge-gen-qin-lian decoction for treatment of type 2 diabetes. Evid.-Based Complement. Altern. Med. 2014, 2014, 495840. [Google Scholar] [CrossRef]
  545. Seong, S.H.; Roy, A.; Jung, H.A.; Jung, H.J.; Choi, J.S. Protein tyrosine phosphatase 1b and α-glucosidase inhibitory activities of Pueraria lobata root and its constituents. J. Ethnopharmacol. 2016, 194, 706–716. [Google Scholar] [CrossRef]
  546. Sook Kim, Y.; Soo Lee, I.; Sook Kim, J. Protective effects of Puerariae radix extract and its single compounds on methylglyoxal-induced apoptosis in human retinal pigment epithelial cells. J. Ethnopharmacol. 2014, 152, 594–598. [Google Scholar] [CrossRef]
  547. Song, W.; Li, Y.; Qiao, X.; Qian, Y.; Ye, M. Chemistry of the chinese herbal medicine Puerariae radix (ge-gen): A review. J. Chin. Pharm. Sci. 2014, 23, 347–360. [Google Scholar] [CrossRef]
  548. Wong, K.H.; Razmovski-Naumovski, V.; Li, K.M.; Li, G.Q.; Chan, K. Differentiating puerariae lobatae radix and Puerariae thomsonii radix using HPTLC coupled with multivariate classification analyses. J. Pharm. Biomed. Anal. 2014, 95, 11–19. [Google Scholar] [CrossRef] [PubMed]
  549. Choi, J.; Shin, M.H.; Park, K.Y.; Lee, K.T.; Jung, H.J.; Lee, M.S.; Park, H.J. Effect of kaikasaponin III obtained from Pueraria thunbergiana flowers on serum and hepatic lipid peroxides and tissue factor activity in the streptozotocin-induced diabetic rat. J. Med. Food 2004, 7, 31–37. [Google Scholar] [CrossRef]
  550. Arvindekar, A.; More, T.; Payghan, P.V.; Laddha, K.; Ghoshal, N.; Arvindekar, A. Evaluation of anti-diabetic and alpha glucosidase inhibitory action of anthraquinones from Rheum emodi. Food. Funct. 2015, 6, 2693–2700. [Google Scholar] [CrossRef]
  551. Ban, E.; Park, M.; Jeong, S.; Kwon, T.; Kim, E.H.; Jung, K.; Kim, A. Poloxamer-based thermoreversible gel for topical delivery of emodin: Influence of P407 and P188 on solubility of emodin and its application in cellular activity screening. Molecules 2017, 22, 246. [Google Scholar] [CrossRef]
  552. Gao, J.; Shi, Z.; Zhu, S.; Li, G.Q.; Yan, R.; Yao, M. Influences of processed rhubarbs on the activities of four CYP isozymes and the metabolism of saxagliptin in rats based on probe cocktail and pharmacokinetics approaches. J. Ethnopharmacol. 2013, 145, 566–572. [Google Scholar] [CrossRef]
  553. Kasabri, V.; Abu-Dahab, R.; Afifi, F.U.; Naffa, R.; Majdalawi, L.; Shawash, H. In vitro modulation of pancreatic MIN6 insulin secretion and proliferation and extrapancreatic glucose absorption by Paronychia argentea, Rheum ribes and Teucrium polium extracts. Jordan J. Pharm. 2012, 5, 203–219. [Google Scholar]
  554. Naqishbandi, A.M.; Josefsen, K.; Pedersen, M.E.; Jger, A.K. Hypoglycemic activity of iraqi Rheum ribes root extract. Pharm. Biol. 2009, 47, 380–383. [Google Scholar] [CrossRef]
  555. Shiezadeh, F.; Mousavi, S.H.; Sadegh Amiri, M.; Iranshahi, M.; Tayarani-Najaran, Z.; Karimi, G. Cytotoxic and apoptotic potential of Rheum turkestanicum janisch root extract on human cancer and normal cells. Iran. J. Pharm. Res. 2013, 12, 811–819. [Google Scholar]
  556. Yoon, S.H.; Hong, M.S.; Chung, J.H.; Chung, S.H. Anti-apoptotic effect of Rheum undulatum water extract in pancreatic β-cell line, HIT-T15. Korean J. Physiol. Pharmacol. 2004, 8, 51–55. [Google Scholar]
  557. Popescu, R.; Kopp, B. The genus Rhododendron: An ethnopharmacological and toxicological review. J. Ethnopharmacol. 2013, 147, 42–62. [Google Scholar] [CrossRef] [PubMed]
  558. Tuan, N.Q.; Oh, J.; Park, H.B.; Ferreira, D.; Choe, S.; Lee, J.; Na, M. A grayanotox-9(11)-ene derivative from Rhododendron brachycarpum and its structural assignment via a protocol combining nmr and DP4 plus application. Phytochemistry 2017, 133, 45–50. [Google Scholar] [CrossRef] [PubMed]
  559. Tam, T.W.; Liu, R.; Arnason, J.T.; Krantis, A.; Staines, W.A.; Haddad, P.S.; Foster, B.C. Actions of ethnobotanically selected cree anti-diabetic plants on human cytochrome P450 isoforms and flavin-containing monooxygenase 3. J. Ethnopharmacol. 2009, 126, 119–126. [Google Scholar] [CrossRef] [PubMed]
  560. Tam, T.W.; Liu, R.; Arnason, J.T.; Krantis, A.; Staines, W.A.; Haddad, P.S.; Foster, B.C. Cree antidiabetic plant extracts display mechanism-based inactivation of CYP3A4. Can. J. Physiol. Pharmacol. 2011, 89, 13–23. [Google Scholar] [CrossRef]
  561. Mohammadi, S.; Kouhsari Montasser, S.; Feshani Monavar, A. Antidiabetic properties of the ethanolic extract of Rhus coriaria fruits in rats. DARU J. Pharm. Sci. 2010, 18, 270–275. [Google Scholar]
  562. Djakpo, O.; Yao, W. Rhus chinensis and galla chinensis—Folklore to modern evidence: Review. Phytother. Res. 2010, 24, 1739–1747. [Google Scholar] [CrossRef]
  563. Gade, D.R.; Sree Kumar Reddy, G.; Akki, S.N.R.; Vamsi Rajasekhar Reddy, P. Hepatoprotective activity of Rhus mysorensis against carbon tetrachloride induced hepatotoxicity in albino rats. Int. J. Pharm. Sci. Rev. Res. 2010, 4, 46–48. [Google Scholar]
  564. Kim, M.Y.; Chung, L.M.; Choi, D.C.; Park, H.J. Quantitative analysis of fustin and sulfuretin in the inner and outer heartwoods and stem bark of rhus verniciflua. Nat. Prod. Sci. 2009, 15, 208–212. [Google Scholar]
  565. Hashem Dabaghian, F.; Abdollahifard, M.; Khalighi Sigarudi, F.; Taghavi Shirazi, M.; Shojaee, A.; Sabet, Z.; Fallah Huseini, H. Effects of Rosa canina L. Fruit on glycemia and lipid profile in type 2 diabetic patients: A randomized, double-blind, placebo-controlled clinical trial. J. Med. Plants 2015, 14, 95–104. [Google Scholar]
  566. Orhan, N.; Aslan, M.; Hoşbaş, S.; Deliorman Orhan, D. Antidiabetic effect and antioxidant potential of Rosa canina fruits. Pharmacogn. Mag. 2009, 5, 309–315. [Google Scholar] [CrossRef]
  567. Nam, M.H.; Lee, H.S.; Hong, C.O.; Koo, Y.C.; Seomun, Y.; Lee, K.W. Preventive effects of Rosa rugosa root extract on advanced glycation end product-induced endothelial dysfunction. Korean J. Food Sci. Technol. 2010, 42, 210–216. [Google Scholar]
  568. Liu, L.; Tang, D.; Zhao, H.; Xin, X.; Aisa, H.A. Hypoglycemic effect of the polyphenols rich extract from Rose rugosa thunb on high fat diet and STZ induced diabetic rats. J. Ethnopharmacol. 2017, 200, 174–181. [Google Scholar] [CrossRef] [PubMed]
  569. Oda, Y.; Ueda, F.; Kamei, A.; Kakinuma, C.; Abe, K. Biochemical investigation and gene expression analysis of the immunostimulatory functions of an edible salacia extract in rat small intestine. BioFactors 2011, 37, 31–39. [Google Scholar] [CrossRef] [PubMed]
  570. Singh, A.; Duggal, S. Salacia spp: Hypoglycemic principles and possible role in diabetes management. Integr. Med. 2010, 9, 40–43. [Google Scholar]
  571. Anitha, S.; Martha Leema Rose, A. Comparative evaluation of antihyperglycaemic effect of various parts of Salacia chinensis L. J. Med. Sci. 2013, 13, 493–496. [Google Scholar]
  572. Nakamura, S.; Matsuda, H.; Yoshikawa, M. Search for antidiabetic constituents of medicinal food. Yakugaku Zasshi 2011, 131, 909–915. [Google Scholar] [CrossRef]
  573. Tanabe, G.; Sakano, M.; Minematsu, T.; Matusda, H.; Yoshikawa, M.; Muraoka, O. Synthesis and elucidation of absolute stereochemistry of salaprinol, another thiosugar sulfonium sulfate from the ayurvedic traditional medicine Salacia prinoides. Tetrahedron 2008, 64, 10080–10086. [Google Scholar] [CrossRef]
  574. Im, R.; Mano, H.; Matsuura, T.; Nakatani, S.; Shimizu, J.; Wada, M. Mechanisms of blood glucose-lowering effect of aqueous extract from stems of kothala himbutu (Salacia reticulata) in the mouse. J. Ethnopharmacol. 2009, 121, 234–240. [Google Scholar] [CrossRef]
  575. Yoshikawa, M.; Murakami, T.; Yashiro, K.; Matsuda, H. Kotalanol, a potent α-glucosidase inhibitor with thiosugar sulfonium sulfate structure, from antidiabetic ayurvedic medicine Salacia reticulata. Chem. Pharm. Bull. 1998, 46, 1339–1340. [Google Scholar] [CrossRef]
  576. Mohd Ali, N.; Yeap, S.K.; Ho, W.Y.; Beh, B.K.; Tan, S.W.; Tan, S.G. The promising future of chia, Salvia hispanica L. J. Biomed. Biotechnol. 2012, 2012, 171956. [Google Scholar] [CrossRef]
  577. Javdan, N.; Estakhr, J. Evaluation of the effects of Salvia hypoleuca on the expression of cytokines: IL-6, IL-10 and TNF-α in high fat diet-fed mice towards a cure for diabetes mellitus. Pharmacologyonline 2011, 2, 842–852. [Google Scholar]
  578. Bassil, M.; Daher, C.F.; Mroueh, M.; Zeeni, N. Salvia libanotica improves glycemia and serum lipid profile in rats fed a high fat diet. BMC Complement. Altern. Med. 2015, 15, 384. [Google Scholar] [CrossRef] [PubMed]
  579. Wang, L.; Ma, R.; Liu, C.; Liu, H.; Zhu, R.; Guo, S.; Tang, M.; Li, Y.; Niu, J.; Fu, M.; et al. Salvia miltiorrhiza: A potential red light to the development of cardiovascular diseases. Curr. Pharm. Des. 2017, 23, 1077–1097. [Google Scholar] [CrossRef] [PubMed]
  580. Arya, A.; Abdullah, M.A.; Haerian, B.S.; Mohd, M.A. Screening for hypoglycemic activity on the leaf extracts of nine medicinal plants: In-vivo evaluation. E-J. Chem. 2012, 9, 1196–1205. [Google Scholar] [CrossRef]
  581. Pawar, R.S.; Kumar, S.; Toppo, F.A.; Pk, L.; Suryavanshi, P. Sida cordifolia linn. Accelerates wound healing process in type 2 diabetic rats. J. Acute Med. 2016, 6, 82–89. [Google Scholar] [CrossRef]
  582. Narendhirakannan, R.T.; Limmy, T.P. Anti-inflammatory and anti-oxidant properties of Sida rhombifolia stems and roots in adjuvant induced arthritic rats. Immunopharmacol. Immunotoxicol. 2012, 34, 326–336. [Google Scholar] [CrossRef]
  583. Kang, Y.H.; Lee, Y.S.; Kim, K.K.; Kim, D.J.; Kim, T.W.; Choe, M. Study on antioxidative, antidiabetic and antiobesity activity of solvent fractions of Smilax china L. Leaf extract. J. Nutr. Health 2013, 46, 401–409. [Google Scholar] [CrossRef]
  584. Sang, H.Q.; Gu, J.F.; Yuan, J.R.; Zhang, M.H.; Jia, X.B.; Feng, L. The protective effect of Smilax glabra extract on advanced glycation end products-induced endothelial dysfunction in HUVECs via RAGE-ERK1/2-NF-κB pathway. J. Ethnopharmacol. 2014, 155, 785–795. [Google Scholar] [CrossRef]
  585. Aftab, T.B.; Bengir Al, L.; Akter, M.; Kalpana, M.A.; Anwarul Bashar, A.B.M.; Rahmatullah, M. Evaluation of antihyperglycemic activity of Smilax perfoliata lour. (smilacaceae) leaves in swiss albino mice. Adv. Nat. Appl. Sci. 2012, 6, 711–714. [Google Scholar]
  586. Tavares, D.C.; Munari, C.C.; De Freitas Araújo, M.G.; Beltrame, M.C.; Furtado, M.A.; Gonçalves, C.C.; Jorge Tiossi, R.F.; Bastos, J.K.; Cunha, W.R.; Sola Veneziani, R.C. Antimutagenic potential of Solanum lycocarpum against induction of chromosomal aberrations in V79 cells and micronuclei in mice by doxorubicin. Planta Med. 2011, 77, 1489–1494. [Google Scholar] [CrossRef]
  587. Ahmad, A.R.; Sakinah, W.; Asrifa, W.O. Study of antioxidant activity and determination of phenol and flavonoid content of pepino’s leaf extract (Solanum muricatum aiton). Int. J. Pharm. Res. 2014, 6, 600–606. [Google Scholar]
  588. Sohrabipour, S.; Kharazmi, F.; Soltani, N.; Kamalinejad, M. Biphasic effect of Solanum nigrum fruit aqueous extract on vascular mesenteric beds in non-diabetic and streptozotocin-induced diabetic rats. Pharmacogn. Res. 2014, 6, 148–152. [Google Scholar]
  589. Sathya Meonah, S.T.; Palaniswamy, M.; Immanuel Moses Keerthy, S.T.; Pradeep Rajkumar, L.A.; Usha Nandhini, R. Pharmacognostical and hypoglycemic activity of different parts of Solanum nigrum linn plant. Int. J. Pharmcy Pharm. Sci. 2012, 4, 221–224. [Google Scholar]
  590. Gandhi, G.R.; Ignacimuthu, S.; Paulraj, M.G.; Sasikumar, P. Antihyperglycemic activity and antidiabetic effect of methyl caffeate isolated from Solanum torvum swartz. Fruit in streptozotocin induced diabetic rats. Eur. J. Pharmacol. 2011, 670, 623–631. [Google Scholar] [CrossRef] [PubMed]
  591. Perla, V.; Jayanty, S.S. Biguanide related compounds in traditional antidiabetic functional foods. Food Chem. 2013, 138, 1574–1580. [Google Scholar] [CrossRef]
  592. Aziz, M.A.; Khan, A.H.; Adnan, M.; Izatullah, I. Traditional uses of medicinal plants reported by the indigenous communities and local herbal practitioners of bajaur Agency, Federally Administrated Tribal Areas, Pakistan. J. Ethnopharmacol. 2017, 198, 268–281. [Google Scholar] [CrossRef]
  593. Kar, D.M.; Maharana, L.; Pattnaik, S.; Dash, G.K. Studies on hypoglycaemic activity of Solanum xanthocarpum schrad. & wendl. Fruit extract in rats. J. Ethnopharmacol. 2006, 108, 251–256. [Google Scholar]
  594. Fred-Jaiyesimi, A.; Kio, A.; Richard, W. A-amylase inhibitory effect of 3β-olean-12-en-3-yl (9z)-hexadec-9-enoate isolated from Spondias mombin leaf. Food Chem. 2009, 116, 285–288. [Google Scholar] [CrossRef]
  595. Sujarwo, W.; Saraswaty, V.; Keim, A.P.; Caneva, G.; Tofani, D. Ethnobotanical uses of ‘cemcem’ (Spondias pinnata (L. F.) kurz; anacardiaceae) leaves in bali (Indonesia) and its antioxidant activity. Pharmacologyonline 2017, 1, 113–123. [Google Scholar]
  596. Attanayake, A.P.; Jayatilaka, K.A.P.W.; Pathirana, C.; Mudduwa, L.K.B. Antihyperglycaemic, antihyperlipidaemic and β cell regenerative effects of Spondias pinnata (linn. F.) kurz. Bark extract on streptozotocin induced diabetic rats. Eur. J. Integr. Med. 2014, 6, 588–596. [Google Scholar] [CrossRef]
  597. Rani, M.P.; Raghu, K.G.; Nair, M.S.; Padmakumari, K.P. Isolation and identification of α-glucosidase and protein glycation inhibitors from Stereospermum colais. Appl. Biochem. Biotechnol. 2014, 173, 946–956. [Google Scholar] [CrossRef] [PubMed]
  598. Nag, M.; Mukherjee, P.K.; Chanda, J.; Biswas, R.; Harwansh, R.K.; Al-Dhabi, N.A.; Duraipandiyan, V. Plant developed analytical profile of Stereospermum suaveolens in Indian traditional knowledge. Indian J. Trad. Knowl. 2015, 14, 590–594. [Google Scholar]
  599. Kumar, V.; Van Staden, J. A review of Swertia chirayita (Gentianaceae) as a traditional medicinal plant. Front. Pharmacol. 2016, 6, 308. [Google Scholar] [CrossRef] [PubMed]
  600. Roy, P.; Abdulsalam, F.I.; Pandey, D.K.; Bhattacharjee, A.; Eruvaram, N.R.; Malik, T. Evaluation of antioxidant, antibacterial, and antidiabetic potential of two traditional medicinal plants of India: Swertia cordata and Swertia chirayita. Pharmacogn. Res. 2015, 7, S57–S62. [Google Scholar]
  601. Saeidnia, S.; Ara, L.; Hajimehdipoor, H.; Read, R.W.; Arshadi, S.; Nikan, M. Chemical constituents of Swertia longifolia boiss. With α-amylase inhibitory activity. Res. Pharm. Sci. 2016, 11, 23–32. [Google Scholar]
  602. Wang, Y.L.; Xiao, Z.Q.; Liu, S.; Wan, L.S.; Yue, Y.D.; Zhang, Y.T.; Liu, Z.X.; Chen, J.C. Antidiabetic effects of Swertia macrosperma extracts in diabetic rats. J. Ethnopharmacol. 2013, 150, 536–544. [Google Scholar] [CrossRef]
  603. Luo, C.T.; Zheng, H.H.; Mao, S.S.; Yang, M.X.; Luo, C.; Chen, H. Xanthones from Swertia mussotii and their α-glycosidase inhibitory activities. Planta Med. 2014, 80, 201–208. [Google Scholar] [CrossRef]
  604. Kasetti, R.B.; Nabi, S.A.; Swapna, S.; Apparao, C. Cinnamic acid as one of the antidiabetic active principle(s) from the seeds of Syzygium alternifolium. Food Chem. Toxicol. 2012, 50, 1425–1431. [Google Scholar] [CrossRef]
  605. Adefegha, S.A.; Oboh, G.; Adefegha, O.M.; Boligon, A.A.; Athayde, M.L. Antihyperglycemic, hypolipidemic, hepatoprotective and antioxidative effects of dietary clove (Szyzgium aromaticum) bud powder in a high-fat diet/streptozotocin-induced diabetes rat model. J. Sci. Food Agric. 2014, 94, 2726–2737. [Google Scholar] [CrossRef]
  606. Bansode, T.S.; Salalkar, B.K. Phytochemical analysis of some selected indian medicinal plants. Intl. J. Pharma Bio Sci. 2015, 6, P550–P556. [Google Scholar]
  607. Teixeira, C.C.; Pinto, L.P.; Kessler, F.H.P.; Knijnik, L.; Pinto, C.P.; Gastaldo, G.J.; Fuchs, F.D. The effect of Syzygium cumini (L.) skeels on post-prandial blood glucose levels in non-diabetic rats and rats with streptozotocin-induced diabetes mellitus. J. Ethnopharmacol. 1997, 56, 209–213. [Google Scholar] [CrossRef]
  608. Sharma, S.; Pathak, S.; Gupta, G.; Sharma, S.K.; Singh, L.; Sharma, R.K.; Mishra, A.; Dua, K. Pharmacological evaluation of aqueous extract of Syzigium cumini for its antihyperglycemic and antidyslipidemic properties in diabetic rats fed a high cholesterol diet—Role of pparγ and pparα. Biomed. Pharmacother. 2017, 89, 447–453. [Google Scholar] [CrossRef] [PubMed]
  609. Muthusamy, K.; Krishnasamy, G. A computational study on role of 6-(hydroxymethyl)-3-[3,4,5-trihydroxy-6-[(3,4,5-trihydroxyoxan-2-yl)oxymethyl]oxan-2-yl]oxyoxane-2,4,5-triol in the regulation of blood glucose level. J. Biomol. Struct. Dyn. 2016, 34, 2599–2618. [Google Scholar] [CrossRef] [PubMed]
  610. Baliga, M.S.; Fernandes, S.; Thilakchand, K.R.; D’Souza, P.; Rao, S. Scientific validation of the antidiabetic effects of Syzygium jambolanum DC (black plum), a traditional medicinal plant of India. J. Altern. Complement. Med. 2013, 19, 191–197. [Google Scholar] [CrossRef] [PubMed]
  611. Zucchi, O.L.A.D.; Moreira, S.; De Jesus, E.F.O.; Salvio Neto, H.; Salvador, M.J. Characterization of hypoglycemiant plants by total reflection X-ray fluorescence spectrometry. Biol. Trace Elem. Res. 2005, 103, 277–290. [Google Scholar] [CrossRef]
  612. Gavillán-Suárez, J.; Aguilar-Perez, A.; Rivera-Ortiz, N.; Rodríguez-Tirado, K.; Figueroa-Cuilan, W.; Morales-Santiago, L.; Maldonado-Martínez, G.; Cubano, L.A.; Martínez-Montemayor, M.M. Chemical profile and in vivo hypoglycemic effects of Syzygium jambos, Costus speciosus and Tapeinochilos ananassae plant extracts used as diabetes adjuvants in puerto rico. BMC Complement. Altern. Med. 2015, 15, 244. [Google Scholar] [CrossRef]
  613. Zulkefli, H.N.; Mohamad, J.; Abidin, N.Z. Antioxidant activity of methanol extract of Tinospora crispa and Tabernaemontana corymbosa. Sains Malays. 2013, 42, 697–706. [Google Scholar]
  614. Sathishkumar, T.; Baskar, R. Renoprotective effect of Tabernaemontana heyneana Wall. Leaves against paracetamol-induced renotoxicity in rats and detection of polyphenols by high-performance liquid chromatography-diode array detector-mass spectrometry analysis. J. Acute Med. 2014, 4, 57–67. [Google Scholar] [CrossRef]
  615. Jin, J.; Cai, D.; Bi, H.; Zhong, G.; Zeng, H.; Gu, L.; Huang, Z.; Huang, M. Comparative pharmacokinetics of paclitaxel after oral administration of Taxus yunnanensis extract and pure paclitaxel to rats. Fitoterapia 2013, 90, 1–9. [Google Scholar] [CrossRef]
  616. Nguyen, Q.V.; Nguyen, V.B.; Eun, J.B.; Wang, S.L.; Nguyen, D.H.; Tran, T.N.; Nguyen, A.D. Anti-oxidant and antidiabetic effect of some medicinal plants belong to Terminalia species collected in Dak Lak Province, Vietnam. Res Chem Intermed 2016, 42, 5859–5871. [Google Scholar] [CrossRef]
  617. Raghavan, B.; Kumari, S.K. Effect of Terminalia arjuna stem bark on antioxidant status in liver and kidney of alloxan diabetic rats. Indian J. Physiol. Pharmacol. 2006, 50, 133–142. [Google Scholar] [PubMed]
  618. Biswas, M.; Kar, B.; Bhattacharya, S.; Kumar, R.B.S.; Ghosh, A.K.; Haldar, P.K. Antihyperglycemic activity and antioxidant role of Terminalia arjuna leaf in streptozotocin-induced diabetic rats. Pharm. Biol. 2011, 49, 335–340. [Google Scholar] [CrossRef] [PubMed]
  619. Tanaka, M.; Kishimoto, Y.; Saita, E.; Suzuki-Sugihara, N.; Kamiya, T.; Taguchi, C.; Iida, K.; Kondo, K. Terminalia bellirica extract inhibits low-density lipoprotein oxidation and macrophage inflammatory response in vitro. Antioxidants 2016, 5, 20. [Google Scholar] [CrossRef] [PubMed]
  620. Biswajit, D.; Suvakanta, D.; Chandra, C.R. Pharmaceutical properties of terminalia bellerica (bahera)—An overview. Res. J. Pharm. Technol. 2014, 7, 592–597. [Google Scholar]
  621. Venkatalakshmi, P.; Brindha, P.; Saralla, R.P. Analytical and chemical standardisation studies on Terminalia catappa bark. Int. J. Pharmcy Pharm. Sci. 2014, 6, 4–8. [Google Scholar]
  622. Rao, N.K.; Nammi, S. Antidiabetic and renoprotective effects of the chloroform extract of Terminalia chebula Retz. Seeds in streptozotocin-induced diabetic rats. BMC Complement. Altern. Med. 2006, 6, 17. [Google Scholar] [CrossRef]
  623. Kadir, M.F.; Bin Sayeed, M.S.; Mia, M.M.K. Ethnopharmacological survey of medicinal plants used by indigenous and tribal people in Rangamati, Bangladesh. J. Ethnopharmacol. 2012, 144, 627–637. [Google Scholar] [CrossRef]
  624. Njomen, G.B.S.N.; Kamgang, R.; Soua, P.R.N.; Oyono, J.L.E.; Njikam, N. Protective effect of methanol-methylene chloride extract of Terminalia glaucescens leaves on streptozotocin-induced diabetes in mice. Trop. J. Pharm. Res. 2009, 8, 19–26. [Google Scholar] [CrossRef]
  625. Pham, A.T.; Malterud, K.E.; Paulsen, B.S.; Diallo, D.; Wangensteen, H. A-glucosidase inhibition, 15-lipoxygenase inhibition, and brine shrimp toxicity of extracts and isolated compounds from Terminalia macroptera leaves. Pharm. Biol. 2014, 52, 1166–1169. [Google Scholar] [CrossRef]
  626. Nkobole, N.; Houghton, P.J.; Hussein, A.; Lall, N. Antidiabetic activity of Terminalia sericea constituents. Nat. Prod. Comm. 2011, 6, 1585–1588. [Google Scholar] [CrossRef]
  627. Padmashree; Prabhu, P.P.; Pandey, S. Anti diabetic activity of methanol/methylene chloride extract of Terminalia superba leaves on streptozotocin induced diabetes in rats. Int. J. Pharm. Res. 2010, 2, 2415–2419. [Google Scholar]
  628. Shahat, A.A.; Alsaid, M.S.; Kotob, S.E.; Husseiny, H.A.; Al-Ghamdi, A.A.M.; Ahmed, H.H. Biochemical and histological evidences for the antitumor potential of Teucrium oliverianum and Rhazya stricta in chemically-induced hepatocellular carcinoma. Afr. J. Trad. Complement. Altern. Med. 2016, 13, 62–70. [Google Scholar] [CrossRef]
  629. Bahramikia, S.; Yazdanparast, R. Phytochemistry and medicinal properties of Teucrium polium L. (lamiaceae). Phytother. Res. 2012, 26, 1581–1593. [Google Scholar] [CrossRef] [PubMed]
  630. Afifi, F.U.; Al-Khalidi, B.; Khalil, E. Studies on the in vivo hypoglycemic activities of two medicinal plants used in the treatment of diabetes in Jordanian traditional medicine following intranasal administration. J. Ethnopharmacol. 2005, 100, 314–318. [Google Scholar] [CrossRef] [PubMed]
  631. Esmaeili-Mahani, S.; Falahi, F.; Yaghoobi, M.M. Proapoptotic and antiproliferative effects of Thymus caramanicus on human breast cancer cell line (MCF-7) and its interaction with anticancer drug vincristine. Evid.-Based Complement. Altern. Med. 2014, 2014, 893247. [Google Scholar] [CrossRef]
  632. El Kabbaoui, M.; Chda, A.; Mejrhit, N.; Azdad, O.; Farah, A.; Aarab, L.; Bencheikh, R.; Tazi, A. Antidiabetic effect of Thymus satureioides aqueous extract in streptozotocin-induced diabetic rats. Int. J. Pharmcy Pharm. Sci. 2016, 8, 140–145. [Google Scholar] [CrossRef]
  633. Sharma, R.; Amin, H.; Galib; Prajapati, P.K. Antidiabetic claims of Tinospora cordifolia (Willd.) miers: Critical appraisal and role in therapy. Asian Pac. J. Trop. Biomed. 2015, 5, 68–78. [Google Scholar] [CrossRef]
  634. Patel, M.B.; Mishra, S. Hypoglycemic activity of alkaloidal fraction of Tinospora cordifolia. Phytomedicine 2011, 18, 1045–1052. [Google Scholar] [CrossRef]
  635. Thomas, A.; Rajesh, E.K.; Kumar, D.S. The significance of tinospora crispa in treatment of diabetes mellitus. Phytother. Res. 2016, 30, 357–366. [Google Scholar] [CrossRef]
  636. Ahmad, W.; Jantan, I.; Bukhari, S.N.A. Tinospora crispa (L.) Hook. F. & Thomson: A review of its ethnobotanical, phytochemical, and pharmacological aspects. Front. Pharmacol. 2016, 7, 59. [Google Scholar]
  637. Adnan, A.Z.; Taher, M.; Afriani, T.; Roesma, D.I.; Putra, A.E. Cytotoxic activity assay of tinocrisposide from Tinospora crispa on human cancer cells. Der Pharm. Lett. 2016, 8, 102–106. [Google Scholar]
  638. Noor, H.; Ashcroft, S.J.H. Antidiabetic effects of Tinospora crispa in rats. J. Ethnopharmacol. 1989, 27, 149–161. [Google Scholar] [CrossRef]
  639. Xu, Y.; Niu, Y.; Gao, Y.; Wang, F.; Qin, W.; Lu, Y.; Hu, J.; Peng, L.; Liu, J.; Xiong, W. Borapetoside E, a clerodane diterpenoid extracted from Tinospora crispa, improves hyperglycemia and hyperlipidemia in high-fat-diet-induced type 2 diabetes mice. J. Nat. Prod. 2017, 80, 2319–2327. [Google Scholar] [CrossRef] [PubMed]
  640. Klangjareonchai, T.; Putadechakum, S.; Roongpisuthipong, C. Review of anti-hyperglycemic effect of Tinospora crispa. Walailak J. Sci. Technol. 2015, 12, 403–406. [Google Scholar]
  641. Hedge, S.; Jayaraj, M.; Bhandarkar, A.V. Pharmacognostic and preliminary phytochemical studies of cold and hot extracts of stem of Tinospora malabarica Miers.—An important medicinal plant. Intl. J. Pharma Bio Sci. 2015, 6, P47–P54. [Google Scholar]
  642. Sidhu, M.C.; Thaku, S. Documentation of antidiabetic medicinal plants in district mandi of Himachal Pradesh (India). Int. J. Pharm. Res. 2015, 8, 164–169. [Google Scholar]
  643. Alamin, M.A.; Yagi, A.I.; Yagi, S.M. Evaluation of antidiabetic activity of plants used in Western Sudan. Asian Pac. J. Trop. Biomed. 2015, 5, 395–402. [Google Scholar] [CrossRef] [Green Version]
  644. Kumar, N.; Singh, S.; Manvi; Gupta, R. Trichosanthes dioica roxb.: An overview. Pharmacogn. Rev. 2012, 6, 61–67. [Google Scholar]
  645. Lo, H.Y.; Li, T.C.; Yang, T.Y.; Li, C.C.; Chiang, J.H.; Hsiang, C.Y.; Ho, T.Y. Hypoglycemic effects of Trichosanthes kirilowii and its protein constituent in diabetic mice: The involvement of insulin receptor pathway. BMC Complement. Altern. Med. 2017, 17, 53. [Google Scholar] [CrossRef]
  646. Uchholz, T.B.; Chen, C.; Zhang, X.Y.; Melzig, M.F. Pancreatic lipase and α-amylase inhibitory activities of plants used in Traditional Chinese Medicine (TCM). Pharmazie 2016, 71, 420–424. [Google Scholar]
  647. Kulandaivel, S.; Bajpai, P.; Sivakumar, T. Anti-hyperglycemic activity of Trichosanthes tricuspidata root extract. Banladesh J. Pharm. 2013, 8, 305–310. [Google Scholar] [CrossRef]
  648. Zhang, H.; Yan, X.; Jiang, Y.; Han, Y.; Zhou, Y. The extraction, identification and quantification of hypoglycemic active ingredients from Stinging nettle (Urtica angustifolia). Afr. J. Biotechnol. 2011, 10, 9428–9437. [Google Scholar]
  649. Rezaei Aref, T.; Minaii Zangii, B.; Latifpour, M. Protective effects of urtica dioica extract on the damage of rat small Intestinal mucosa caused by diabetes. J. Babol Univ. Med. Sci. 2012, 14, 31–37. [Google Scholar]
  650. Hoşbaş, S.; Aslan, M.; Sezik, E. Quality assesment of Urtica dioica L. Samples collected from different locations of Turkey. Turk. J. Pharm. Sci. 2014, 11, 223–230. [Google Scholar]
  651. Nickavar, B.; Yousefian, N. Evaluation of α-amylase inhibitory activities of selected antidiabetic medicinal plants. J. Verbrauch. Lebensmittelsicherh. 2011, 6, 191–195. [Google Scholar] [CrossRef]
  652. Nencu, I.; Vlase, L.; Istudor, V.; Mircea, T. Preliminary research regarding Urtica urens L. and Urtica dioica L. Farmacia 2015, 63, 710–715. [Google Scholar]
  653. Sánchez-Villavicencio, M.L.; Vinqvist-Tymchuk, M.; Kalt, W.; Matar, C.; Alarcón Aguilar, F.J.; Escobar Villanueva, M.C.; Haddad, P.S. Fermented blueberry juice extract and its specific fractions have an anti-adipogenic effect in 3 T3-L1 cells. BMC Complement. Altern. Med. 2017, 17, 24. [Google Scholar] [CrossRef]
  654. Nickavar, B.; Amin, G. Bioassay-guided separation of an α-amylase inhibitor anthocyanin from Vaccinium arctostaphylos berries. Z. Naturforsch. Sect. C J. Biosci. 2010, 65, 567–570. [Google Scholar] [CrossRef]
  655. Qian, H.F.; Li, Y.; Wang, L. Vaccinium bracteatum thunb. Leaves’ polysaccharide alleviates hepatic gluconeogenesis via the downregulation of miR-137. Biomed. Pharmacother. 2017, 95, 1397–1403. [Google Scholar] [CrossRef]
  656. Granfeldt, Y.E.; Björck, I.M.E. A bilberry drink with fermented oatmeal decreases postprandial insulin demand in young healthy adults. Nutr. J. 2011, 10, 57. [Google Scholar] [CrossRef]
  657. Kellogg, J.; Wang, J.; Flint, C.; Ribnicky, D.; Kuhn, P.; De Mejia, E.G.; Raskin, I.; Lila, M.A. Alaskan wild berry resources and human health under the cloud of climate change. J. Agric. Food Chem. 2010, 58, 3884–3900. [Google Scholar] [CrossRef]
  658. Beaulieu, L.P.; Harris, C.S.; Saleem, A.; Cuerrier, A.; Haddad, P.S.; Martineau, L.C.; Bennett, S.A.L.; Arnason, J.T. Inhibitory effect of the cree traditional medicine wiishichimanaanh (Vaccinium vitis-idaea) on advanced glycation endproduct formation: Identification of active principles. Phytother. Res. 2010, 24, 741–747. [Google Scholar] [CrossRef] [PubMed]
  659. Mishra, J.; Dash, A.K.; Mishra, S.N.; Gupta, A.K. Withania coagulans in treatmen of diabetics and some other diseases: A review. Res. J. Pharm., Biol. Chem. Sci. 2013, 4, 1251–1258. [Google Scholar]
  660. Rehman, K.; Mashwani, Z.U.R.; Khan, M.A.; Ullah, Z.; Chaudhary, H.J. An ethno botanical perspective of traditional medicinal plants from the khattak tribe of Chonthra Karak, Pakistan. J. Ethnopharmacol. 2015, 165, 251–259. [Google Scholar] [CrossRef] [PubMed]
  661. Maurya, R.; Akanksha; Jayendra; Singh, A.B.; Srivastava, A.K. Coagulanolide, a withanolide from Withania coagulans fruits and antihyperglycemic activity. Bioorg. Med. Chem. Lett. 2008, 18, 6534–6537. [Google Scholar] [CrossRef]
  662. Jonathan, G.; Rivka, R.; Avinoam, S.; Lumír, H.; Nirit, B. Hypoglycemic activity of withanolides and elicitated Withania somnifera. Phytochemistry 2015, 116, 283–289. [Google Scholar]
  663. Mukhija, M.; Lal Dhar, K.; Nath Kalia, A. Bioactive lignans from Zanthoxylum alatum Roxb. Stem bark with cytotoxic potential. J. Ethnopharmacol. 2014, 152, 106–112. [Google Scholar] [CrossRef]
  664. Adebayo, S.A.; Dzoyem, J.P.; Shai, L.J.; Eloff, J.N. The anti-inflammatory and antioxidant activity of 25 plant species used traditionally to treat pain in Southern African. BMC Complement. Altern. Med. 2015, 15, 159. [Google Scholar] [CrossRef]
  665. Pamhidzai, D.; Isaac, G. Tlc separation, antibacterial and anti-inflammatory activity of extracts derived from Zanthoxylum humile roots. Intern. J. Res. Ayurveda Pharm. 2013, 4, 482–486. [Google Scholar]
  666. Morakinyo, A.O.; Akindele, A.J.; Ahmed, Z. Modulation of antioxidant enzymes and inflammatory cytokines: Possible mechanism of anti-diabetic effect of ginger extracts. Afr. J. Biomed. Res. 2011, 14, 195–202. [Google Scholar]
  667. Chen, T.; Cai, J.; Ni, J.; Yang, F. An UPLC-MS/MS application to investigate chemical compositions in the ethanol extract with hypoglycemic activity from Zingiber striolatum diels. J. Chin. Pharm. Sci. 2016, 25, 116–121. [Google Scholar]
  668. Romero-Castillo, P.A.; Pérez Amador Barron, M.C.; Guevara Fefer, P.; Muñoz Ocotero, V.; Reyes Dorantes, A.; Aguirre Garcia, F.; Amaya Chavez, A. Anti-infammatory activity of Ziziphus amole. Phyton 2013, 82, 75–80. [Google Scholar]
  669. Sadegh-Nejadi, S.; Aberomand, M.; Ghaffari, M.A.; Mohammadzadeh, G.; Siahpoosh, A.; Afrisham, R. Inhibitory effect of Ziziphus jujuba and Heracleum persicum on the activity of partial purified rat intestinal alpha glucosidase enzyme. J. Maz. Univ. Med. Sci. 2016, 25, 135–146. [Google Scholar]
  670. Benammar, C.; Hichami, A.; Yessoufou, A.; Simonin, A.; Belarbi, M.; Allali, H.; Khan, N.A. Zizyphus lotus L. (Desf.) modulates antioxidant activity and human T-cell proliferation. BMC Complement. Altern. Med. 2010, 10, 54. [Google Scholar] [CrossRef] [PubMed]
  671. Diallo, D.; Sanogo, R.; Yasambou, H.; Traoré, A.; Coulibaly, K.; Maïga, A. Study of the chemical compounds of Ziziphus mauritiana Lam. (rhamnaceace) leaves, used traditionally in the treatment of diabetes in mali. C. R. Chim. 2004, 7, 1073–1080. [Google Scholar] [CrossRef]
  672. Ibrahim, M.A.; Islam, M.S. Effects of butanol fraction of Ziziphus mucronata root ethanol extract on glucose homeostasis, serum insulin and other diabetes-related parameters in a murine model for type 2 diabetes. Pharm. Biol. 2017, 55, 416–422. [Google Scholar] [CrossRef] [PubMed]
  673. Ahmad, R.; Ahmad, N.; Naqvi, A.A. “Ziziphus oxyphylla”: Ethnobotanical, ethnopharmacological and phytochemical review. Biomed. Pharmacother. 2017, 91, 970–998. [Google Scholar] [CrossRef]
  674. Glombitza, K.W.; Mahran, G.H.; Mirhom, Y.W.; Michel, K.G.; Motawi, T.K. Hypoglycemic and antihyperglycemic effects of Zizyphus spina-christi in rats. Planta Med. 1994, 60, 244–247. [Google Scholar] [CrossRef]
  675. Modi, A.; Jain, S.; Kumar, V. Zizyphus xylopyrus (Retz.) willd: A review of its folkloric, phytochemical and pharmacological perspectives. Asian Pac. J. Trop. Dis. 2014, 4, S1–S6. [Google Scholar] [CrossRef]
  676. Solanki, A.; Zaveri, M. Pharmacognosy, phytochemistry and pharmacology of Abrus precatorius leaf: A review. Int. J. Pharm. Sci. Rev. Res. 2012, 13, 71–76. [Google Scholar]
  677. Liu, Y.X.; Si, M.M.; Lu, W.; Zhang, L.X.; Zhou, C.X.; Deng, S.L.; Wu, H.S. Effects and molecular mechanisms of the antidiabetic fraction of Acorus calamus L. On GLP-1 expression and secretion in vivo and in vitro. J. Ethnopharmacol. 2015, 166, 168–175. [Google Scholar] [CrossRef]
  678. Si, M.M.; Lou, J.S.; Zhou, C.X.; Shen, J.N.; Wu, H.H.; Yang, B.; He, Q.J.; Wu, H.S. Insulin releasing and alpha-glucosidase inhibitory activity of ethyl acetate fraction of Acorus calamus in vitro and in vivo. J. Ethnopharmacol. 2010, 128, 154–159. [Google Scholar] [CrossRef] [PubMed]
  679. Park, H.M.; Son, M.W.; Kim, D.; Kim, S.H.; Kim, S.H.; Kwon, H.C.; Kim, S.Y. Fatty acid components of hardy kiwifruit (Actinidia arguta) as IL-4 production inhibitor. Biomol. Ther. 2011, 19, 126–133. [Google Scholar] [CrossRef]
  680. Liu, X.; Zhu, L.; Tan, J.; Zhou, X.; Xiao, L.; Yang, X.; Wang, B. Glucosidase inhibitory activity and antioxidant activity of flavonoid compound and triterpenoid compound from Agrimonia pilosa ledeb. BMC Complement. Altern. Med. 2014, 14, 12. [Google Scholar] [CrossRef] [PubMed]
  681. Kumar, D.; Bhat, Z.A.; Singh, P.; Khatanglakar, V.; Bhujbal, S.S. Antiasthmatic and antiallergic potential of methanolic extract of leaves of Ailanthus excelsa. Braz. J. Pharamacogn. 2011, 21, 139–145. [Google Scholar] [CrossRef]
  682. Hepcy Kalarani, D.; Dinakar, A.; Senthilkumar, N. Antidiabetic, analgesic and anti-inflammatory activity of aqueous extracts of stem and leaves of Alangium salvifolium and Pavonia zeylanica. Int. J. Drug. Dev. Res. 2012, 4, 298–306. [Google Scholar]
  683. Hepcy Kalarani, D.; Dinakar, A.; Senthilkumar, N. Hypoglycemic and antidiabetic activity of Alangium salvifolium wang in alloxan induced diabetic rats. Asian J. Pharm. Clin. Res. 2011, 4, 131–133. [Google Scholar]
  684. Jong-Anurakkun, N.; Bhandari, M.R.; Kawabata, J. A-glucosidase inhibitors from devil tree (Alstonia scholaris). Food Chem. 2007, 103, 1319–1323. [Google Scholar] [CrossRef]
  685. Babaei, H.; Sadeghpour, O.; Nahar, L.; Delazar, A.; Nazemiyeh, H.; Mansouri, M.R.; Poursaeid, N.; Asnaashari, S.; Moghadam, S.B.; Sarker, S.D. Antioxidant and vasorelaxant activities of flavonoids from Amygdalus lycioides var. Horrida. Turk. J. Biol. 2008, 32, 203–208. [Google Scholar]
  686. Rao, N.K. Anti-hyperglycemic and renal protective activities of Andrographis paniculata roots chloroform extract. Iran. J. Pharmacol. Ther. 2006, 5, 47–50. [Google Scholar]
  687. Sani, Y.N.; Haque, M.; Suryati, K.; Mohd, K.W.; Khan, A. Isolation and characterisation of andrographolide from Andrographis paniculata (Burm. F) wall. Ex nees and its total flavonoid effects from Kemaman, Malaysia. Int. J. Pharm. Qual. Assur. 2017, 8, 119–124. [Google Scholar]
  688. Kim, J.Y.; Shin, J.S.; Ryu, J.H.; Kim, S.Y.; Cho, Y.W.; Choi, J.H.; Lee, K.T. Anti-inflammatory effect of anemarsaponin B isolated from the rhizomes of Anemarrhena asphodeloides in LPS-induced raw 264.7 macrophages is mediated by negative regulation of the nuclear factor-κB and P38 pathways. Food Chem. Toxicol. 2009, 47, 1610–1617. [Google Scholar] [CrossRef] [PubMed]
  689. Nian, S.H.; Li, H.J.; Liu, E.H.; Li, P. Comparison of α-glucosidase inhibitory effect and bioactive constituents of Anemarrhenae rhizoma and fibrous roots. J. Pharm. Biomed. Anal. 2017, 145, 195–202. [Google Scholar] [CrossRef] [PubMed]
  690. Golmohammadi, R.; Sabaghzadeh, F.; Mojadadi, M.S. Effect of hydroalcoholic extract of Anethum graveolens leaves on the dentate gyrus of the hippocampus in the epileptic mice: A histopathological and immunohistochemical study. Res. Pharm. Sci. 2016, 11, 259–264. [Google Scholar]
  691. Goodarzi, M.T.; Khodadadi, I.; Tavilani, H.; Abbasi Oshaghi, E. The role of Anethum graveolens L. (Dill) in the management of diabetes. J. Trop. Med. 2016, 2016, 1098916. [Google Scholar] [CrossRef]
  692. Devgan, M.; Bhatia, L.; Kumar, H. Anthocephalus cadamba: A comprehensive review. Res. J. Pharm. Technol. 2012, 5, 1478–1483. [Google Scholar]
  693. Shaikh, S.; Dubey, R.; Dhande, S.; Joshi, Y.M.; Kadam, V.J. Phytochemical and pharmacological profile of Aphanamixis polystachya: An overview. Res. J. Pharm. Technol. 2012, 5, 1260–1263. [Google Scholar]
  694. Xu, Z.; Ju, J.; Wang, K.; Gu, C.; Feng, Y. Evaluation of hypoglycemic activity of total lignans from Fructus arctii in the spontaneously diabetic goto-kakizaki rats. J. Ethnopharmacol. 2014, 151, 548–555. [Google Scholar] [CrossRef]
  695. Paulke, A.; Kremer, C.; Wunder, C.; Achenbach, J.; Djahanschiri, B.; Elias, A.; Stefan Schwed, J.; Hübner, H.; Gmeiner, P.; Proschak, E.; et al. Argyreia nervosa (Burm. F.): Receptor profiling of lysergic acid amide and other potential psychedelic LSD-like compounds by computational and binding assay approaches. J. Ethnopharmacol. 2013, 148, 492–497. [Google Scholar] [CrossRef]
  696. Gupta, V.; Keshari, B.B.; Tiwari, S.K.; Narasimha Murthy, K.H.H.V.S.S. A review on antidiabetic action of Asanadi gana. Intern. J. Res. Ayurveda Pharm. 2013, 4, 638–646. [Google Scholar] [CrossRef]
  697. Perez-Gutierrez, R.M.; Damian-Guzman, M. Meliacinolin: A potent α-glucosidase and α-amylase inhibitor isolated from Azadirachta indica leaves and in vivo antidiabetic property in streptozotocin-nicotinamide-induced type 2 diabetes in mice. Biol. Pharm. Bull. 2012, 35, 1516–1524. [Google Scholar] [CrossRef]
  698. Sujarwo, W.; Keim, A.P.; Caneva, G.; Toniolo, C.; Nicoletti, M. Ethnobotanical uses of neem (Azadirachta indica A.Juss.; meliaceae) leaves in bali (Indonesia) and the indian subcontinent in relation with historical background and phytochemical properties. J. Ethnopharmacol. 2016, 189, 186–193. [Google Scholar] [CrossRef]
  699. Shafie, N.I.; Samsulrizal, N.; Sopian, N.A.; Rajion, M.A.; Meng, G.Y.; Ajat, M.M.M.; Ahmad, H. Qualitative phytochemical screening and GC-MS profiling of Azadirachta excelsa leaf extract. Malays. Appl. Biol. 2015, 44, 87–92. [Google Scholar]
  700. Kaur, M.; Singh, G.; Mohan, C. Barringtonia acutangula: A traditional medicinal plant. Int. J. Pharm. Sci. Rev. Res. 2013, 23, 168–171. [Google Scholar]
  701. Jyothi, K.S.N.; Hemalatha, P.; Challa, S. Evaluation of α-amylase inhibitory potential of three medicinally important traditional wild food plants of India. Int. J. Green Pharm. 2011, 5, 95–99. [Google Scholar]
  702. Bhandari, M.R.; Jong-Anurakkun, N.; Hong, G.; Kawabata, J. A-glucosidase and α-amylase inhibitory activities of nepalese medicinal herb pakhanbhed (Bergenia ciliata, Haw.). Food Chem. 2008, 106, 247–252. [Google Scholar] [CrossRef]
  703. Puri, D. The insulinotropic activity of a nepalese medicinal plant Biophytum sensitivum: Preliminary experimental study. J. Ethnopharmacol. 2001, 78, 89–93. [Google Scholar] [CrossRef]
  704. Deepika, S.; Rajagopal, S.V. Evaluation of phytochemical and bioactive screening of Blepharis molluginifolia flower extracts. Intl. J. Pharma Bio Sci. 2014, 5, P204–P211. [Google Scholar]
  705. Savithramma, N.; Linga Rao, M.; Venkateswarlu, P. Histochemical studies of Boswellia ovalifoliolata Bal. & Henry—An endemic, endangered and threatened medicinal plant of Seshachalam Hill range of Eastern Ghats of India. Int. J. Pharmacogn. Phytochem. Res. 2014, 6, 1–6. [Google Scholar]
  706. Bljajić, K.; Petlevski, R.; Vujić, L.; Čačić, A.; Šoštarić, N.; Jablan, J.; De Carvalho, I.S.; Končić, M.Z. Chemical composition, antioxidant and α-glucosidase-inhibiting activities of the aqueous and hydroethanolic extracts of Vaccinium myrtillus leaves. Molecules 2017, 22, 703. [Google Scholar] [CrossRef]
  707. Darsini, I.P.; Shamshad, S.; John Paul, M. Canna indica (L.): A plant with potential healing powers: A review. Intl. J. Pharma Bio Sci. 2015, 6, B1–B8. [Google Scholar]
  708. Khan, H.U.; Khan, R.A.; Ahmed, M. Cytotoxic, antioxidant, antimicrobial activities of methonol crude extracts of Cardia obaliqua (Linn.). J. Anim. Plant Sci. 2017, 27, 1723–1726. [Google Scholar]
  709. Sabet, F.; Asgary, S.; Rahimi, P.; Mahzouni, P.; Madani, H. Antidiabetic effect of hydroalcoholic extract of Carthamus tinctorius L. In alloxan-induced diabetic rats. J. Res. Med. Sci. 2012, 17, 386–392. [Google Scholar]
  710. Takahashi, T.; Miyazawa, M. Potent α-glucosidase inhibitors from safflower (Carthamus tinctorius L.) seed. Phytother. Res. 2012, 26, 722–726. [Google Scholar] [CrossRef] [PubMed]
  711. Al-Shaqha, W.M.; Khan, M.; Salam, N.; Azzi, A.; Chaudhary, A.A. Anti-diabetic potential of Catharanthus roseus Linn. And its effect on the glucose transport gene (GLUT-2 and GLUT-4) in streptozotocin induced diabetic wistar rats. BMC Complement. Altern. Med. 2015, 15, 379. [Google Scholar] [CrossRef]
  712. Semenya, S.; Potgieter, M.; Tshisikhawe, M.; Shava, S.; Maroyi, A. Medicinal utilization of exotic plants by Bapedi traditional healers to treat human ailments in Limpopo province, South Africa. J. Ethnopharmacol. 2012, 144, 646–655. [Google Scholar] [CrossRef]
  713. Nammi, S.; Boini, K.M.; Lodagala, S.D.; Behara, R.B.S. The juice of fresh leaves of Catharanthus roseus Linn. Reduces blood glucose in normal and alloxan diabetic rabbits. BMC Complement. Altern. Med. 2003, 3, 4. [Google Scholar] [CrossRef]
  714. Rasineni, K.; Bellamkonda, R.; Singareddy, S.R.; Desireddy, S. Antihyperglycemic activity of Catharanthus roseus leaf powder in streptozotocin-induced diabetic rats. Pharmacogn. Res. 2010, 2, 195–201. [Google Scholar]
  715. Ojewole, J.A.O.; Adewunmi, C.O. Hypoglycaemic effects of methanolic leaf extract of Catharanthus roseus (Linn.) G. Don (Apocynaceae) in normal and diabetic mice. Acta Med. Biol. 2000, 48, 55–58. [Google Scholar]
  716. Kumar, D.; Kumar, S.; Gupta, J.; Arya, R.; Gupta, A. A review on chemical and biological properties of Cayratia trifolia Linn. (Vitaceae). Pharmacogn. Rev. 2011, 5, 184–188. [Google Scholar] [CrossRef]
  717. Alagawadi Kallangouda, R.; Shah Amol, S. Analgesic and antipyretic effects of Ceiba pentandra L. Seed extracts. Intl. J. Pharm. Res. 2012, 4, 46–49. [Google Scholar]
  718. Oyedemi, S.O.; Oyedemi, B.O.; Ijeh, I.I.; Ohanyerem, P.E.; Coopoosamy, R.M.; Aiyegoro, O.A. Alpha-amylase inhibition and antioxidative capacity of some antidiabetic plants used by the traditional healers in Southeastern Nigeria. Sci. World J. 2017, 2017, 3592491. [Google Scholar] [CrossRef] [PubMed]
  719. Satyaprakash, R.J.; Rajesh, M.S.; Bhanumathy, M.; Harish, M.S.; Shivananda, T.N.; Shivaprasad, H.N.; Sushma, G. Hypoglycemic and antihyperglycemic effect of Ceiba pentandra L. Gaertn in normal and streptozotocin-induced diabetic rats. Ghana Med J 2013, 47, 121–127. [Google Scholar] [PubMed]
  720. Tang, Y.; Xin, H.L.; Guo, M.L. Review on research of the phytochemistry and pharmacological activities of Celosia argentea. Braz. J. Pharamacogn. 2016, 26, 787–796. [Google Scholar] [CrossRef]
  721. Fitrianda, E.; Sukandar, E.Y.; Elfahmi; Adnyana, I.K. Antidiabetic activity of extract, fractions, and asiaticoside compound isolated from Centella asiatica Linn. Leaves in alloxan-induced diabetic mice. Asian J. Pharm. Clin. Res. 2017, 10, 268–272. [Google Scholar] [CrossRef]
  722. Maulidiani; Abas, F.; Khatib, A.; Perumal, V.; Suppaiah, V.; Ismail, A.; Hamid, M.; Shaari, K.; Lajis, N.H. Metabolic alteration in obese diabetes rats upon treatment with Centella asiatica extract. J. Ethnopharmacol. 2016, 180, 60–69. [Google Scholar]
  723. Zengin, G.; Nithiyanantham, S.; Locatelli, M.; Ceylan, R.; Uysal, S.; Aktumsek, A.; Selvi, P.K.; Maskovic, P. Screening of in vitro antioxidant and enzyme inhibitory activities of different extracts from two uninvestigated wild plants: Centranthus longiflorus subsp. longiflorus and Cerinthe minor subsp. auriculata. Eur. J. Integr. Med. 2016, 8, 286–292. [Google Scholar] [CrossRef]
  724. Paydar, M.; Moharam, B.A.; Wong, Y.L.; Looi, C.Y.; Wong, W.F.; Nyamathulla, S.; Pandy, V.; Kamalidehghan, B.; Arya, A. Centratherum anthelminticum (L.) kuntze a potential medicinal plant with pleiotropic pharmacological and biological activities. Int. J. Pharmacol. 2013, 9, 211–226. [Google Scholar]
  725. Thakur, G.S.; Bag, M.; Sanodiya, B.S.; Debnath, M.; Zacharia, A.; Bhadauriya, P.; Prasad, G.B.K.S.; Bisen, P.S. Chlorophytum borivilianum: A white gold for biopharmaceuticals and neutraceuticals. Curr. Pharm. Biotechnol. 2009, 10, 650–666. [Google Scholar] [CrossRef]
  726. Lai, W.C.; Wu, Y.C.; Dankó, B.; Cheng, Y.B.; Hsieh, T.J.; Hsieh, C.T.; Tsai, Y.C.; El-Shazly, M.; Martins, A.; Hohmann, J.; et al. Bioactive constituents of Cirsium japonicum var. Australe. J. Nat. Prod. 2014, 77, 1624–1631. [Google Scholar] [CrossRef]
  727. Xiong, W.T.; Gu, L.; Wang, C.; Sun, H.X.; Liu, X. Anti-hyperglycemic and hypolipidemic effects of Cistanche tubulosa in type 2 diabetic db/db mice. J. Ethnopharmacol. 2013, 150, 935–945. [Google Scholar] [CrossRef]
  728. Barghamdi, B.; Ghorat, F.; Asadollahi, K.; Sayehmiri, K.; Peyghambari, R.; Abangah, G. Therapeutic effects of Citrullus colocynthis fruit in patients with type II diabetes: A clinical trial study. J. Pharm. Bioallied Sci. 2016, 8, 130–134. [Google Scholar]
  729. Lahfa, F.B.; Azzi, R.; Mezouar, D.; Djaziri, R. Hypoglycemic effect of Citrullus colocynthis extracts. Phytotherapie 2017, 15, 50–56. [Google Scholar] [CrossRef]
  730. Alam, A.; Ferdosh, S.; Ghafoor, K.; Hakim, A.; Juraimi, A.S.; Khatib, A.; Sarker, Z.I. Clinacanthus nutans: A review of the medicinal uses, pharmacology and phytochemistry. Asian Pac. J. Trop. Med. 2016, 9, 402–409. [Google Scholar] [CrossRef] [PubMed]
  731. Aslam, M.S.; Ahmad, M.S.; Mamat, A.S. A review on phytochemical constituents and pharmacological activities of Clinacanthus nutans. Int. J. Pharmcy Pharm. Sci. 2015, 7, 30–33. [Google Scholar]
  732. Kosai, P.; Sirisidthi, K.; Jiraungkoorskul, K.; Jiraungkoorskul, W. Review on ethnomedicinal uses of memory Boosting Herb, Butterfly Pea, Clitoria ternatea. J. Nat. Rem. 2015, 15, 71–76. [Google Scholar] [CrossRef]
  733. Kavitha, R. Evaluation of hypoglycemic effect of ethanolic extracts of leaf and fruit of T. dioica and leaf of C. ternatea in streptozotocin induced diabetic rats. Intl. J. Pharma Bio Sci. 2014, 5, B1061–B1068. [Google Scholar]
  734. Ramakrishnan, G.; Kothai, R.; Jaykar, B.; Venkata Rathnakumar, T. In vitro antibacterial activity of different extracts of leaves of Coldenia procumbens. Int. J. Pharm. Res. 2011, 3, 1000–1004. [Google Scholar]
  735. Shirwaikar, A.; Rajendran, K.; Punitha, I.S.R. Antidiabetic activity of alcoholic stem extract of Coscinium fenestratum in streptozotocin-nicotinamide induced type 2 diabetic rats. J. Ethnopharmacol. 2005, 97, 369–374. [Google Scholar] [CrossRef]
  736. Rai, R.V.; Rajesh, P.S.; Kim, H.M. Medicinal use of Coscinium fenestratum (Gaertn.) colebr.: An short review. Orient. Pharm. Exp. Med. 2013, 13, 1–9. [Google Scholar] [CrossRef]
  737. Priyashree, S.; Jha, S.; Pattanayak, S. A review on Cressa cretica linn.: A halophytic plant. Pharmacogn. Rev. 2010, 4, 161–166. [Google Scholar] [CrossRef]
  738. Mnif, S.; Aifa, S. Cumin (Cuminum cyminum L.) from traditional uses to potential biomedical applications. Chem. Biodivers. 2015, 12, 733–742. [Google Scholar] [CrossRef]
  739. Selim, S.A.; Adam, M.E.; Hassan, S.M.; Albalawi, A.R. Chemical composition, antimicrobial and antibiofilm activity of the essential oil and methanol extract of the mediterranean cypress (Cupressus sempervirens L.). BMC Complement. Altern. Med. 2014, 14, 179. [Google Scholar] [CrossRef] [PubMed]
  740. Sharma, P.; Dubey, G.; Kaushik, S. Chemical and medico-biological profile of Cyamopsis tetragonoloba (L) taub: An overview. J. Appl. Pharm. Sci. 2011, 1, 32–37. [Google Scholar]
  741. Li, Q.; Hu, J.; Xie, J.; Nie, S.; Xie, M.Y. Isolation, structure, and bioactivities of polysaccharides from Cyclocarya paliurus (Batal.) iljinskaja. In Annals of the New York Academy of Science; Blackwell Publishing Inc.: Hoboken, NJ, USA, 2017; Volume 1398, pp. 20–29. [Google Scholar]
  742. Mustarichie, R.; Warya, S.; Saptarini, N.M.; Musfiroh, I. Acute and subchronic toxicities of indonesian mistletoes Dendrophthoe pentandra L. (miq.) ethanol extract. J. Appl. Pharm. Sci. 2016, 6, 109–114. [Google Scholar] [CrossRef]
  743. Golla, U.; Gajam, P.K.; Solomon Sunder Raj, B. The effect of Desmostachya bipinnata (Linn.) extract on physiologically altered glycemic status in non-diabetic rats. J. Med. Sci. 2013, 13, 221–225. [Google Scholar] [CrossRef]
  744. Tavana, A.; Pourrajab, F.; Hekmatimoghaddam, S.H.; Khalilzadeh, S.H.; Lotfi, M.H. The hypoglycemic effect of Dorema aucheri (bilhar) extract in diabetic type 2 patients: A first clinical trial. Intl. J. Pharm. Clin. Res. 2015, 7, 343–347. [Google Scholar]
  745. Geethika, B.; Gayathri, R.; Vishnu Priya, V. Comparative in-vivo free radical scavenging activity of Pineapple and Eclipta alba extracts by no assay. Int. J. Pharm. Sci. Rev. Res. 2016, 39, 69–72. [Google Scholar]
  746. Kumar, D.; Gaonkar, R.H.; Ghosh, R.; Pal, B.C. Bio-assay guided isolation of α-glucosidase inhibitory constituents from Eclipta alba. Nat. Pro. Comm. 2012, 7, 989–990. [Google Scholar] [CrossRef]
  747. Hardainiyan, S.; Nandy, B.C.; Kumar, K. Elaeocarpus ganitrus (Rudraksha): A reservoir plant with their pharmacological effects. Int. J. Pharm. Sci. Rev. Res. 2015, 34, 55–64. [Google Scholar]
  748. Febrinda, A.E.; Yuliana, N.D.; Ridwan, E.; Wresdiyati, T.; Astawan, M. Hyperglycemic control and diabetes complication preventive activities of bawang dayak (Eleutherine palmifolia L. Merr.) bulbs extracts in alloxan-diabetic rats. Int. Food Res. J. 2014, 21, 1405–1411. [Google Scholar]
  749. Nain, P.; Saini, V.; Sharma, S.; Nain, J. Antidiabetic and antioxidant potential of Emblica officinalis Gaertn. Leaves extract in streptozotocin-induced type-2 diabetes mellitus (T2DM) rats. J. Ethnopharmacol. 2012, 142, 65–71. [Google Scholar] [CrossRef]
  750. Sarma, U.; Borah, V.V.; Saikia, K.K.R.; Hazarika, N.K. Enhydra fluctuans: A review on its pharmacological importance as a medicinal plant and prevalence and use in North-East India. Int. J. Pharmcy Pharm. Sci. 2014, 6, 48–50. [Google Scholar]
  751. Asgarpanah, J.; Amin, G.; Parviz, M. In vitro antiglycation activity of Eremurus persicus (Jaub. Et sp.) boiss. Afr. J. Biotechnol. 2011, 10, 11287–11289. [Google Scholar]
  752. Tian, X.; Chang, L.; Ma, G.; Wang, T.; Lv, M.; Wang, Z.; Chen, L.; Wang, Y.; Gao, X.; Zhu, Y. Delineation of platelet activation pathway of scutellarein revealed its intracellular target as protein kinase C. Biol. Pharm. Bull. 2016, 39, 181–191. [Google Scholar] [CrossRef] [PubMed]
  753. Kasabri, V.; Afifi, F.U.; Hamdan, I. Evaluation of the acute antihyperglycemic effects of four selected indigenous plants from Jordan used in traditional medicine. Pharm. Biol. 2011, 49, 687–695. [Google Scholar] [CrossRef]
  754. He, X.; Wang, J.; Li, M.; Hao, D.; Yang, Y.; Zhang, C.; He, R.; Tao, R. Eucommia ulmoides oliv.: Ethnopharmacology, phytochemistry and pharmacology of an important Traditional Chinese Medicine. J. Ethnopharmacol. 2014, 151, 78–92. [Google Scholar] [CrossRef]
  755. Tatiya, A.U.; Puranik, P.M.; Surana, S.J.; Patil, Y.S.; Mutha, R.E. Evaluation of hypolipidemic, antidiabetic and antioxidant activity of Eulophia herbacea tubers. Banladesh J. Pharm. 2013, 8, 269–275. [Google Scholar] [CrossRef]
  756. Saleem, S.; Jafri, L.; Haq, I.U.; Chang, L.C.; Calderwood, D.; Green, B.D.; Mirza, B. Plants Fagonia cretica L. and Hedera nepalensis K. Koch contain natural compounds with potent dipeptidyl peptidase-4 (DPP-4) inhibitory activity. J. Ethnopharmacol. 2014, 156, 26–32. [Google Scholar] [CrossRef]
  757. Samal, P.K.; Dangi, J.S.; Meena, K.P.; Beck, N.R.; Patel, A.; Maheshwari, G. Evaluation of analgesic activity of leaves extracts of Feronia limonia in experimental animal models. Res. J. Pharm. Technol. 2011, 4, 710–714. [Google Scholar]
  758. Rahimi, R.; Ardekani, M.R.S. Medicinal properties of Foeniculum vulgare Mill. in traditional iranian medicine and modern phytotherapy. Chin. J. Integr. Med. 2013, 19, 73–79. [Google Scholar] [CrossRef]
  759. Barros, L.; Heleno, S.A.; Carvalho, A.M.; Ferreira, I.C.F.R. Systematic evaluation of the antioxidant potential of different parts of Foeniculum vulgare Mill. from portugal. Food Chem. Toxicol. 2009, 47, 2458–2464. [Google Scholar] [CrossRef]
  760. Veeraiah, S.; Jaganmohan Reddy, K. Current strategic approaches in ethnomedicinal plants of Tinospora cordifolia and Gloriosa superba—A review. Intl. J. Pharma Bio Sci. 2012, 3, 320–326. [Google Scholar]
  761. Ramesh Petchi, R.; Vijaya, C. Anti-diabetic and anti-arthritic potential of glycosmis pentaphylla stem bark in FCA induced arthritis and streptozotocin induced diabetic rats. Intl. J. Pharma Bio Sci. 2012, 3, P328–P336. [Google Scholar]
  762. Kulkarni, Y.; Veeranjaneyulu, A. Toxicological studies on aqueous extract of Gmelina arborea in rodents. Pharm. Biol. 2010, 48, 1413–1420. [Google Scholar] [CrossRef] [PubMed]
  763. Attanayake, A.P.; Jayatilaka, K.A.P.W.; Pathirana, C.; Mudduwa, L.K.B. Gmelina arborea roxb. (family: Verbenaceae) extract upregulates the β-cell regeneration in stz induced diabetic rats. J. Dia. Res 2016, 2016. [Google Scholar] [CrossRef] [PubMed]
  764. Devi, K.; Jain, N. Clinical evaluation of the anti-sweet effects of Gymnema sylvestre extract developed into a dispersable oral tablet. J. Herb. Med. 2015, 5, 184–189. [Google Scholar] [CrossRef]
  765. Singh, V.K.; Umar, S.; Ansari, S.A.; Iqbal, M. Gymnema sylvestre for diabetics. J. Herbs Spices Med. Plants 2008, 14, 88–106. [Google Scholar] [CrossRef]
  766. Malik, A.; Mehmood, M.H.; Akhtar, M.S.; Haider, G.; Gilani, A.H. Studies on antihyperlipidemic and endothelium modulatory activities of polyherbal formulation (POL4) and its ingredients in high fat diet-fed rats. Pak. J. Pharma. Sci. 2017, 30, 295–301. [Google Scholar]
  767. Yadav, M.; Lavania, A.; Tomar, R.; Prasad, G.B.K.S.; Jain, S.; Yadav, H. Complementary and comparative study on hypoglycemic and antihyperglycemic activity of various extracts of Eugenia jambolana seed, Momordica charantia fruits, Gymnema sylvestre, and Trigonella foenum graecum seeds in rats. Appl. Biochem. Biotechnol. 2010, 160, 2388–2400. [Google Scholar] [CrossRef]
  768. Zhang, Y.Z.; Su, G.Y.; Xia, X.Y.; Zhao, Y.Q. Research progress in hypoglycemic effect of natural dammarane saponins. Chin. Trad. Herb. Drugs 2016, 47, 2758–2763. [Google Scholar]
  769. Huyen, V.T.T.; Phan, D.V.; Thang, P.; Hoa, N.K.; Östenson, C.G. Gynostemma pentaphyllum tea improves insulin sensitivity in type 2 diabetic patients. J. Nutr. Metab. 2013, 2013, 765383. [Google Scholar] [CrossRef]
  770. Megalli, S.; Davies, N.M.; Roufogalis, B.D. Anti-hyperlipidemic and hypoglycemic effects of Gynostemma pentaphyllum in the zucker fatty rat. J. Pharm. Pharm. Sci. 2006, 9, 281–291. [Google Scholar] [PubMed]
  771. Mahalingam, G.; Kannabiran, K. Hemidesmus indicus root extract ameliorates diabetes-mediated metabolic changes in rats. Int. J. Green Pharm. 2009, 3, 314–318. [Google Scholar]
  772. Patra, J.K.; Thatoi, H. Anticancer activity and chromatography characterization of methanol extract of Heritiera fomes buch. Ham., a mangrove plant from Bhitarkanika, India. Orient. Pharm. Exp. Med. 2013, 13, 133–142. [Google Scholar] [CrossRef]
  773. Wang, B.; Lin, L.; Ni, Q.; Su, C.L. Hippophae rhamnoides Linn. for treatment of diabetes mellitus: A review. J. Med. Plant Res. 2011, 5, 2599–2607. [Google Scholar]
  774. Naseri, M.; Khalaj Sereshki, Z.; Ghavami, B.; Kamali Nejad, M.; Naderi, G.A.; Faghihzadeh, S. Effect of barley (Hordeum vulgare L.) seed extract on fasting serum glucose level in streptozotocin induced diabetic rats. J. Med. Plants 2010, 9, 57–66. [Google Scholar]
  775. Doi, K.; Mitoma, C.; Nakahara, T.; Uchi, H.; Hashimoto-Hachiya, A.; Takahara, M.; Tsuji, G.; Nakahara, M.; Furue, M. Antioxidant houttuynia cordata extract upregulates filaggrin expression in an aryl hydrocarbon-dependent manner. Fukuoka Igaku Zasshi 2014, 105, 205–213. [Google Scholar]
  776. Kumarappan, C.; Mandal, S.C. Antidiabetic effect of polyphenol enriched extract of Ichnocarpus frutescens on key carbohydrate metabolic enzymes. Int. J. Diabetes Dev. Ctries. 2015, 35, 425–431. [Google Scholar] [CrossRef]
  777. Vijay Simha, G.; Kumar, M.A.; Rajesh, S.; Panda, P.; Rao, M.M. Evaluation of physicochemical parameters of Imperata cylindrica (Linn) beauv root used in ayurvedic formulations. Res. J. Pharm. Technol. 2012, 5, 1352–1355. [Google Scholar]
  778. Lee, M.R.; Lee, H.Y.; Lee, G.H.; Kim, H.K.; Kim, N.Y.; Kim, S.H.; Kim, H.R.; Chae, H.J. Ixeris dentata decreases ER stress and hepatic lipid accumulation through regulation of ApoB secretion. Am. J. Chin. Med. 2014, 42, 639–649. [Google Scholar] [CrossRef]
  779. Ravanbakhsh, A.; Mahdavi, M.; Jalilzade-Amin, G.; Javadi, S.; Maham, M.; Mohammadnejad, D.; Rashidi, M.R. Acute and subchronic toxicity study of the median septum of Juglans regia in wistar rats. Adv. Pharm. Bull. 2016, 6, 541–549. [Google Scholar] [CrossRef]
  780. Boukhari, F.; Tigrine-Kordjani, N.; Youcef Meklati, B. Phytochemical investigation by microwave-assisted extraction of essential oil of the leaves of walnut cultivated in Algeria. Helv. Chim. Acta 2013, 96, 1168–1175. [Google Scholar] [CrossRef]
  781. Kavalali, G.; Tuncel, H.; Göksel, S.; Hatemi, H.H. Hypoglycemic activity of fruits of Juglans regia L. on streptozotocin diabetic rats. Acta Pharm. Turc. 2002, 44, 243–248. [Google Scholar]
  782. Pitschmann, A.; Zehl, M.; Atanasov, A.G.; Dirsch, V.M.; Heiss, E.; Glasl, S. Walnut leaf extract inhibits PTP1B and enhances glucose-uptake in vitro. J. Ethnopharmacol. 2014, 152, 599–602. [Google Scholar] [CrossRef] [PubMed]
  783. Hosseini, S.; Huseini, H.F.; Larijani, B.; Mohammad, K.; Najmizadeh, A.; Nourijelyani, K.; Jamshidi, L. The hypoglycemic effect of Juglans regia leaves aqueous extract in diabetic patients: A first human trial. DARU J. Pharm. Sci. 2014, 22, 19. [Google Scholar] [CrossRef]
  784. Tewtrakul, S.; Subhadhirasakul, S.; Kummee, S. Anti-allergic activity of compounds from kaempferia parviflora. J. Ethnopharmacol. 2008, 116, 191–193. [Google Scholar] [CrossRef]
  785. Park, H.J.; Nam, J.H.; Jung, H.J.; Kim, W.B.; Park, K.K.; Chung, W.Y.; Choi, J. In vivo antinociceptive antiinflamatory and antioxidative effects of the leaf and stem bark of Kalopanax pictus in rats. Korean J. Pharmacogn. 2005, 36, 318–323. [Google Scholar]
  786. Amin, A.; Tuenter, E.; Foubert, K.; Iqbal, J.; Cos, P.; Maes, L.; Exarchou, V.; Apers, S.; Pieters, L. In vitro and in silico antidiabetic and antimicrobial evaluation of constituents from Kickxia ramosissima (Nanorrhinum ramosissimum). Front. Pharmacol. 2017, 8, 232. [Google Scholar] [CrossRef]
  787. Kang, D.H.; Kim, M.Y. Antimicrobial activity of Korean camellia mistletoe (Korthalsella japonica (Thunb.) engl.) extracts. J. Appl. Pharm. Sci. 2016, 6, 226–230. [Google Scholar] [CrossRef]
  788. Prajapati, R.; Kalariya, M.; Parmar, S.; Sheth, N. Phytochemical and pharmacological review of Lagenaria sicereria. J. Ayurveda Integr. Med. 2010, 1, 266–272. [Google Scholar] [CrossRef]
  789. Teugwa, C.M.; Boudjeko, T.; Tchinda, B.T.; Mejiato, P.C.; Zofou, D. Anti-hyperglycaemic globulins from selected Cucurbitaceae seeds used as antidiabetic medicinal plants in africa. BMC Complement. Altern. Med. 2013, 13, 63. [Google Scholar] [CrossRef]
  790. Ichikawa, H.; Yagi, H.; Tanaka, T.; Cyong, J.C.; Masaki, T. Lagerstroemia speciosa extract inhibit TNF-induced activation of nuclear factor-κB in rat cardiomyocyte H9c2 cells. J. Ethnopharmacol. 2010, 128, 254–256. [Google Scholar] [CrossRef] [PubMed]
  791. Tanquilut, N.C.; Tanquilut, M.R.C.; Estacio, M.A.C.; Torres, E.B.; Rosario, J.C.; Reyes, B.A.S. Hypoglycemic effect of Lagerstroemia speciosa (L.) pers. On alloxan-induced diabetic mice. J. Med. Plant Res. 2009, 3, 1066–1071. [Google Scholar]
  792. Hou, W.; Li, Y.; Zhang, Q.; Wei, X.; Peng, A.; Chen, L.; Wei, Y. Triterpene acids isolated from Lagerstroemia speciosa leaves as α-glucosidase inhibitors. Phytother. Res. 2009, 23, 614–618. [Google Scholar] [CrossRef] [PubMed]
  793. Alam, M.B.; Kwon, K.R.; Lee, S.H.; Lee, S.H. Lannea coromandelica (Houtt.) merr. Induces heme oxygenase 1 (HO-1) expression and reduces oxidative stress via the p38/c-jun N-terminal kinase-nuclear factor erythroid 2-related factor 2 (p38/JNK-NRF2)-mediated antioxidant pathway. Int. J. Mol. Sci. 2017, 18, 266. [Google Scholar] [CrossRef]
  794. Pitschmann, A.; Zehl, M.; Heiss, E.; Purevsuren, S.; Urban, E.; Dirsch, V.M.; Glasl, S. Quantitation of phenylpropanoids and iridoids in insulin-sensitising extracts of Leonurus sibiricus L. (Lamiaceae). Phytochem. Anal. 2016, 27, 23–31. [Google Scholar] [CrossRef]
  795. Rahim, A.A.; Mohamad, J.; Alias, Z. Antidiabetic activity of aqueous extract of leptospermum flavescens in alloxan induced diabetic rats. Sains Malays. 2014, 43, 1295–1304. [Google Scholar]
  796. Ibrahim, S.R.M.; Mohamed, G.A. Litchi chinensis: Medicinal uses, phytochemistry, and pharmacology. J. Ethnopharmacol. 2015, 174, 492–513. [Google Scholar] [CrossRef]
  797. Lee, Y.J.; Kang, D.G.; Kim, J.S.; Lee, H.S. Lycopus lucidus inhibits high glucose-induced vascular inflammation in human umbilical vein endothelial cells. Vasc. Pharmacol. 2008, 48, 38–46. [Google Scholar] [CrossRef]
  798. Bhartiya, A.; Aditya, J.P.; Kant, L. Nutritional and remedial potential of an underutilized food legume horsegram (Macrotyloma uniflorum): A review. J. Anim. Plant Sci. 2015, 25, 908–920. [Google Scholar]
  799. Poivre, M.; Duez, P. Biological activity and toxicity of the chinese herb Magnolia officinalis Rehder & E. Wilson (Houpo) and its constituents. J. Zhejiang Uni. Sci. B 2017, 18, 194–214. [Google Scholar]
  800. Ma, J.; Yang, B.; Zhu, W.; Sun, L.; Tian, J.; Wang, X. The complete chloroplast genome sequence of Mahonia bealei (berberidaceae) reveals a significant expansion of the inverted repeat and phylogenetic relationship with other angiosperms. Gene 2013, 528, 120–131. [Google Scholar] [CrossRef] [PubMed]
  801. Bora, K.S.; Sharma, A. Phytochemical and pharmacological potential of Medicago sativa: A review. Pharm. Biol. 2011, 49, 211–220. [Google Scholar] [CrossRef] [PubMed]
  802. Qazi Majaz, A.; Molvi Khurshid, I. A comprehensive review on meyna Laxiflora robyns (rubiaceae). Int. J. Pharm. Sci. Rev. Res. 2015, 35, 22–25. [Google Scholar]
  803. Murdifin, M.; Wahyudin, E.; Lawrence, G.S.; Subehan; Manggau, M.A.; Alam, G. Phytochemical analysis and antioxidant activity of Mezzetia parviflora Becc. Woodbark extract. Pharm. J. 2012, 4, 18–21. [Google Scholar]
  804. Farah Idayu, N.; Taufik Hidayat, M.; Moklas, M.A.M.; Sharida, F.; Nurul Raudzah, A.R.; Shamima, A.R.; Apryani, E. Antidepressant-like effect of mitragynine isolated from Mitragyna speciosa korth in mice model of depression. Phytomedicine 2011, 18, 402–407. [Google Scholar] [CrossRef]
  805. Petrus, A.J.A. Mukia maderaspatana (Linn.) M. Roemer: A potentially antidiabetic and vasoprotective functional leafy-vegetable. Pharm. J. 2012, 4, 1–12. [Google Scholar] [CrossRef]
  806. Kunnaja, P.; Wongpalee, S.P.; Panthong, A. Evaluation of anti-inflammatory, analgesic, and antipyretic activities of the ethanol extract from Murdannia loriformis (Hassk.) Rolla Rao et kammathy. BioImpacts 2014, 4, 183–189. [Google Scholar] [CrossRef]
  807. Sun, C.; Huang, H.; Xu, C.; Li, X.; Chen, K. Biological activities of extracts from Chinese Bayberry (Myrica rubra Sieb. et Zucc.): A review. Plant Foods Hum. Nutr. 2013, 68, 97–106. [Google Scholar] [CrossRef]
  808. Sharma, B.R.; Gautam, L.N.S.; Adhikari, D.; Karki, R. A comprehensive review on chemical profiling of Nelumbo nucifera: Potential for drug development. Phytother. Res. 2017, 31, 3–26. [Google Scholar] [CrossRef]
  809. Mani, S.S.; Subramanian, I.P.; Pillai, S.S.; Muthusamy, K. Evaluation of hypoglycemic activity of inorganic constituents in Nelumbo nucifera seeds on streptozotocin-induced diabetes in rats. Biol. Trace Elem. Res. 2010, 138, 226–237. [Google Scholar] [CrossRef]
  810. Ahmed, F.; Rahman, S.; Ahmed, N.; Hossain, M.; Biswas, A.; Sarkar, S.; Banna, H.; Khatun, M.A.; Chowdhury, M.H.; Rahmatullah, M. Evaluation of Neolamarckia cadamba (Roxb.) bosser leaf extract on glucose tolerance in glucose-induced hyperglycemic mice. Afr. J. Trad. Complement. Altern. Med. 2011, 8, 79–81. [Google Scholar] [CrossRef] [PubMed]
  811. Desai, S.D.; Saheb, S.H.; Das, K.K.; Haseena, S. Phytochemical analysis of Nigella sativa and it’s antidiabetic effect. J. Pharm. Sci. Res. 2015, 7, 527–532. [Google Scholar]
  812. Ahmad, A.; Husain, A.; Mujeeb, M.; Khan, S.A.; Najmi, A.K.; Siddique, N.A.; Damanhouri, Z.A.; Anwar, F. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac. J. Trop. Biomed. 2013, 3, 337–352. [Google Scholar] [CrossRef]
  813. Jamila, F.; Mostafa, E. Ethnobotanical survey of medicinal plants used by people in Oriental Morocco to manage various ailments. J. Ethnopharmacol. 2014, 154, 76–87. [Google Scholar] [CrossRef]
  814. Amin, B.; Hosseinzadeh, H. Black cumin (Nigella sativa) and its active constituent, thymoquinone: An overview on the analgesic and anti-inflammatory effects. Planta Med. 2016, 82, 8–16. [Google Scholar] [CrossRef]
  815. Benhaddou-Andaloussi, A.; Martineau, L.C.; Vallerand, D.; Haddad, Y.; Afshar, A.; Settaf, A.; Haddad, P.S. Multiple molecular targets underlie the antidiabetic effect of Nigella sativa seed extract in skeletal muscle, adipocyte and liver cells. Diabetes Obes. Metab. 2010, 12, 148–157. [Google Scholar] [CrossRef]
  816. Meddah, B.; Ducroc, R.; El Abbes Faouzi, M.; Eto, B.; Mahraoui, L.; Benhaddou-Andaloussi, A.; Martineau, L.C.; Cherrah, Y.; Haddad, P.S. Nigella sativa inhibits intestinal glucose absorption and improves glucose tolerance in rats. J. Ethnopharmacol. 2009, 121, 419–424. [Google Scholar] [CrossRef]
  817. Yusoff, N.A.; Yam, M.F.; Beh, H.K.; Abdul Razak, K.N.; Widyawati, T.; Mahmud, R.; Ahmad, M.; Asmawi, M.Z. Antidiabetic and antioxidant activities of Nypa fruticans Wurmb. Vinegar sample from Malaysia. Asian Pac. J. Trop. Med. 2015, 8, 595–605. [Google Scholar] [CrossRef]
  818. Ojha, D.; Mukherjee, H.; Mondal, S.; Jena, A.; Dwivedi, V.P.; Mondal, K.C.; Malhotra, B.; Samanta, A.; Chattopadhyay, D. Anti-inflammatory activity of Odina wodier Roxb, an indian folk remedy, through inhibition of toll-like receptor 4 signaling pathway. PLoS ONE 2014, 9, e104939. [Google Scholar] [CrossRef]
  819. Chen, M.H.; Chen, X.J.; Wang, M.; Lin, L.G.; Wang, Y.T. Ophiopogon japonicas—A phytochemical, ethnomedicinal and pharmacological review. J. Ethnopharmacol. 2016, 181, 193–213. [Google Scholar] [CrossRef]
  820. Ansarullah; Bharucha, B.; Patel, V.; Ramachandran, A.V. Oreocnide integrifolia (Gaud.) miq leaf water extract improves metabolic alterations in high fructose fed insulin resistant and hypertensive rats. Eur. J. Integr. Med. 2010, 2, 79–87. [Google Scholar]
  821. Dinda, B.; Silsarma, I.; Dinda, M.; Rudrapaul, P. Oroxylum indicum (L.) kurz, an important asian traditional medicine: From traditional uses to scientific data for its commercial exploitation. J. Ethnopharmacol. 2015, 161, 255–278. [Google Scholar] [CrossRef] [PubMed]
  822. Karthishwaran, K.; Mirunalini, S. Therapeutic potential of Pergularia daemia (Forsk.): The ayurvedic wonder. Int. J. Pharmacol. 2010, 6, 836–843. [Google Scholar]
  823. Yasir, M.; Das, S.; Kharya, M. The phytochemical and pharmacological profile of Persea americana Mill. Pharmacogn. Rev. 2010, 4, 77–84. [Google Scholar] [CrossRef] [PubMed]
  824. Odo Christian, E.; Nwodo Okwesili, F.; Joshua Parker, E.; Ugwu Okechukwu, P. Acute toxicity investigation and anti-diarrhoeal effect of the chloroform-methanol extract of the leaves of persea Americana. Iran. J. Pharm. Res. 2014, 13, 651–658. [Google Scholar]
  825. Xu, Q.; Hu, Y.F.; Wang, D.L.; Xu, G.B.; Wang, N. Analysis on peucedani radix coumarin by UPLC/Q-TOF MS and study on its preliminary pharmacodynamics. Chin. Trad. Herb. Drugs 2015, 46, 3637–3642. [Google Scholar]
  826. Ateeq, A.; Sunil, S.D.; Varun, S.K.; Santosh, M.K. Phoenix dactylifera linn.(pind kharjura): A review. Intern. J. Res. Ayurveda Pharm. 2013, 4, 447–451. [Google Scholar]
  827. Batool, A.; Shah, A.; Bahadur, A. Ethnopharmacological relevance of traditional medicinal flora from semi-tribal areas in Khyber Pakhtunkhwa, Punjab, Pakistan. Pak. J. Bot. 2017, 49, 691–705. [Google Scholar]
  828. Abdelaziz, D.H.A.; Ali, S.A. The protective effect of Phoenix dactylifera L. Seeds against CCL4-induced hepatotoxicity in rats. J. Ethnopharmacol. 2014, 155, 736–743. [Google Scholar] [CrossRef]
  829. Badr, J.M. Chemical constituents of Phragmanthera austroarabica A. G. Mill and J. A. Nyberg with potent antioxidant activity. Pharmacogn. Res. 2015, 7, 335–340. [Google Scholar] [CrossRef]
  830. Higa, J.K.; Liang, Z.; Williams, P.G.; Panee, J. Phyllostachys edulis compounds inhibit palmitic acid-induced monocyte chemoattractant protein 1 (MCP-1) production. PLoS ONE 2012, 7, e45082. [Google Scholar] [CrossRef]
  831. Bansal, P.; Paul, P.; Shankar, G.; Munjal, D.; Nayak, P.G.; Priyadarsini, K.I.; Unnikrishnan, M.K. Flavonoid rich fraction of Pilea microphylla (L.) attenuates metabolic abnormalities and improves pancreatic function in C57BL/KSJ-DB/DB mice. Biomed. Prev. Nutr. 2011, 1, 268–272. [Google Scholar] [CrossRef]
  832. Sihoglu Tepe, A.; Tepe, B. Traditional use, biological activity potential and toxicity of Pimpinella species. Ind. Crop. Prod. 2015, 69, 153–166. [Google Scholar] [CrossRef]
  833. Bala Sirisha, K.; Sujathamma, P. Phytochemical and pharmacological properties of Pimpinella tirupatiensis Bal. & Subr.: An endemic important medicinal plant to tirumala hills of Eastern Ghats, India. Med. Plants 2017, 9, 83–87. [Google Scholar]
  834. Raju, R.; Nambi, S.K.; Gurusamy, M. In vitro propagation of Pisonia grandis R. Br.: An indigenous vegetable and promising medicinal plant. Phytomorphology 2015, 65, 133–138. [Google Scholar]
  835. Park, N.I.; Tuan, P.A.; Li, X.; Kim, Y.K.; Yang, T.J.; Park, S.U. An efficient protocol for genetic transformation of platycodon grandiflorum with agrobacterium rhizogenes. Mol. Biol. Rep. 2011, 38, 2307–2313. [Google Scholar] [CrossRef]
  836. Arsiningtyas, I.S.; Gunawan-Puteri, M.D.P.T.; Kato, E.; Kawabata, J. Identification of α-glucosidase inhibitors from the leaves of Pluchea indica (L.) less., a traditional indonesian herb: Promotion of natural product use. Nat. Prod. Res. 2014, 28, 1350–1353. [Google Scholar] [CrossRef]
  837. Jothy, S.L.; Choong, Y.S.; Saravanan, D.; Deivanai, S.; Latha, L.Y.; Vijayarathna, S.; Sasidharan, S. Polyalthia longifolia sonn: An ancient remedy to explore for novel therapeutic agents. Res. J. Pharm. Biol. Chem. Sci. 2013, 4, 714–730. [Google Scholar]
  838. Satish Kumar, B.N. Phytochemistry and pharmacological studies of Pongamia pinnata (Linn.) pierre. Int. J. Pharm. Sci. Rev. Res. 2011, 9, 12–19. [Google Scholar]
  839. Badole, S.L.; Bodhankar, S.L. Antihyperglycaemic activity of cycloart-23-ene-3β, 25-diol isolated from stem bark of Pongamia pinnata in alloxan induced diabetic mice. Res. J. Phytochem. 2009, 3, 18–24. [Google Scholar]
  840. Chang, C.L.T.; Li, T.H.; Hou, C.C.; Yang, W.C. Anti-hyperglycemic properties of crude extract and triterpenes from Poria cocos. Evid.-Based Complement. Altern. Med. 2011, 2011, 128402. [Google Scholar]
  841. Chowdhary, C.V.; Meruva, A.; Naresh, K.; Elumalai, R.K.A. A review on phytochemical and pharmacological profile of Portulaca oleracea Linn. (purslane). Intern. J. Res. Ayurveda Pharm. 2013, 4, 34–37. [Google Scholar] [CrossRef]
  842. Guenzet, A.; Krouf, D.; Berzou, S. Portulaca oleracea extract increases lecithin:Cholesterol acyltransferase and paraoxonase 1 activities and enhances reverse cholesterol transport in streptozotocin-induced diabetic rat. Pharm. J. 2014, 6, 1–9. [Google Scholar]
  843. Hashem Dabaghian, F.; Kamalinejad, M.; Shojaii, A.; Abdollahi Fard, M.; Ghushegir, S.A. Review of antidiabetic plants in Iranian traditional medicine and their efficacy. J. Med. Plants 2012, 11, 1–11. [Google Scholar]
  844. Bai, Y.; Zang, X.; Ma, J.; Xu, G. Anti-diabetic effect of Portulaca oleracea L. Polysaccharideandits mechanism in diabetic rats. Int. J. Mol. Sci. 2016, 17, 1201. [Google Scholar] [CrossRef] [PubMed]
  845. Bautista-Cruz, A.; Arnaud-Viñas, M.R.; Martínez-Gutiérrez, G.A.; Sánchez-Medina, P.S.; Pacheco, R.P. The traditional medicinal and food uses of four plants in oaxaca, mexico. J. Med. Plant Res. 2011, 5, 3404–3411. [Google Scholar]
  846. Ramadan, B.K.; Schaalan, M.F.; Tolba, A.M. Hypoglycemic and pancreatic protective effects of Portulaca oleracea extract in alloxan induced diabetic rats. BMC Complement. Altern. Med. 2017, 17, 37. [Google Scholar] [CrossRef]
  847. Padee, P.; Nualkaew, S.; Talubmook, C.; Sakuljaitrong, S. Hypoglycemic effect of a leaf extract of Pseuderanthemum palatiferum (Nees) radlk. In normal and streptozotocin-induced diabetic rats. J. Ethnopharmacol. 2010, 132, 491–496. [Google Scholar] [CrossRef]
  848. Tayade, P.M.; Chandrasekar, M.J.N.; Borde, S.N.; Joshi, A.S.; Angadi, S.S.; Devdhe, S.J. Effect of Psoralea corylifolia Linn in sexual erectile dysfunction in diabetic rats. Orient. Pharm. Exp. Med. 2013, 13, 35–40. [Google Scholar] [CrossRef]
  849. Mestry, S.N.; Juvekar, A.R. Aldose reductase inhibitory potential and anti-cataract activity of Punica granatum Linn. Leaves against glucose-induced cataractogenesis in goat eye lens. Orient. Pharm. Exp. Med. 2017, 17, 277–284. [Google Scholar] [CrossRef]
  850. Pirbalouti, A.G.; Shahrzad, A.; Abed, K.; Hamedi, B. Wound healing activity of Malva sylvestris and Punica granatum in alloxan-induced diabetic rats. Acta Pol. Pharm. Drug Res. 2010, 67, 511–516. [Google Scholar]
  851. Patel, A.N.; Bandawane, D.D.; Mhetre, N.K. Pomegranate (Punica granatum Linn.) leaves attenuate disturbed glucose homeostasis and hyperglycemia mediated hyperlipidemia and oxidative stress in streptozotocin induced diabetic rats. Eur. J. Integr. Med. 2014, 6, 307–321. [Google Scholar] [CrossRef]
  852. Salwe, K.J.; Sachdev, D.O.; Bahurupi, Y.; Kumarappan, M. Evaluation of antidiabetic, hypolipedimic and antioxidant activity of hydroalcoholic extract of leaves and fruit peel of Punica granatum in male wistar albino rats. J. Nat. Sci. Biol. Med. 2015, 6, 56–62. [Google Scholar] [CrossRef] [PubMed]
  853. Sharifi, N.; Mahernia, S.; Amanlou, M. Comparison of different methods in quercetin extraction from leaves of Raphanus sativus L. Pharm. Sci. 2017, 23, 59–65. [Google Scholar] [CrossRef]
  854. Sham, T.T.; Yuen, A.C.Y.; Ng, Y.F.; Chan, C.O.; Mok, D.K.W.; Chan, S.W. A review of the phytochemistry and pharmacological activities of raphani semen. Evid.-Based Complement. Altern. Med. 2013, 2013, 636194. [Google Scholar] [CrossRef] [PubMed]
  855. Shi, Z.; Gao, J.; Yuan, Y.; Zhu, S.; Yao, M. Effect of raw radix rehmanniae on the pharmacokinetics of pioglitazone in rats. Pak. J. Pharma. Sci. 2014, 27, 537–539. [Google Scholar]
  856. Choi, H.J.; Jang, H.J.; Chung, T.W.; Jeong, S.I.; Cha, J.; Choi, J.Y.; Han, C.W.; Jang, Y.S.; Joo, M.; Jeong, H.S.; et al. Catalpol suppresses advanced glycation end-products-induced inflammatory responses through inhibition of reactive oxygen species in human monocytic THP-1 cells. Fitoterapia 2013, 86, 19–28. [Google Scholar] [CrossRef]
  857. Algandaby, M.M.; Alghamdi, H.A.; Ashour, O.M.; Abdel-Naim, A.B.; Ghareib, S.A.; Abdel-Sattar, E.A.; Hajar, A.S. Mechanisms of the antihyperglycemic activity of Retama raetam in streptozotocin-induced diabetic rats. Food Chem. Toxicol. 2010, 48, 2448–2453. [Google Scholar] [CrossRef]
  858. Imam, M.U.; Ismail, M.; Chinnappan, S.M. Effects of the aqueous extracts of Rhodamnia cinerea on metabolic indices and sorbitol-related complications in type 2 diabetic rats. Sains Malays. 2017, 46, 589–595. [Google Scholar] [CrossRef]
  859. Misra, A.; Srivastava, S.; Verma, S.; Rawat, A.K.S. Nutritional evaluation, antioxidant studies and quantification of poly phenolics, in Roscoea purpurea tubers. BMC Res. Notes 2015, 8, 324. [Google Scholar] [CrossRef]
  860. Abu-Al-Basal, M.A. Healing potential of Rosmarinus officinalis L. On full-thickness excision cutaneous wounds in alloxan-induced-diabetic BALB/C mice. J. Ethnopharmacol. 2010, 131, 443–450. [Google Scholar] [CrossRef]
  861. Bakirel, T.; Bakirel, U.; Keleş, O.U.; Ülgen, S.G.; Yardibi, H. In vivo assessment of antidiabetic and antioxidant activities of rosemary (Rosmarinus officinalis) in alloxan-diabetic rabbits. J. Ethnopharmacol. 2008, 116, 64–73. [Google Scholar] [CrossRef] [PubMed]
  862. Sharma, R.; Yadav, D.; Asif, M.; Jayasri, M.A.; Agnihotri, V.K.; Ravikumar, P.C. Antidiabetic and antioxidant activities of Roylea cinerea extracts: A comparative study. Indian J. Exp. Biol. 2017, 55, 611–621. [Google Scholar]
  863. Devi Priya, M.; Siril, E.A. Traditional and modern use of indian madder (Rubia cordifolia L.): An overview. Int. J. Pharm. Sci. Rev. Res. 2014, 25, 154–164. [Google Scholar]
  864. Rhee, M.H.; Park, H.J.; Cho, J.Y. Salicornia herbacea: Botanical, chemical and pharmacological review of halophyte marsh plant. J. Med. Plant Res. 2009, 3, 548–555. [Google Scholar]
  865. Hou, Z.; Zhang, Z.; Wu, H. Effect of Sanguis draxonis (a Chinese traditional herb) on the formation of insulin resistance in rats. Diabetes Res. Clin. Pract. 2005, 68, 3–11. [Google Scholar] [CrossRef] [PubMed]
  866. Park, H.S.; Kim, G.H. Inhibitory effects of Sasa borealis on mechanisms of adipogenesis. J. Korean Soc. Food Sci. Nutr. 2013, 42, 837–843. [Google Scholar] [CrossRef]
  867. Kim, C.J.; Lim, J.S.; Cho, S.K. Anti-diabetic agents from medicinal plants inhibitory activity of Schizonepeta tenuifolia spikes on the diabetogenesis by streptozotocin in mice. Arch. Pharmacal Res. 1996, 19, 441–446. [Google Scholar] [CrossRef]
  868. Fallah Huseini, H.; Hooseini, P.; Heshmat, R.; Yazdani, D.; Hemati Moqadam, H.R.; Rahmani, M.; Larijani, B.; Alavi, S.H.R. The clinical investigation of Securigera securidaca (L.) (degen & doerfler) seeds in type II diabetic patients; a randomized, double-blind, placebo-controlled study. J. Med. Plants 2006, 5, 75–79. [Google Scholar]
  869. Suzuki, Y.A.; Tomoda, M.; Muratal, Y.; Inui, H.; Sugiura, M.; Nakano, Y. Antidiabetic effect of long-term supplementation with Siraitia grosvenori on the spontaneously diabetic goto-kakizaki rat. Br. J. Nutr. 2007, 97, 770–775. [Google Scholar] [CrossRef]
  870. Makhija, I.K.; Richard, L.; Kirti, S.P.; Saleemullah, K.; Jessy, M.; Annie, S. Sphaeranthus indicus: A review of its chemical, pharmacological and ethnomedicinal properties. Int. J. Pharmacol. 2011, 7, 171–179. [Google Scholar] [CrossRef]
  871. Salunkhe, V.R.; Bhise, S.B. Stevia rebaudiana: An alternative to synthetic sweeteners. Indian Drugs 2010, 47, 5–13. [Google Scholar]
  872. Jeppesen, P.B.; Gregersen, S.; Alstrup, K.K.; Hermansen, K. Stevioside induces antihyperglycaemic, insulinotropic and glucagonostatic effects in vivo: Studies in the diabetic goto-kakizaki (GK) rats. Phytomedicine 2002, 9, 9–14. [Google Scholar] [CrossRef] [PubMed]
  873. Abudula, R.; Jeppesen, P.B.; Rolfsen, S.E.D.; Xiao, J.; Hermansen, K. Rebaudioside a potently stimulates insulin secretion from isolated mouse islets: Studies on the dose-, glucose-, and calcium-dependency. Metab. Clin. Exp. 2004, 53, 1378–1381. [Google Scholar] [CrossRef] [PubMed]
  874. Balijepalli, M.K.; Suppaiah, V.; Chin, A.M.; Buru, A.S.; Sagineedu, S.R.; Pichika, M.R. Acute oral toxicity studies of Swietenia macrophylla seeds in sprague dawley rats. Pharmacogn. Res. 2015, 7, 38–44. [Google Scholar]
  875. Havinga, R.M.; Hartl, A.; Putscher, J.; Prehsler, S.; Buchmann, C.; Vogl, C.R. Tamarindus indica L. (Fabaceae): Patterns of use in traditional african medicine. J. Ethnopharmacol. 2010, 127, 573–588. [Google Scholar] [CrossRef]
  876. Costantino, L.; Raimondi, L.; Pirisino, R.; Brunetti, T.; Pessotto, P.; Giannessi, F.; Lins, A.P.; Barlocco, D.; Antolini, L.; El-Abady, S.A. Isolation and pharmacological activities of the Tecoma stans alkaloids. Farmaco 2003, 58, 781–785. [Google Scholar] [CrossRef]
  877. Palbag, S.; Dey, B.K.; Singh, N.K. Ethnopharmacology, phytochemistry and pharmacology of Tephrosia purpurea. Chin. J. Nat. Med. 2014, 12, 1–7. [Google Scholar] [CrossRef]
  878. Pavana, P.; Manoharan, S.; Renju, G.L.; Sethupathy, S. Antihyperglycemic and antihyperlipidemic effects of Tephrosia purpurea leaf extract in streptozotocin induced diabetic rats. J. Environ. Biol. 2007, 28, 833–837. [Google Scholar]
  879. Satyanarayana, T.; Sarita, T.; Balaji, M.; Ramesh, A.; Boini, M.K. Antihyperglycemic and hypoglycemic effect of Thespesia populnea fruit in normal and alloxan-induced diabetes in rabbits. Saudi Pharm. J. 2004, 12, 107–111. [Google Scholar]
  880. Ajao, A.A.; Moteetee, A.N. Tithonia diversifolia (Hemsl) A. Gray. (asteraceae: Heliantheae), an invasive plant of significant ethnopharmacological importance: A review. S. Afr. J. Bot. 2017, 113, 396–403. [Google Scholar] [CrossRef]
  881. Wang, X.; Li, W.Z.; Kong, D.; Duan, Y. Ethanol extracts from Toona sinensis seeds alleviate diabetic peripheral neuropathy through inhibiting oxidative stress and regulating growth factor. Indian J. Pharm. Sci. 2016, 78, 307–312. [Google Scholar] [CrossRef]
  882. Mohamed Farook, S.; Clement Atlee, W. Antidiabetic and hypolipidemic potential of Tragia involucrata Linn. in streptozotocin-nicotinamide induced type II diabetic rats. Int. J. Pharmcy Pharm. Sci. 2011, 3, 103–109. [Google Scholar]
  883. Nagulapalli Venkata, K.C.; Swaroop, A.; Bagchi, D.; Bishayee, A. A small plant with big benefits: Fenugreek (Trigonella foenum-graecum Linn.) for disease prevention and health promotion. Mol. Nutr. Food Res. 2017, 61, 1600950. [Google Scholar] [CrossRef]
  884. Hamza, N.; Berke, B.; Cheze, C.; Marais, S.; Lorrain, S.; Abdouelfath, A.; Lassalle, R.; Carles, D.; Gin, H.; Moore, N. Effect of Centaurium erythraea Rafn, Artemisia herba-alba asso and Trigonella foenum-graecum L. On liver fat accumulation in C57BL/6J mice with high-fat diet-induced type 2 diabetes. J. Ethnopharmacol. 2015, 171, 4–11. [Google Scholar] [CrossRef]
  885. Hasanzadeh, E.; Rezazadeh, S.H.; Shamsa, S.F.; Dolatabadi, R.; Zarringhalam, J. Review on phytochemistry and therapeutic properties of fenugreek (Trigonella foenum-graceum). J. Med. Plants 2010, 9, 1–13. [Google Scholar]
  886. Zhou, J.; Chan, L.; Zhou, S. Trigonelline: A plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Curr. Med. Chem. 2012, 19, 3523–3531. [Google Scholar] [CrossRef]
  887. Vats, V.; Yadav, S.P.; Grover, J.K. Effect of T. foenumgraecum on glycogen content of tissues and the key enzymes of carbohydrate metabolism. J. Ethnopharmacol. 2003, 85, 237–242. [Google Scholar] [CrossRef]
  888. Khlifi, S.; Jemaa, H.B.; Hmad, H.B.; Abaza, H.; Karmous, I.; Abid, A.; Benzarti, A.; Elati, J.; Aouidet, A. Antioxidant, antidiabetic and antihyperlipidemic effects of Trigonella foenum-graecum seeds. Int. J. Pharmacol. 2016, 12, 394–400. [Google Scholar] [CrossRef]
  889. Hannan, J.M.A.; Ali, L.; Rokeya, B.; Khaleque, J.; Akhter, M.; Flatt, P.R.; Abdel-Wahab, Y.H.A. Soluble dietary fibre fraction of Trigonella foenum-graecum (fenugreek) seed improves glucose homeostasis in animal models of type 1 and type 2 diabetes by delaying carbohydrate digestion and absorption, and enhancing insulin action. Br. J. Nutr. 2007, 97, 514–521. [Google Scholar] [CrossRef]
  890. Balekar, N.; Nakpheng, T.; Srichana, T. Wedelia trilobata L.: A phytochemical and pharmacological review. Chiang Mai J. Sci. 2014, 41, 590–605. [Google Scholar]
  891. Patil, R.N.; Patil, R.Y.; Ahirwar, B.; Ahirwar, D. Evaluation of antidiabetic and related actions of some Indian medicinal plants in diabetic rats. Asian Pac. J. Trop. Med. 2011, 4, 20–23. [Google Scholar] [CrossRef] [Green Version]
  892. Hegazy, G.A.; Alnoury, A.M.; Gad, H.G. The role of Acacia arabica extract as an antidiabetic, antihyperlipidemic, and antioxidant in streptozotocin-induced diabetic rats. Saudi Med J 2013, 34, 727–733. [Google Scholar] [PubMed]
  893. Geetha, G.; Gopinathapillai, P.K.; Sankar, V. Anti diabetic effect of Achyranthes rubrofusca leaf extracts on alloxan induced diabetic rats. Pak. J. Pharma. Sci. 2011, 24, 193–199. [Google Scholar]
  894. Ahmed, D.; Kumar, V.; Verma, A.; Gupta, P.S.; Kumar, H.; Dhingra, V.; Mishra, V.; Sharma, M. Antidiabetic, renal/hepatic/pancreas/cardiac protective and antioxidant potential of methanol/dichloromethane extract of Albizzia Lebbeck Benth. Stem bark (ALEx) on streptozotocin induced diabetic rats. BMC Complement Altern Med 2014, 14, 243. [Google Scholar] [CrossRef] [PubMed]
  895. Patel, P.A.; Parikh, M.P.; Johari, S.; Gandhi, T.R. Antihyperglycemic activity of Albizzia lebbeck bark extract in streptozotocin-nicotinamide induced type II diabetes mellitus rats. Ayu 2015, 36, 335–340. [Google Scholar]
  896. Kumar, R.; Sharma, B.; Tomar, N.R.; Roy, P.; Gupta, A.K.; Kumar, A. In vivo evaluation of hypoglycemic activity of Aloe spp. And identification of its mode of action on GLUT-4 gene expression in vitro. Appl Biochem Biotechnol 2011, 164, 1246–1256. [Google Scholar] [CrossRef]
  897. Noor, A.; Gunasekaran, S.; Vijayalakshmi, M.A. Improvement of insulin secretion and pancreatic β-cell function in streptozotocin-induced diabetic rats treated with. Pharmacogn. Res 2017, 9, S99–S104. [Google Scholar] [CrossRef]
  898. Rahmatullah, M.; Hosain, M.; Rahman, S.; Akter, M.; Rahman, F.; Rehana, F.; Munmun, M.; Kalpana, M.A. Antihyperglycaemic and antinociceptive activity evaluation of methanolic extract of whole plant of Amaranthus tricolour L. (Amaranthaceae). Afr J Tradit Complement Altern Med 2013, 10, 408–411. [Google Scholar]
  899. Kamtchouing, P.; Sokeng, S.D.; Moundipa, P.F.; Watcho, P.; Jatsa, H.B.; Lontsi, D. Protective role of anacardium occidentale extract against streptozotocin-induced diabetes in rats. J Ethnopharmacol 1998, 62, 95–99. [Google Scholar] [CrossRef]
  900. Jaiswal, Y.S.; Tatke, P.A.; Gabhe, S.Y.; Vaidya, A.B. Antidiabetic activity of extracts of Anacardium occidentale Linn. leaves on n-streptozotocin diabetic rats. J Tradit Complement Med 2017, 7, 421–427. [Google Scholar] [CrossRef]
  901. Akhtar, N.; Khan, B.A.; Majid, A.; Khan, H.M.; Mahmood, T.; Gulfishan, S.T. Pharmaceutical and biopharmaceutical evaluation of extracts from different plant parts of indigenous origin for their hypoglycemic responses in rabbits. Acta Pol. Pharm. 2011, 68, 919–925. [Google Scholar] [PubMed]
  902. Dheer, R.; Bhatnagar, P. A study of the antidiabetic activity of Barleria prionitis Linn. Indian J. Pharmacol. 2010, 42, 70–73. [Google Scholar] [CrossRef] [PubMed]
  903. Ojezele, M.O.; Abatan, O.M. Hypoglycaemic and coronary risk index lowering effects of Bauhinia thoningii in alloxan induced diabetic rats. Afr. Health Sci. 2011, 11, 85–89. [Google Scholar] [PubMed]
  904. Vasconcelos, C.F.; Maranhão, H.M.; Batista, T.M.; Carneiro, E.M.; Ferreira, F.; Costa, J.; Soares, L.A.; Sá, M.D.; Souza, T.P.; Wanderley, A.G. Hypoglycaemic activity and molecular mechanisms of Caesalpinia ferrea martius bark extract on streptozotocin-induced diabetes in wistar rats. J. Ethnopharmacol. 2011, 137, 1533–1541. [Google Scholar] [CrossRef] [PubMed]
  905. Al-Attar, A.M.; Zari, T.A. Influences of crude extract of tea leaves, Camellia sinensis, on streptozotocin diabetic male albino mice. Saudi J. Biol. Sci. 2010, 17, 295–301. [Google Scholar] [CrossRef]
  906. Prakasam, A.; Sethupathy, S.; Pugalendi, K.V. Influence of Casearia esculenta root extract on protein metabolism and marker enzymes in streptozotocin-induced diabetic rats. Pol. J. Pharm. 2004, 56, 587–593. [Google Scholar]
  907. Agnihotri, A.; Singh, V. Effect of Tamarindus indica Linn. and Cassia fistula Linn. Stem bark extracts on oxidative stress and diabetic conditions. Acta Pol. Pharm. 2013, 70, 1011–1019. [Google Scholar]
  908. Lodha, S.R.; Joshi, S.V.; Vyas, B.A.; Upadhye, M.C.; Kirve, M.S.; Salunke, S.S.; Kadu, S.K.; Rogye, M.V. Assessment of the antidiabetic potential of Cassia grandis using an in vivo model. J. Adv. Pharm. Technol. Res. 2010, 1, 330–333. [Google Scholar] [CrossRef]
  909. Singh, S.N.; Vats, P.; Suri, S.; Shyam, R.; Kumria, M.M.L.; Ranganathan, S.; Sridharan, K. Effect of an antidiabetic extract of catharanthus roseus on enzymic activities in streptozotocin induced diabetic rats. J. Ethnopharmacol. 2001, 76, 269–277. [Google Scholar] [CrossRef]
  910. Aragão, D.M.; Guarize, L.; Lanini, J.; da Costa, J.C.; Garcia, R.M.; Scio, E. Hypoglycemic effects of Cecropia pachystachya in normal and alloxan-induced diabetic rats. J. Ethnopharmacol. 2010, 128, 629–633. [Google Scholar] [CrossRef]
  911. Nabeel, M.A.; Kathiresan, K.; Manivannan, S. Antidiabetic activity of the mangrove species Ceriops decandra in alloxan-induced diabetic rats. J. Diabetes 2010, 2, 97–103. [Google Scholar] [CrossRef] [PubMed]
  912. Gorelick, J.; Kitron, A.; Pen, S.; Rosenzweig, T.; Madar, Z. Anti-diabetic activity of Chiliadenus iphionoides. J. Ethnopharmacol. 2011, 137, 1245–1249. [Google Scholar] [CrossRef] [PubMed]
  913. Lu, Z.; Jia, Q.; Wang, R.; Wu, X.; Wu, Y.; Huang, C.; Li, Y. Hypoglycemic activities of A- and B-type procyanidin oligomer-rich extracts from different cinnamon barks. Phytomedicine 2011, 18, 298–302. [Google Scholar] [CrossRef] [PubMed]
  914. Agarwal, V.; Sharma, A.K.; Upadhyay, A.; Singh, G.; Gupta, R. Hypoglycemic effects of Citrullus colocynthis roots. Acta Pol. Pharm. 2012, 69, 75–79. [Google Scholar] [PubMed]
  915. Amin, A.; Tahir, M.; Lone, K.P. Effect of Citrullus colocynthis aqueous seed extract on beta cell regeneration and intra-islet vasculature in alloxan induced diabetic male albino rats. J. Pak. Med. Assoc. 2017, 67, 715–721. [Google Scholar]
  916. Punitha, I.S.R.; Rajendran, K.; Shirwaikar, A. Alcoholic stem extract of Coscinium fenestratum regulates carbohydrate metabolism and improves antioxidant status in streptozotocin-nicotinamide induced diabetic rats. Evid.-Based Complement. Altern. Med. 2005, 2, 375–381. [Google Scholar] [CrossRef]
  917. Arjun, P.; Shivesh, J.; Alakh, N.S. Antidiabetic activity of aqueous extract of Eucalyptus citriodorahook. in alloxan induced diabetic rats. Pharmacogn. Mag. 2009, 5, 51–54. [Google Scholar]
  918. Kang, M.H.; Lee, M.S.; Choi, M.K.; Min, K.S.; Shibamoto, T. Hypoglycemic activity of Gymnema sylvestre extracts on oxidative stress and antioxidant status in diabetic rats. J. Agric. Food Chem. 2012, 60, 2517–2524. [Google Scholar] [CrossRef]
  919. Okokon, J.E.; Umoh, E.E.; Etim, E.I.; Jackson, C.L. Antiplasmodial and antidiabetic activities of ethanolic leaf extract of Heinsia crinata. J. Med. Food 2009, 12, 131–136. [Google Scholar] [CrossRef]
  920. Venkatesh, S.; Madhava Reddy, B.; Dayanand Reddy, G.; Mullangi, R.; Lakshman, M. Antihyperglycemic and hypolipidemic effects of Helicteres isora roots in alloxan-induced diabetic rats: A possible mechanism of action. J. Nat. Med. 2010, 64, 295–304. [Google Scholar] [CrossRef]
  921. Tripathi, U.N.; Chandra, D. Anti-hyperglycemic and anti-oxidative effect of aqueous extract of Momordica charantia pulp and trigonella foenum graecum seed in alloxan-induced diabetic rats. Indian J. Biochem. Biophys. 2010, 47, 227–233. [Google Scholar] [PubMed]
  922. Ma, C.; Yu, H.; Xiao, Y.; Wang, H. Momordica charantia extracts ameliorate insulin resistance by regulating the expression of SOCS-3 and jnk in type 2 diabetes mellitus rats. Pharm. Biol. 2017, 55, 2170–2177. [Google Scholar] [CrossRef] [PubMed]
  923. Gupta, R.; Mathur, M.; Bajaj, V.K.; Katariya, P.; Yadav, S.; Kamal, R.; Gupta, R.S. Evaluation of antidiabetic and antioxidant activity of Moringa oleifera in experimental diabetes. J. Diabetes 2012, 4, 164–171. [Google Scholar] [CrossRef] [PubMed]
  924. Villarruel-López, A.; López-de la Mora, D.A.; Vázquez-Paulino, O.D.; Puebla-Mora, A.G.; Torres-Vitela, M.R.; Guerrero-Quiroz, L.A.; Nuño, K. Effect of Moringa oleifera consumption on diabetic rats. BMC Complement. Altern. Med. 2018, 18, 127. [Google Scholar] [CrossRef] [PubMed]
  925. Pandey, J.; Maurya, R.; Raykhera, R.; Srivastava, M.N.; Yadav, P.P.; Tamrakar, A.K. Murraya koenigii (L.) spreng. ameliorates insulin resistance in dexamethasone-treated mice by enhancing peripheral insulin sensitivity. J. Sci. Food Agric. 2014, 94, 2282–2288. [Google Scholar] [CrossRef]
  926. Luo, C.; Zhang, W.; Sheng, C.; Zheng, C.; Yao, J.; Miao, Z. Chemical composition and antidiabetic activity of Opuntia milpa alta extracts. Chem. Biodivers. 2010, 7, 2869–2879. [Google Scholar] [CrossRef]
  927. Vujicic, M.; Nikolic, I.; Kontogianni, V.G.; Saksida, T.; Charisiadis, P.; Orescanin-Dusic, Z.; Blagojevic, D.; Stosic-Grujicic, S.; Tzakos, A.G.; Stojanovic, I. Methanolic extract of Origanum vulgare ameliorates type 1 diabetes through antioxidant, anti-inflammatory and anti-apoptotic activity. Br. J. Nutr. 2015, 113, 770–782. [Google Scholar] [CrossRef]
  928. Montefusco-Pereira, C.V.; de Carvalho, M.J.; de Araújo Boleti, A.P.; Teixeira, L.S.; Matos, H.R.; Lima, E.S. Antioxidant, anti-inflammatory, and hypoglycemic effects of the leaf extract from Passiflora nitida kunth. Appl. Biochem. Biotechnol. 2013, 170, 1367–1378. [Google Scholar] [CrossRef]
  929. Jain, S.; Bhatia, G.; Barik, R.; Kumar, P.; Jain, A.; Dixit, V.K. Antidiabetic activity of Paspalum scrobiculatum Linn. in alloxan induced diabetic rats. J. Ethnopharmacol. 2010, 127, 325–328. [Google Scholar] [CrossRef]
  930. Lima, C.R.; Vasconcelos, C.F.; Costa-Silva, J.H.; Maranhão, C.A.; Costa, J.; Batista, T.M.; Carneiro, E.M.; Soares, L.A.; Ferreira, F.; Wanderley, A.G. Anti-diabetic activity of extract from Persea americana Mill. Leaf via the activation of protein kinase B (PKB/AKT) in streptozotocin-induced diabetic rats. J. Ethnopharmacol. 2012, 141, 517–525. [Google Scholar] [CrossRef]
  931. Ezejiofor, A.N.; Okorie, A.; Orisakwe, O.E. Hypoglycaemic and tissue-protective effects of the aqueous extract of Persea americana seeds on alloxan-induced albino rats. Malays. J. Med. Sci. 2013, 20, 31–39. [Google Scholar] [PubMed]
  932. Mard, S.A.; Jalalvand, K.; Jafarinejad, M.; Balochi, H.; Naseri, M.K. Evaluation of the antidiabetic and antilipaemic activities of the hydroalcoholic extract of Phoenix dactylifera palm leaves and its fractions in alloxan-induced diabetic rats. Malays. J. Med. Sci. 2010, 17, 4–13. [Google Scholar] [PubMed]
  933. Okoli, C.O.; Ibiam, A.F.; Ezike, A.C.; Akah, P.A.; Okoye, T.C. Evaluation of antidiabetic potentials of Phyllanthus niruri in alloxan diabetic rats. Afr. J. Biotechnol. 2010, 9, 248–259. [Google Scholar]
  934. Giribabu, N.; Karim, K.; Kilari, E.K.; Salleh, N. Phyllanthus niruri leaves aqueous extract improves kidney functions, ameliorates kidney oxidative stress, inflammation, fibrosis and apoptosis and enhances kidney cell proliferation in adult male rats with diabetes mellitus. J. Ethnopharmacol. 2017, 205, 123–137. [Google Scholar] [CrossRef]
  935. Shabeer, J.; Srivastava, R.S.; Singh, S.K. Antidiabetic and antioxidant effect of various fractions of Phyllanthus simplex in alloxan diabetic rats. J. Ethnopharmacol. 2009, 124, 34–38. [Google Scholar] [CrossRef]
  936. Teugwa, C.M.; Mejiato, P.C.; Zofou, D.; Tchinda, B.T.; Boyom, F.F. Antioxidant and antidiabetic profiles of two African medicinal plants: Picralima nitida (apocynaceae) and Sonchus oleraceus (asteraceae). BMC Complement. Altern. Med. 2013, 13, 175. [Google Scholar] [CrossRef]
  937. Nabi, S.A.; Kasetti, R.B.; Sirasanagandla, S.; Tilak, T.K.; Kumar, M.V.; Rao, C.A. Antidiabetic and antihyperlipidemic activity of Piper longum root aqueous extract in stz induced diabetic rats. BMC Complement. Altern. Med. 2013, 13, 37. [Google Scholar] [CrossRef]
  938. Bhadoriya, S.S.; Ganeshpurkar, A.; Bhadoriya, R.P.S.; Sahu, S.K.; Patel, J.R. Antidiabetic potential of polyphenolic-rich fraction of Tamarindus indica seed coat in alloxan-induced diabetic rats. J. Basic Clin. Physiol. Pharm. 2018, 29, 37–45. [Google Scholar] [CrossRef]
  939. Nalamolu, K.R.; Nammi, S. Antidiabetic and renoprotective effects of the chloroform extract of Terminalia chebula Retz. Seeds in streptozotocin-induced diabetic rats. BMC Complement. Altern. Med. 2006, 6, 17. [Google Scholar]
  940. Nagappa, A.N.; Thakurdesai, P.A.; Rao, N.V.; Singh, J. Antidiabetic activity of Terminalia catappa Linn fruits. J. Ethnopharmacol. 2003, 88, 45–50. [Google Scholar] [CrossRef]
  941. Mowla, A.; Alauddin, M.; Rahman, M.A.; Ahmed, K. Antihyperglycemic effect of Trigonella foenum-graecum (fenugreek) seed extract in alloxan-induced diabetic rats and its use in diabetes mellitus: A brief qualitative phytochemical and acute toxicity test on the extract. Afr. J. Tradit. Complement. Altern. Med. 2009, 6, 255–261. [Google Scholar] [CrossRef] [PubMed]
  942. Joshi, D.V.; Patil, R.R.; Naik, S.R. Hydroalcohol extract of Trigonella foenum-graecum seed attenuates markers of inflammation and oxidative stress while improving exocrine function in diabetic rats. Pharm. Biol. 2015, 53, 201–211. [Google Scholar] [CrossRef] [PubMed]
  943. Feshani, A.M.; Kouhsari, S.M.; Mohammadi, S. Vaccinium arctostaphylos, a common herbal medicine in iran: Molecular and biochemical study of its antidiabetic effects on alloxan-diabetic wistar rats. J. Ethnopharmacol. 2011, 133, 67–74. [Google Scholar] [CrossRef] [PubMed]
  944. Michael, U.A.; David, B.U.; Theophine, C.O.; Philip, F.U.; Ogochukwu, A.M.; Benson, V.A. Antidiabetic effect of combined aqueous leaf extract of Vernonia amygdalina and metformin in rats. J. Basic Clin. Pharm. 2010, 1, 197–202. [Google Scholar] [PubMed]
  945. Herrera, C.; García-Barrantes, P.M.; Binns, F.; Vargas, M.; Poveda, L.; Badilla, S. Hypoglycemic and antihyperglycemic effect of Witheringia solanacea in normal and alloxan-induced hyperglycemic rats. J. Ethnopharmacol. 2011, 133, 907–910. [Google Scholar] [CrossRef] [PubMed]
  946. Meenakshi, P.; Bhuvaneshwari, R.; Rathi, M.A.; Thirumoorthi, L.; Guravaiah, D.C.; Jiji, M.J.; Gopalakrishnan, V.K. Antidiabetic activity of ethanolic extract of Zaleya decandra in alloxan-induced diabetic rats. Appl. Biochem. Biotechnol. 2010, 162, 1153–1159. [Google Scholar] [CrossRef]
  947. Jarald, E.E.; Joshi, S.B.; Jain, D.C. Antidiabetic activity of extracts and fraction of Zizyphus mauritiana. Pharm. Biol. 2009, 47, 328–334. [Google Scholar] [CrossRef]
  948. Mancha-Ramirez, A.M.; Slaga, T.J. Ursolic acid and chronic disease: An overview of ua’s effects on prevention and treatment of obesity and cancer. In Advances in Experimental Medicine and Biology. Anti-Inflammatory Nutraceuticals and Chronic Diseases; Gupta, S.C., Prasad, S., Aggarwal, B.B., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 928. [Google Scholar]
  949. Christodoulou, M.; Tchoumtchoua, J.; Skaltsounis, A.; Scorilas, A.; Halabalaki, M. Natural alkaloids intervening the insulin pathway: New hopes for anti-diabetic agents? Curr. Med. Chem. 2019. [Google Scholar] [CrossRef]
  950. Pan, G.Y.; Huang, Z.J.; Wang, G.J.; Fawcett, J.P.; Liu, X.D.; Zhao, X.C.; Sun, J.G.; Xie, Y.Y. The antihyperglycaemic activity of berberine arises from a decrease of glucose absorption. Planta Med. 2003, 69, 632–636. [Google Scholar]
  951. Gaikwad, S.B.; Mohan, G.K.; Rani, M.S. Phytochemicals for diabetes management. Pharm. Crop. 2014, 5, 11–28. [Google Scholar] [CrossRef]
  952. Cicero, A.F.G.; Baggioni, A. Berberine and Its Role in Chronic Disease; Springer International Publishing: Cham, Switzerland, 2016; Volume 928. [Google Scholar]
  953. Oza, M.J.; Kulkarni, Y.A. Phytochemical and complication in type 2 Diabetes—An update. Int. J. Pharm. Sci. Res. 2016, 7, 14–24. [Google Scholar]
  954. Lau, Y.S.; Tian, X.Y.; Mustafa, M.R.; Murugan, D. Boldine improves endothelial function in diabetic db/db mice through inhibition of angiotensin II-mediated BMP4oxidative stress cascade. Br. J. Pharmacol. 2013, 170, 1190–1198. [Google Scholar] [CrossRef] [PubMed]
  955. Lopez, P.M.; Mora, P.G.; Wysocka, W.; Maiztegui, B.; Alzugaray, M.E.; Zoto, H.D.; Borelli, M.I. Quinolizidine alkaloids isolated from Lupinus species enhance insulin secretion. Eur. J. Pharmacol. 2004, 504, 139–142. [Google Scholar] [CrossRef] [PubMed]
  956. Wiedemann, M.; Gurrola-Díaz, C.; Vargas-Guerrero, B.; Wink, M.; García-López, P.; Düfer, M. Lupanine improves glucose homeostasis by influencing KATP channels and insulin gene expression. Molecules 2015, 20, 19085–19100. [Google Scholar] [CrossRef] [PubMed]
  957. Li, G.; Xu, H.; Zhu, S.; Xu, W.; Qin, S.; Liu, S.; Tu, G.; Peng, H.; Qiu, S.; Yu, S.; et al. Effects of neferine on CCL5 and CCR5 expression in SCG of type 2 diabetic rats. Brain Res. Bull. 2013, 90, 79–87. [Google Scholar] [CrossRef]
  958. Guo, C.; Han, F.; Zhang, C.; Xiao, W.; Yang, Z. Protective effects of oxymatrine on experimental diabetic nephropathy. Planta Med. 2014, 80, 269–276. [Google Scholar] [CrossRef]
  959. Atal, S.; Atal, S.; Vyas, S.; Phadnis, P. Bio-enhancing effect of piperine with metformin on lowering blood glucose level in alloxan induced diabetic mice. Pharmacogn. Res. 2016, 8, 56–60. [Google Scholar] [CrossRef]
  960. Wang, Q.; Zhao, Z.; Shang, J.; Xia, W. Targets and candidate agents for type 2 diabetes treatment with computational bioinformatics approach. J. Diabetes Res. 2014, 2014, 763936. [Google Scholar] [CrossRef]
  961. Den Hartogh, D.J.; Tsiani, E. Antidiabetic properties of naringenin: A citrus fruit polyphenol. Biomolecules 2019, 9, 99. [Google Scholar] [CrossRef] [PubMed]
  962. Mackenzie, T.; Leary, L.; Brooks, W.B. The effect of an extract of green and black tea on glucose control in adults with type 2 diabetes mellitus: Double-blind randomized study. Metabolism 2007, 56, 1340–1344. [Google Scholar] [CrossRef]
  963. Prasath, G.S.; Pillai, S.I.; Subramanian, S.P. Fisetin improves glucose homeostasis through the inhibition of gluconeogenic enzymes in hepatic tissues of streptozotocin induced diabetic rats. Eur. J. Pharmacol. 2014, 740, 248–254. [Google Scholar] [CrossRef] [PubMed]
  964. Maher, P.; Dargusch, R.; Ehren, J.L.; Okada, S.; Sharma, K.; Schubert, D. Fisetin lowers methylglyoxal dependent protein glycation and limits the complications of diabetes. PLoS ONE 2011, 6, e21226. [Google Scholar] [CrossRef] [PubMed]
  965. Prasath, G.S.; Subramanian, S.P. Antihyperlipidemic effect of fisetin, a bioflavonoid of strawberries, studied in streptozotocin-induced diabetic rats. J. Biochem. Mol. Toxicol. 2014, 28. [Google Scholar] [CrossRef] [PubMed]
  966. Alkhalidy, H.; Moore, W.; Zhang, Y.; McMillan, R.; Wang, A.; Ali, M.; Suh, K.-S.; Zhen, W.; Cheng, Z.; Jia, Z. Small molecule kaempferol promotes insulin sensitivity and preserved pancreatic b-cell mass in middle-aged obese diabetic mice. J. Diabetes Res. 2015, 2015, 532984. [Google Scholar] [CrossRef] [PubMed]
  967. Wang, G.G.; Lu, X.H.; Li, W.; Zhao, X.; Zhang, C. Protective effects of luteolin on diabetic nephropathy in stz-induced diabetic rats. Evid.-Based Complement. Altern. Med. 2011, 2011, 323171. [Google Scholar] [CrossRef] [PubMed]
  968. Wang, G.; Li, W.; Lu, X.; Bao, P.; Zhao, X. Luteolin ameliorates cardiac failure in type I diabetic cardiomyopathy. J. Diabetes Its Complicat. 2012, 26, 259–265. [Google Scholar] [CrossRef]
  969. Tsai, S.J.; Huang, C.S.; Mong, M.C.; Kam, W.Y.; Huang, H.Y.; Yin, M.C. Anti-inflammatory and antifibrotic effects of naringenin in diabetic mice. J. Agric. Food Chem. 2012, 60, 514–521. [Google Scholar] [CrossRef]
  970. Tang, D.Q.; Wei, Y.Q.; Yin, X.X.; Lu, Q.; Hao, H.H.; Zhai, Y.P.; Wang, J.Y.; Ren, J. In vitro suppression of quercetin on hypertrophy and extracellular matrix accumulation in rat glomerular mesangial cells cultured by high glucose. Fitoterapia 2011, 82, 920–926. [Google Scholar] [CrossRef]
  971. Li, X.H.; Xin, X.; Wang, Y.; Wu, J.Z.; Jin, Z.D.; Ma, L.N.; Nie, C.J.; Xiao, X.; Hu, Y.; Jin, M.W. Pentamethylquercetin protects against diabetes-related cognitive deficits in diabetic goto-kakizaki rats. J. Alzheimers Dis. 2013, 34, 755–767. [Google Scholar] [CrossRef]
  972. Prince, P.; Kamalakkannan, N. Rutin improves glucose homeostasis in streptozotocin diabetic tissues by altering glycolytic and gluconeogenic enzymes. J. Biochem. Mol. Toxicol. 2006, 20, 96–102. [Google Scholar] [CrossRef]
  973. Kappel, V.D.; Cazarolli, L.H.; Pereira, D.F.; Postal, B.G.; Zamoner, A.; Reginatto, F.H.; Silva, F.R.M.B. Involvement of GLUT-4 in the stimulatory effect of rutin on glucose uptake in rat soleus muscle. J. Pharm. Pharmacol. 2013, 65, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
  974. Hsu, C.Y.; Shih, H.Y.; Chia, Y.C.; Lee, C.H.; Ashida, H.; Lai, Y.K.; Weng, C.F. Rutin potentiates insulin receptor kinase to enhance insulin-dependent glucose transporter 4 translocation. Mol. Nutr. Food Res. 2014, 58, 1168–1176. [Google Scholar] [CrossRef] [PubMed]
  975. Paoli, P.; Cirri, P.; Caselli, A.; Ranaldi, F.; Bruschi, G.; Santi, A.; Camici, G. The insulin-mimetic effect of morin: A promising molecule in diabetes treatment. Biochim. Biophys. Acta 2013, 1830, 3102–3111. [Google Scholar] [CrossRef] [PubMed]
  976. Taguchi, K.; Hida, M.; Hasegawa, M.; Matsumoto, T.; Kobayashi, T. Dietary polyphenol morin rescues endothelial dysfunction in a diabetic mouse model by activating the AKT/ENOS pathway. Mol. Nutr. Food Res. 2016, 60, 580–588. [Google Scholar] [CrossRef] [PubMed]
  977. Razavi, T.; Kouhsari, S.M.; Abnous, K. Morin exerts anti-diabetic effects in human HEPG2 cells via down-regulation of miR-29a. Exp. Clin. Endocrinol. Diabetes 2018. [Google Scholar] [CrossRef]
  978. Pandey, V.K.; Mathur, A.; Khan, M.F.; Kakkar, P. Activation of PERK-eiF2α-ATF4 pathway contributes to diabetic hepatotoxicity: Attenuation of er stress by morin. Cell. Signal. 2019, 59, 41–52. [Google Scholar] [CrossRef]
  979. Bijak, M. Silybin, a major bioactive component of milk thistle (Silybum marianum L. Gaernt.)—Chemistry, bioavailability, and metabolism. Molecules 2017, 22, 1942. [Google Scholar] [CrossRef]
  980. Abenavoli, L.; Izzo, A.A.; Milić, N.; Cicala, C.; Santini, A.; Capasso, R. Milk thistle (Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytother. Res. 2018, 32, 2202–2213. [Google Scholar] [CrossRef]
  981. Jaggi, A.S.; Singh, N. Silymarin and its role in chronic diseases. In Drug Discovery from Mother Nature; Springer: Berlin, Germany, 2016; pp. 25–44. [Google Scholar]
  982. Sheela, N.; Jose, M.A.; Sathyamurthy, D.; Kumar, B.N. Effect of silymarin on streptozotocin-nicotinamide-induced type 2 diabetic nephropathy in rats. Iran. J. Kidney Dis. 2013, 7, 117–123. [Google Scholar]
  983. Meng, S.; Yang, F.; Wang, Y.; Qin, Y.; Xian, H.; Che, H.; Wang, L. Silymarin ameliorates diabetic cardiomyopathy via inhibiting TGF-β1/smad signaling. Cell Biol. Int. 2019, 43, 65–72. [Google Scholar] [CrossRef]
  984. Mani, R.; Natesan, V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry 2018, 145, 187–196. [Google Scholar] [CrossRef] [PubMed]
  985. Amjid, A.; Ajaz, A.G.; Mohd, M.; Siddiqui, W.A. Chrysin, an antiinflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats. Toxicol. Appl. Pharm. 2014, 279, 1–7. [Google Scholar]
  986. Taslimi, P.; Kandemir, F.M.; Demir, Y.; İleritürk, M.; Temel, Y.; Caglayan, C.; Gulçin, İ. The antidiabetic and anticholinergic effects of chrysin on cyclophosphamide-induced multiple organ toxicity in rats: Pharmacological evaluation of some metabolic enzyme activities. J. Biochem. Mol. Toxicol. 2019, 33, e22313. [Google Scholar] [CrossRef] [PubMed]
  987. Ahad, A.; Mujeeb, M.; Ahsan, H.; Siddiqui, W.A. Prophylactic effect of baicalein against renal dysfunction in type 2 diabetic rats. Biochimie 2014, 106, 101–110. [Google Scholar] [CrossRef] [PubMed]
  988. Hamid, K.; Alqahtani, A.; Kim, M.-S.; Cho, J.-L.; Cui, P.H.; Li, C.G.; Groundwater, P.W.; Li, G.Q. Tetracyclic triterpenoids in herbal medicines and their activities in diabetes and its complications. Curr. Top. Med. Chem. 2015, 15, 2406–2430. [Google Scholar] [CrossRef] [PubMed]
  989. Alqahtani, A.; Hamid, K.; Kam, A.; Wong, K.; Abdelhak, Z.; Razmovski-Naumovski, V.; Chan, K.; Li, K.M.; Groundwater, P.W.; Li, G.Q. The pentacyclic triterpenoids in herbal medicines and their pharmacological activities in diabetes and diabetic complications. Curr. Med. Chem. 2013, 20, 908–931. [Google Scholar] [PubMed]
  990. Ammon, H.P.T. Use of Boswellic Acids for the Prophylaxis and/or Treatment of Damage to and/or Inflammation of the Islets of Langerhans. U.S. Patent 8975228B2, 10 March 2015. [Google Scholar]
  991. Jadhav, R.; Puchchakala, G. Hypoglycemic and antidiabetic activity of flavonoids: Boswellic acid, ellagic acid, quercetin, rutin on streptozotocin-nicotamide induced type 2 diabetic rats. Int. J. Pharmcy Pharm. Sci. 2011, 4, 251–256. [Google Scholar]
  992. Han, L.; Li, C.; Sun, B.; Xie, Y.; Guan, Y.; Ma, Z.; Chen, L. Protective effects of celastrol on diabetic liver injury via TLR4/myd88/NF-κB signaling pathway in type 2 diabetic rats. J. Diabetes Res. 2016, 2016. [Google Scholar] [CrossRef]
  993. Wang, C.; Shi, C.; Yang, X.; Yang, M.; Sun, H.; Wang, C. Celastrol suppresses obesity process via increasing antioxidant capacity and improving lipid metabolism. Eur. J. Pharmacol. 2015, 744, 52–58. [Google Scholar] [CrossRef]
  994. Kim, J.E.; Lee, M.H.; Nam, D.H. Celastrol, an nf-κB inhibitor, improves insulin resistance and attenuates renal injury in db/db mice. PLoS ONE 2013, 8, e62068. [Google Scholar] [CrossRef]
  995. Camer, D.; Yu, Y.; Szabo, A.; Huang, X. The molecular mechanisms underpinning the therapeutic properties of oleanolic acid, its isomer and derivatives for type 2 diabetes and associated complications. Mol. Nutr. Food Res. 2014, 58, 1750–1759. [Google Scholar] [CrossRef] [PubMed]
  996. Zeng, X.Y.; Wang, Y.P.; Cantley, J.; Iseli, T.J.; Molero, J.C.; Hegarty, B.D.; Kraegen, E.W.; Ye, Y.; Ye, J.M. Oleanolic acid reduces hyperglycemia beyond treatment period with Akt/FoxO1-induced suppression of hepatic gluconeogenesis in type-2 diabetic mice. PLoS ONE 2012, 7, e42115. [Google Scholar] [CrossRef] [PubMed]
  997. Na, M.; Oh, W.K.; Kim, Y.H.; Cai, X.F. Inhibition of protein tyrosine phosphatase 1b by diterpenoids isolated from Acanthopanax koreanum. Bioorg. Med. Chem. Lett. 2006, 16, 3061–3064. [Google Scholar] [CrossRef] [PubMed]
  998. Ramirez-Espinosa, J.J.; Rios, M.Y.; Lopez-Martinez, S.; Lopez-Vallejo, F. Antidiabetic activity of some pentacyclic acid triterpenoids, role of PTP-1B: In vitro, in silico, and in vivo approaches. Eur. J. Med. Chem. 2011, 46, 2243–2251. [Google Scholar] [CrossRef] [PubMed]
  999. De Melo, C.L.; Queiroz, M.G.; Fonseca, S.G.; Bizerra, A.M. Oleanolic acid, a natural triterpenoid improves blood glucose tolerance in normal mice and ameliorates visceral obesity in mice fed a high-fat diet. Chem. Biol. Interact. 2010, 185, 59–65. [Google Scholar] [CrossRef] [PubMed]
  1000. Ling, C.; Jinping, L.; Xia, L.; Renyong, Y. Ursolic acid provides kidney protection in diabetic rats. Curr. Res. 2013, 75, 59–63. [Google Scholar] [CrossRef]
  1001. Huang, S.H.; Lin, G.J.; Chu, C.H.; Yu, J.C.; Chen, T.W.; Chen, Y.W.; Chien, M.W.; Chu, C.C.; Sytwu, H.K. Triptolide ameliorates autoimmune diabetes and prolongs islet graft survival in nonobese diabetic mice. Pancreas 2013, 42, 442–451. [Google Scholar] [CrossRef] [PubMed]
  1002. Gao, Q.; Shen, W.; Qin, W.; Zheng, C.; Zhang, M.; Zeng, C.; Wang, S.; Wang, J.; Zhu, X.; Liu, Z. Treatment of db/db diabetic mice with triptolide: A novel therapy for diabetic nephropathy. Nephrol. Dial Transplant. 2010, 25, 3539–3547. [Google Scholar] [CrossRef] [PubMed]
  1003. Jenkins, D.J.; Goff, D.V.; Leeds, A.R.; Alberti, K.G.; Wolever, T.M.; Gassull, M.A.; Hockaday, T.D. Unabsorbable carbohydrates and diabetes: Decreased postprandial hyperglycaemia. Lancet 1976, 2, 172–177. [Google Scholar] [CrossRef]
  1004. Doi, K.; Matsuura, M.; Kawara, A.; Baba, S. Treatment of diabetes with glucomannan (konjac mannan). Lancet 1979, 1, 987–988. [Google Scholar] [CrossRef]
  1005. Kays, S.J.; Nottingham, S.F. Biology and Chemistry of Jerusalem Artichoke: Helianthus tuberosus L.; CRC Press: Boca Raton, FL, USA, 2007; p. 496. [Google Scholar]
  1006. Ma, X.Y.; Zhang, L.H.; Shao, H.B.; Xu, G.; Zhang, F.; Ni, F.T.; Brestic, M. Jerusalem artichoke (Helianthus tuberosus), a medicinal salt-resistant plant has high adaptability and multiple-use values. J. Med. Plant Res. 2011, 5, 1272–1279. [Google Scholar]
  1007. Baur, J.A.; Pearson, K.J.; Price, N.L.; Jamieson, H.A.; Lerin, C.; Kalra, A.; Prabhu, V.V.; Allard, J.S.; Lopez-Lluch, G.; Lewis, K.; et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006, 444, 337–342. [Google Scholar] [CrossRef] [PubMed]
  1008. Minakawa, M.; Miura, Y.; Yagasaki, K. Piceatannol, a resveratrol derivative, promotes glucose uptake through glucose transporter 4 translocation to plasma membrane in l6 myocytes and suppresses blood glucose levels in type 2 diabetic model db/db mice. Biochem. Biophys. Res. Commun. 2012, 422, 469–475. [Google Scholar] [CrossRef] [PubMed]
  1009. Uchida-Maruki, H.; Inagaki, H.; Ito, R.; Kurita, I.; Sai, M.; Ito, T. Piceatannol lowers the blood glucose level in diabetic mice. Biol. Pharm. Bull. 2015, 38, 629–633. [Google Scholar] [CrossRef]
  1010. Oritani, Y.; Okitsu, T.; Nishimura, E.; Sai, M.; Ito, T.; Takeuchi, S. Enhanced glucose tolerance by intravascularly administered piceatannol in freely moving healthy rats. Biochem. Biophys. Res. Commun. 2016, 470, 753–758. [Google Scholar] [CrossRef]
  1011. Jeong, S.O.; Son, Y.; Lee, J.H.; Cheong, Y.K.; Park, S.H.; Chung, H.T.; Pae, H.O. Resveratrol analog piceatannol restores the palmitic acid-induced impairment of insulin signaling and production of endothelial nitric oxide via activation of anti-inflammatory and antioxidative heme oxygenase-1 in human endothelial cells. Mol. Med. Rep. 2015, 12, 937–944. [Google Scholar] [CrossRef]
  1012. Vallianou, N.G.; Evangelopoulos, A.; Kazazis, C. Resveratrol and diabetes. Rev. Diabet. Stud. RDS 2013, 10, 236. [Google Scholar] [CrossRef]
  1013. Szkudelski, T.; Szkudelska, K. Resveratrol and diabetes: From animal to human studies. Biochim. Et Biophys. Acta (BBA)-Mol. Basis Dis. 2015, 1852, 1145–1154. [Google Scholar] [CrossRef]
  1014. Bagul, P.; Banerjee, S. Application of resveratrol in diabetes: Rationale, strategies and challenges. Curr. Mol. Med. 2015, 15, 312. [Google Scholar] [CrossRef]
  1015. Öztürk, E.; Arslan, A.K.K.; Yerer, M.B.; Bishayee, A. Resveratrol and diabetes: A critical review of clinical studies. Biomed. Pharmacother. 2017, 95, 230–234. [Google Scholar] [CrossRef]
  1016. Benzler, J.; Ganjam, G.K.; Pretz, D.; Oelkrug, R.; Koch, C.E.; Legler, K.; Stöhr, S.; Culmsee, C.; Williams, L.M.; Tups, A. Central inhibition of ikkβ/nf-κb signaling attenuates high-fat diet–induced obesity and glucose intolerance. Diabetes 2015, 64, 2015–2027. [Google Scholar] [CrossRef] [PubMed]
  1017. Kunwar, A.; Priyadarsini, K.I. Curcumin and its role in chronic diseases. In Advances in Experimental Medicine and Biology. Anti-Inflammatory Nutraceuticals and Chronic Diseases; Gupta, S.C., Prasad, S., Aggarwal, B.B., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 928, pp. 1–26. [Google Scholar]
  1018. Zhang, D.W.; Fu, M.; Gao, S.H.; Liu, J.L. Curcumin and diabetes: A systematic review. Evid. Complement. Altern. Med. 2013, 16, 1–22. [Google Scholar] [CrossRef] [PubMed]
  1019. Meng, B.I.; Li, J.; Cao, H. Antioixidant and anti-inflammatory activities of curcumin on diabetes mellitus and its complications. Curr. Pharm. Des. 2013, 19, 2101–2103. [Google Scholar] [PubMed]
  1020. Chin, K.Y.; Pang, K.L.; Soelaiman, I.N. Tocotrienol and its role in chronic diseases. In Anti-Inflammatory Nutraceuticals and Chronic Diseases; Gupta, S.C., Prasad, S., Aggarwal, B.B., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 97–130. [Google Scholar]
  1021. Haghighat, N.; Vafa, M.; Eghtesadi, S.; Heidari, I.; Hosseini, A.; Rostami, A. The effects of tocotrienols added to canola oil on microalbuminuria, inflammation, and nitrosative stress in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Int. J. Prev. Med. 2014, 5, 617–623. [Google Scholar]
  1022. Kuhad, A.; Chopra, K. Tocotrienol attenuates oxidative-nitrosative stress and inflammatory cascade in experimental model of diabetic neuropathy. Neuropharmacology 2009, 57, 456–462. [Google Scholar] [CrossRef]
  1023. Licznerska, B.; Baer-Dubowska, W. Indole-3-carbinol and its role in chronic diseases. In Advances in Experimental Medicine and Biology. Anti-Inflammatory Nutraceuticals and Chronic Diseases; Gupta, S.C., Prasad, S., Aggarwa, B.B., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 131–154. [Google Scholar]
  1024. Jayakumar, P.; Pugalendi, K.V.; Sankaran, M. Attenuation of hyperglycemia-mediated oxidative stress by indole-3-carbinol and its metabolite 3, 3′-diindolylmethane in c57bl/6j mice. J. Physiol. Biochem. 2014, 70, 525–534. [Google Scholar] [CrossRef]
  1025. Ong, K.W.; Hsu, A.; Tan, B.K.H. Chlorogenic acid stimulates glucose transport in skeletal muscle via ampk activation: A contributor to the beneficial effects of coffee on diabetes. PLoS ONE 2012, 7, e32718. [Google Scholar] [CrossRef]
  1026. Ong, K.W.; Hsu, A.; Tan, B.K.H. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochem. Pharmacol. 2013, 85, 1341–1351. [Google Scholar] [CrossRef]
  1027. Bassoli, B.K.; Cassolla, P.; Borba-Murad, G.R.; Constantin, J.; Salgueiro-Pagadigorria, C.L.; Bazotte, R.B.; da Silva, R.S.; de Souza, H.M. Chlorogenic acid reduces the plasma glucose peak in the oral glucose tolerance test: Effects on hepatic glucose release and glycaemia. Cell Biochem. Funct. 2008, 26, 320–328. [Google Scholar] [CrossRef]
  1028. Fatima, N.; Hafizur, R.M.; Hameed, A.; Ahmed, S.; Nisar, M.; Kabir, N. Ellagic acid in Emblica officinalis exerts anti-diabetic activity through the action on β-cells of pancreas. Eur. J. Nutr. 2017, 56, 591–601. [Google Scholar] [CrossRef]
  1029. Mehta, V.; Verma, P.; Sharma, N.; Sharma, A.; Thakur, A.; Malairaman, U. Quercetin, ascorbic acid, caffeine and ellagic acid are more efficient than rosiglitazone, metformin and glimepiride in interfering with pathways leading to the development of neurological complications associated with diabetes: A comparative in-vitro study. Bull. Fac. Pharm. Cairo Univ. 2017, 55, 115–121. [Google Scholar]
  1030. Ahad, A.; Ganai, A.A.; Mujeeb, M.; Siddiqui, W.A. Ellagic acid, an nf-κb inhibitor, ameliorates renal function in experimental diabetic nephropathy. Chem. Biol. Interact. 2014, 219, 64–75. [Google Scholar] [CrossRef] [PubMed]
  1031. Naik, S.R.; Niture, N.T.; Ansari, A.A.; Shah, P.D. Anti-diabetic activity of embelin: Involvement of cellular inflammatory mediators, oxidative stress and other biomarkers. Phytomedicine 2013, 20, 797–804. [Google Scholar] [CrossRef] [PubMed]
  1032. Durg, S.; Veerapur, V.P.; Neelima, S.; Dhadde, S.B. Antidiabetic activity of Embelia ribes, embelin and its derivatives: A systematic review and meta-analysis. Biomed. Pharmacother. 2017, 86, 195–204. [Google Scholar] [CrossRef] [PubMed]
  1033. Yu, Z.; Zhang, T.; Gong, C.; Sheng, Y.; Lu, B.; Zhou, L.; Ji, L.; Wang, Z. Erianin inhibits high glucose-induced retinal angiogenesis via blocking erk1/2-regulated hif-1α-vegf/vegfr2 signaling pathway. Sci. Rep. 2016, 6, 34306. [Google Scholar] [CrossRef]
  1034. Cui, J.; Gong, R.; Hu, S.; Cai, L.; Chen, L. Gambogic acid ameliorates diabetes-induced proliferative retinopathy through inhibition of the hif-1α/vegf expression via targeting pi3k/akt pathway. Life Sci. 2018, 192, 293–303. [Google Scholar] [CrossRef]
  1035. Madhuri, K.; Naik, P.R. Modulatory effect of garcinol in streptozotocin-induced diabetic wistar rats. Arch. Physiol. Biochem. 2017, 123, 322–329. [Google Scholar] [CrossRef]
  1036. Mali, K.K.; Dias, R.J.; Havaldar, V.D.; Yadav, S.J. Antidiabetic effect of garcinol on streptozotocin-induced diabetic rats. Indian J. Pharm. Sci. 2017, 79, 463–468. [Google Scholar] [CrossRef]
  1037. Sun, J.; Fu, X.; Liu, Y.; Wang, Y.; Huo, B.; Guo, Y.; Gao, X.; Li, W.; Hu, X. Hypoglycemic effect and mechanism of honokiol on type 2 diabetic mice. Drug Des. Devel. Ther. 2015, 9, 6327–6342. [Google Scholar] [Green Version]
  1038. Wang, J.; Zhao, R.; Liang, J.; Yong, C. Antidiabetic and anti-oxidative effects of honokiol on diabetic rats induced by high-fat diet and streptozotocin. Chin. Herb. Med. 2014, 6, 42–46. [Google Scholar]
  1039. Li, C.-G.; Ni, C.-L.; Yang, M.; Tang, Y.-Z.; Li, Z.; Zhu, Y.-J.; Jiang, Z.-H.; Sun, B.; Li, C.-J. Honokiol protects pancreatic β cell against high glucose and intermittent hypoxia-induced injury by activating nrf2/are pathway in vitro and in vivo. Biomed. Pharmacother. 2018, 97, 1229–1237. [Google Scholar] [CrossRef] [PubMed]
  1040. Udayakumar, R.; Kasthurirengan, S.; Mariashibu, T.S.; Rajesh, M.; Anbazhagan, V.R.; Kim, S.C.; Ganapathi, A.; Choi, C.W. Hypoglycaemic and hypolipidaemic effects of Withania somnifera root and leaf extracts on alloxan-induced diabetic rats. Int. J. Mol. Sci. 2009, 10, 2367–2382. [Google Scholar] [CrossRef] [PubMed]
  1041. Yin, J.; Xing, H.; Ye, J. Efficacy of berberine in patients with type 2 diabetes. Metabolism 2008, 57, 712–717. [Google Scholar] [CrossRef]
  1042. Yin, J.; Ye, J.; Ji, W. Effects and mechanisms of berberine in diabetes treatment. Acta Pharm. Sin. B 2012, 2, 327–334. [Google Scholar] [CrossRef] [Green Version]
  1043. Samarghandian, S.; Azimi-Nezhad, M.; Farkhondeh, T. Catechin treatment ameliorates diabetes and its complications in streptozotocin-induced diabetic rats. Dose-Response 2017. [Google Scholar] [CrossRef]
  1044. Nagao, T.; Meguro, S.; Hase, T.; Otsuka, K.; Komikado, M.; Tokimitsu, I.; Yamamoto, T.; Yamamoto, K. A catechin-rich beverage improves obesity and blood glucose control in patients with type 2 diabetes. Obesity 2009, 17, 310–317. [Google Scholar] [CrossRef] [PubMed]
  1045. Atal, S.; Agrawal, R.P.; Vyas, S.; Phadnis, P.; Rai, N. Evaluation of the effect of piperine per se on blood glucose level in alloxan-induced diabetic mice. Acta Pol. Pharm. 2012, 69, 965–969. [Google Scholar] [PubMed]
  1046. Szkudelski, T.; Szkudelska, K. Anti-diabetic effects of resveratrol. Ann. N. Y. Acad. Sci. 2011, 1215, 34–39. [Google Scholar] [CrossRef]
  1047. Szkudelska, K.; Szkudelski, T. Resveratrol, obesity and diabetes. Eur. J. Pharmacol. 2010, 635, 1–8. [Google Scholar] [CrossRef]
  1048. Szkudelski, T. The insulin-suppressive effect of resveratrol—An in vitro and in vivo phenomenon. Life Sci. 2008, 82, 430–435. [Google Scholar] [CrossRef]
  1049. Do, G.M.; Jung, U.J.; Park, H.J.; Kwon, E.Y.; Jeon, S.M.; McGregor, R.A.; Choi, M.S. Resveratrol ameliorates diabetes-related metabolic changes via activation of amp-activated protein kinase and its downstream targets in db/db mice. Mol. Nutr. Food Res. 2012, 56, 1282–1291. [Google Scholar] [CrossRef]
  1050. Lee, J.; Lee, H.I.; Seo, K.I.; Cho, H.W.; Kim, M.J.; Park, E.M.; Lee, M.K. Effects of ursolic acid on glucose metabolism, the polyol pathway and dyslipidemia in non-obese type 2 diabetic mice. Indian J. Exp. Biol. 2014, 52, 683–691. [Google Scholar] [PubMed]
  1051. Kazmi, I.; Rahman, M.; Afzal, M.; Gupta, G.; Saleem, S.; Afzal, O.; Shaharyar, M.A.; Nautiyal, U.; Ahmed, S.; Anwar, F. Anti-diabetic potential of ursolic acid stearoyl glucoside: A new triterpenic gycosidic ester from Lantana camara. Fitoterapia 2012, 83, 142–146. [Google Scholar] [CrossRef] [PubMed]
  1052. Castro, A.J.; Frederico, M.J.; Cazarolli, L.H.; Mendes, C.P.; Bretanha, L.C.; Schmidt, E.C.; Bouzon, Z.L.; de Medeiros Pinto, V.A.; da Fonte Ramos, C.; Pizzolatti, M.G.; et al. The mechanism of action of ursolic acid as insulin secretagogue and insulinomimetic is mediated by cross-talk between calcium and kinases to regulate glucose balance. Biochim. Biophys. Acta 2015, 1850, 51–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  1053. Sai, K.S.; Nagarajan, S. Blood glucose lowering effect of the leaves of Tinospora cordifolia and Sauropus androgynus in diabetic subjects. J. Nat. Remedies 2002, 2, 28–32. [Google Scholar]
  1054. Singh, S.; Gupta, S.K.; Sabir, G.; Gupta, M.K.; Seth, P.K. A database for anti-diabetic plants with clinical/experimental trials. Bioinformation 2009, 4, 263–268. [Google Scholar] [CrossRef]
  1055. Bunyapraphatsara, N.; Yongchaiyudha, S.; Rungpitarangsi, V.; Chokechaijaroenporn, O. Antidiabetic activity of Aloe vera L. Juice ii. Clinical trial in diabetes mellitus patients in combination with glibenclamide. Phytomedicine 1996, 3, 245–248. [Google Scholar] [CrossRef]
  1056. Yagi, A.; Hegazy, S.; Kabbash, A.; Wahab, E.A.-E. Possible hypoglycemic effect of Aloe vera L. High molecular weight fractions on type 2 diabetic patients. Saudi Pharm. J. 2009, 17, 209–215. [Google Scholar] [CrossRef]
  1057. Choi, H.-C.; Kim, S.-J.; Son, K.-Y.; Oh, B.-J.; Cho, B.-L. Metabolic effects of aloe vera gel complex in obese prediabetes and early non-treated diabetic patients: Randomized controlled trial. Nutrition 2013, 29, 1110–1114. [Google Scholar] [CrossRef]
  1058. Cárdenas-Ibarra, L.; Villarreal-Pérez, J.Z.; Lira-Castillo, J.C.; Nava-Alemán, A. Randomized double blind crossover trial of aloe vera, cnidoscolus chayamansa and placebo for reducing hyperglycemia in women with early metabolic syndrome. Clin. Nutr. Exp. 2017, 14, 1–12. [Google Scholar] [CrossRef]
  1059. Kirkham, S.; Akilen, R.; Sharma, S.; Tsiami, A. The potential of cinnamon to reduce blood glucose levels in patients with type 2 diabetes and insulin resistance. DiabetesObes. Metab. 2009, 11, 1100–1113. [Google Scholar] [CrossRef]
  1060. Hasanzade, F.; Toliat, M.; Emami, S.A.; Emamimoghaadam, Z. The effect of cinnamon on glucose of type ii diabetes patients. J. Tradit. Complementary Med. 2013, 3, 171–174. [Google Scholar] [CrossRef] [PubMed]
  1061. Mang, B.; Wolters, M.; Schmitt, B.; Kelb, K.; Lichtinghagen, R.; Stichtenoth, D.O.; Hahn, A. Effects of a cinnamon extract on plasma glucose, hba, and serum lipids in diabetes mellitus type 2. Eur. J. Clin. Investig. 2006, 36, 340–344. [Google Scholar] [CrossRef] [PubMed]
  1062. Ziegenfuss, T.N.; Hofheins, J.E.; Mendel, R.W.; Landis, J.; Anderson, R.A. Effects of a water-soluble cinnamon extract on body composition and features of the metabolic syndrome in pre-diabetic men and women. J. Int. Soc. Sports Nutr. 2006, 3, 45–53. [Google Scholar] [CrossRef] [PubMed]
  1063. Gutierrez, J.L.; Bowden, R.G.; Willoughby, D.S. Cassia cinnamon supplementation reduces peak blood glucose responses but does not improve insulin resistance and sensitivity in young, sedentary, obese women. J. Diet. Suppl. 2016, 13, 461–471. [Google Scholar] [CrossRef]
  1064. Vanschoonbeek, K.; Thomassen, B.J.; Senden, J.M.; Wodzig, W.K.; van Loon, L.J. Cinnamon supplementation does not improve glycemic control in postmenopausal type 2 diabetes patients. J. Nutr. 2006, 136, 977–980. [Google Scholar] [CrossRef]
  1065. Altschuler, J.A.; Casella, S.J.; MacKenzie, T.A.; Curtis, K.M. The effect of cinnamon on a1c among adolescents with type 1 diabetes. Diabetes Care 2007, 30, 813–816. [Google Scholar] [CrossRef]
  1066. Kudolo, G.B. The effect of 3-month ingestion of ginkgo biloba extract on pancreatic beta-cell function in response to glucose loading in normal glucose tolerant individuals. J. Clin. Pharmacol. 2000, 40, 647–654. [Google Scholar] [CrossRef]
  1067. Kudolo, G.B. Effect of ginkgo biloba extract ingestion on plasma total cortisol levels during an oral glucose tolerance test in normal glucose tolerant individuals. Food Nutr. Sci. 2014, 5, 1561–1567. [Google Scholar] [CrossRef]
  1068. Kudolo, G.B. The effect of 3-month ingestion of ginkgo biloba extract (egb 761) on pancreatic beta-cell function in response to glucose loading in individuals with non-insulin-dependent diabetes mellitus. J. Clin. Pharmacol. 2001, 41, 600–611. [Google Scholar] [CrossRef]
  1069. Hosseini, S.; Jamshidi, L.; Mehrzadi, S.; Mohammad, K.; Najmizadeh, A.R.; Alimoradi, H.; Huseini, H.F. Effects of juglans regia l. Leaf extract on hyperglycemia and lipid profiles in type two diabetic patients: A randomized double-blind, placebo-controlled clinical trial. J. Ethnopharmacol. 2014, 152, 451–456. [Google Scholar] [CrossRef]
  1070. Tharavanij, T.; Pawa, K.K.; Maungboon, P.; Panpitpat, P.; Porntisan, S.; Thangcharoende, W.; Tasanarong, A.; Ritthidej, G.C.; Jesadanont, S. Glucose-lowering efficacy of water extract of malvastrum coromandelianum in type 2 diabetes subjects: A double blind, randomized controlled trial. J. Med. Assoc. Thail. Chotmaihet Thangphaet 2015, 98 (Suppl. 3), S75–S80. [Google Scholar]
  1071. Suparmi, S.; Fasitasari, M.; Martosupono, M.; Mangimbulude, J.C. Comparisons of curative effects of chlorophyll from Sauropus androgynus (L.) merr leaf extract and cu-chlorophyllin on sodium nitrate-induced oxidative stress in rats. J. Toxicol. 2016, 2016. [Google Scholar] [CrossRef] [PubMed]
  1072. Bunawan, H.; Bunawan, S.N.; Baharum, S.N.; Noor, N.M. Sauropus androgynus (L.) merr. Induced bronchiolitis obliterans: From botanical studies to toxicology. Evid.-Based. Complement. Altern. Med. 2015, 2015, 7. [Google Scholar] [CrossRef]
  1073. Mishra, S.; Verma, N.; Bhattacharya, S.; Usman, K.; Reddy, H.; Verma, N.; Anjum, B.; Singh, P.; Bharadwaj, S.; Bharadwaj, K. Efficacy and safety of tinospora cordifolia (tc) as an add-on therapy in patients with type-2 diabetes. IJMRS 2017, 3, 5. [Google Scholar] [CrossRef]
  1074. Chakraborty, S.K.; Barman, N.N. Clinical Evaluation of Tinospora Cordifolia (Wild) Miers (Guduci) in the Management of Diabetic Foot Ulcer; University of Gauhati, Government Ayurvedic College: Gauhati, India, 2012. [Google Scholar]
  1075. Karkal, Y.R.; Bairy, L.K. Safety of Aqueous Extract of Tinospora cordifolia (Tc) in Healthy Volunteers: A Double Blind Randomised Placebo Controlled Study. Iran. J. Pharmacol. Ther. 2007, 6, 59–61. [Google Scholar]
  1076. Baquer, N.Z.; Kumar, P.; Taha, A.; Kale, R.K.; Cowsik, S.M.; McLean, P. Metabolic and molecular action of trigonella foenum-graecum (fenugreek) and trace metals in experimental diabetic tissues. J. Biosci. 2011, 36, 383–396. [Google Scholar] [CrossRef]
  1077. Neelakantan, N.; Narayanan, M.; de Souza, R.J.; van Dam, R.M. Effect of fenugreek (Trigonella foenum-graecum L.) intake on glycemia: A meta-analysis of clinical trials. Nutr. J. 2014, 13, 7. [Google Scholar] [CrossRef] [PubMed]
  1078. Neeraja, A.; Rajyalakshmi, P. Hypoglycemic effect of processed fenugreek seeds in humans. J. Food Sci. Technol. 1996, 33, 427–430. [Google Scholar]
  1079. Madar, Z.; Abel, R.; Samish, S.; Arad, J. Glucose-lowering effect of fenugreek in non-insulin dependent diabetics. Eur. J. Clin. Nutr. 1988, 42, 51–54. [Google Scholar]
  1080. Sharma, R.D.; Raghuram, T.C. Hypoglycemic effect of fenugreek seeds in non-insulin-dependent diabetic subjects. Nutr. Res. 1988, 10, 731–739. [Google Scholar]
  1081. Sharma, R.D.; Sarkar, A.; Hazra, D.K.; Mishra, B.; Singh, J.B.; Sharma, S.K.; Maheshwari, B.B.; Maheshwari, P.K. Use of fenugreek seed powder in the management of non-insulin dependent diabetes mellitus. Nutr. Res. 1996, 16, 1331–1339. [Google Scholar] [CrossRef]
  1082. Zargar, A.H.; Anjli Nehr, B.A.; Laway, F.A.D. Effect of consumption of powdered fenugreek seeds on blood sugar and hbaic levels in patients with type ii diabetes mellitus. Int. J. Diabetes Dev. Ctries. 1992, 12, 49–55. [Google Scholar]
  1083. Gupta, A.; Gupta, R.; Lal, B. Effect of trigonella foenum-graecum (fenugreek) seeds on glycaemic control and insulin resistance in type 2 diabetes mellitus: A double blind placebo controlled study. J. Assoc. Physicians India 2001, 49, 1057–1061. [Google Scholar] [PubMed]
  1084. Hokayem, M.; Blond, E.; Vidal, H.; Lambert, K.; Meugnier, E.; Feillet-Coudray, C.; Coudray, C.; Pesenti, S.; Luyton, C.; Lambert-Porcheron, S.; et al. Grape polyphenols prevent fructose-induced oxidative stress and insulin resistance in first-degree relatives of type 2 diabetic patients. Diabetes Care 2013, 36, 1454–1461. [Google Scholar] [CrossRef] [PubMed]
  1085. Arablou, T.; Aryaeian, N.; Valizadeh, M.; Sharifi, F.; Hosseini, A.; Djalali, M. The effect of ginger consumption on glycemic status, lipid profile and some inflammatory markers in patients with type 2 diabetes mellitus. Int. J. Food Sci. Nutr. 2014, 65, 515–520. [Google Scholar] [CrossRef]
  1086. Mahluji, S.; Attari, V.E.; Mobasseri, M.; Payahoo, L.; Ostadrahimi, A.; Golzari, S.E.J. Effects of ginger (Zingiber officinale) on plasma glucose level, hba1c and insulin sensitivity in type 2 diabetic patients. Int. J. Food Sci. Nutr. 2013, 64, 682–686. [Google Scholar] [CrossRef]
  1087. Rotman-Pikielny, P.; Ness-Abramof, R.; Charach, G.; Roitman, A.; Zissin, R.; Levy, Y. Efficacy and safety of the dietary supplement dbcare(r) in patients with type 2 diabetes mellitus and inadequate glycemic control. J. Am. Coll. Nutr. 2014, 33, 55–62. [Google Scholar] [CrossRef]
Table 1. Antidiabetic plants.
Table 1. Antidiabetic plants.
GenusSpeciesGeographic ZoneActivityReference
AcaciaAcacia nilotica antidiabetic[148]
Acacia catechuNepal, Indiaantihyperglycemic[149,150,151]
Acacia farnesianaBangladeshantidiabetic[133,152]
Acacia tortilis antidiabetic[153]
Acacia senegalSudanantidiabetic[154]
Acacia ferruginea antidiabetic[155]
Acacia nilotica antidiabetic[156]
Acacia modestaIndia and Pakistanantihyperglycemic[157]
Acacia arabicaIndiahypoglycemic and antihyperglycemic[158]
AcalyphaAcalypha indicaIndiaantidiabetic[135,159]
Acalypha langiana antidiabetic[160]
Acalypha wilkesianaNigeriaantidiabetic[161]
AcanthopanaxAcanthopanax gracilistylusKoreaantidiabetic[162]
Acanthopanax koreanumKoreaantidiabetic[163]
Acanthopanax senticosusChina (TCM)antidiabetic[164]
Acanthopanax sessiliflorusSoutheast Asiaantidiabetic[165]
AchilleaAchillea millefoliumIndiaantidiabetic[151,166]
Achillea santolinaIraq and Jordanantidiabetic[167,168]
AlismaAlisma orientaleChinaantidiabetic[169]
Alisma orientaleChinahypoglycemic[170]
AlliumAllium ampeloprasumIranantidiabetic[171]
Allium cepaMauritius, Algeriaantihyperglycemic[172,173,174,175]
Allium porrumTurkeyhypoglycemic [176]
Allium sativumIndia (Ayurveda), Indonesia, Iran, Cuba, Mauritius, Togo, China (TCM)α-amylase inhibitor, hypoglycemic, α-glucosidase inhibitor, antihyperglycemic[128,173,175,177,178,179,180,181]
Allium stipitatumIranhypoglycemic, α-glucosidase inhibitor[178]
AloeAloe feroxIndia (Ayurveda)antidiabetic[182]
Aloe marlothiiSouth Africaantidiabetic[183]
Aloe veraIndia (Ayurveda), Ghana, Mauritius, Uganda, Tanzania, Traditional Chinese medicines, Trinidad and Tobago, Iran, Pakistan, Philippines, Saudi Arabiaα-amylase inhibitor, hypoglycemic[52,61,63,128,138,181,184,185,186,187,188,189,190]
AlpiniaAlpinia calcarataIndia, Sri Lankaantidiabetic[191,192]
Alpinia galangaIndiaantidiabetic[193]
Alpinia officinarumChinahypoglycemic[109]
AmaranthusAmaranthus cruentusKenyaantidiabetic[194]
Amaranthus hybridusMauritiusantidiabetic[186]
Amaranthus spinosusTaiwanα-glucosidase inhibitor[195,196]
AngelicaAngelica hirsutifloraTaiwanantidiabetic[197]
Angelica keiskeiJapanantidiabetic[198]
Angelica sinensisChina (TCM)antidiabetic[199]
AraliaAralia cachemirica antidiabetic[200]
Aralia cortex antidiabetic[201]
Aralia elataChina, Korea, Japanα-glucosidase inhibitor[146,202]
Aralia taibaiensisChinaα-glucosidase and α-amylase inhibitor[203,204]
ArtemisiaArtemisia absinthium antidiabetic[120,205]
Artemisia afraAfricaantidiabetic[121]
Artemisia campestrisMoroccoantidiabetic[206]
Artemisia capillaris antidiabetic[207]
Artemisia dracunculus antidiabetic[208]
Artemisia judaicaJordanantidiabetic[209]
Artemisia herba-albaIraq, Algeria, Jordanhypoglycemic[122,123,210]
Artemisia ludovicianaMexicohypoglycemic[211]
Artemisia pallens antidiabetic[212]
Artemisia parvifloraIndiaantidiabetic[213]
Artemisia princepsAsiaantidiabetic[214]
Artemisia roxburghiana antidiabetic[215]
Artemisia sacrorumChinaantidiabetic[216]
ArtocarpusArtocarpus altilisIndonesia, Trinidad and Tobago, Mauritiusantidiabetic[186,189,217]
Artocarpus communisNigeriaantidiabetic[218]
Artocarpus heterophyllusIndia (Ayurveda), Mauritiushypoglycemic, α-amylase inhibitor[186,219,220]
Artocarpus mariannensisMarshall Islandsantidiabetic[221]
AstragalusAstragalus complanatusChinaantidiabetic[221]
Astragalus membranaceusChinaantidiabetic[222]
Astragalus propinquusChinaα-glucosidase inhibitor[223]
AverrhoaAverrhoa bilimbi antidiabetic[224]
Averrhoa carambolaBangladeshantihyperglycemic[116]
BerberisBerberis aristataIndia (Ayurveda)antidiabetic[225,226]
Berberis asiaticaIndiaantidiabetic[227]
Berberis vulgarisIran, Chinaantidiabetic[228,229]
BrassicaBrassica junceaIndia (Ayurveda)antidiabetic[172]
Brassica oleracea antihyperglycemic[175]
Brassica rapaIndiaantidiabetic[229]
BuddlejaBuddleja asiaticaIndiaantidiabetic[230]
Buddleja cordataMexicoantidiabetic[231]
Buddleja officinalisKoreaantidiabetic[232]
ButeaButea monospermaIndiaantidiabetic[151]
Butea frondosaIndiaantidiabetic[233]
CaesalpiniaCaesalpinia bonducellaIndiaα-amylase inhibitor[234]
Caesalpinia ferreaBrazilantidiabetic[235]
CalamusCalamus tenuisIndiaantidiabetic[125]
Calamus erectusIndiaantidiabetic[236]
CalotropisCalotropis giganteaBangladeshantihyperglycemic[237]
Calotropis procera antidiabetic[238]
CapparisCapparis aphylla antihyperglycemic[239]
Capparis deciduaIndia, Pakistanantidiabetic[240,241]
Capparis sepiariaIndiaantidiabetic[242]
Capparis spinosaIndia (Ayurveda and Unani)antidiabetic[243]
CarallumaCaralluma adscendensIndiaantidiabetic[244,245]
Caralluma umbellataIndiaantihyperglycemic[246]
CarissaCarissa carandasIndia (Ayurveda, Unani, and Homoeopathy)antidiabetic[247]
Carissa spinarumKenyaantidiabetic[248]
CassiaCassia auriculataIndia, Tanzaniaantidiabetic[249,250]
Cassia fistulaIndiaantidiabetic[251]
Cassia obtusifoliaChinaantidiabetic[252]
Cassia sieberianaNigeriaantidiabetic[253]
Cassia spectabilisDiabetesantidiabetic[254]
CentaureaCentaurea karduchorumTurkeyantidiabetic[255]
Centaurea repensPersiaantidiabetic[256]
Centaurea virgataTurkeyantidiabetic[257]
CichoriumCichorium pumilumJordanantidiabetic[258]
Cichorium intybusTurkeyantidiabetic[259]
CinnamomumCinnamomum burmannii antidiabetic[260]
Cinnamomum cassiaIndia (Unani, Ayurveda) Japan, China, South Africaantidiabetic[261,262]
Cinnamomum impressinerviumIndiaantidiabetic[104]
Cinnamomum inersMalaysiaantidiabetic[263]
Cinnamomum japonicumKoreaantidiabetic[264]
Cinnamomum obtusifoliumBangladeshantidiabetic[133]
Cinnamomum tamalaIndia (Ayurveda)hypoglycemic[113]
Cinnamomum verumIndia (Ayurveda)α-amylase inhibitor[128]
Cinnamomum zeylanicum α-glucosidase[147,265]
CistusCistus laurifoliusTurkeyantidiabetic[266]
Cistus ladaniferusMoroccoantidiabetic[267]
Cistus monspeliensisMoroccoantidiabetic[268]
Cistus salviifoliusMoroccoantidiabetic[268]
CitrusCitrus aurantium antidiabetic[269]
Citrus grandisChinaantidiabetic[270]
Citrus paradisiNigeria, Cuba, Trinidad and Tobagoantidiabetic[179,189,271]
Citrus reticulataChinaantidiabetic[199]
Citrus sinensisIndiaantidiabetic[272]
ClerodendrumClerodendrum glandulosumIndiaantidiabetic[273]
Clerodendrum colebrookianumIndiaantidiabetic[230]
Clerodendrum capitatumAfricaantidiabetic[274]
Clerodendrum inerme antidiabetic[275]
Clerodendrum infortunatumIndiaantidiabetic[276]
Clerodendrum phlomidisIndia (Ayurveda)antidiabetic[277]
CocciniaCoccinia cordifoliaIndiaantidiabetic[278]
Coccinia grandisIndia (Ayurveda), Sri Lankaantihyperglycemic, α-glucosidase inhibitor, α-amylase inhibitor[128,279,280,281]
Coccinia indicaIndia (Ayurveda)antidiabetic[113,172]
CoptisCoptis chinensisChinaantidiabetic[282]
Coptis deltoideaChinaantidiabetic[282]
Coptis japonicaChinaantidiabetic[282]
CordycepsCordyceps sinensisChinaantidiabetic[283]
Cordyceps militaris antidiabetic[284]
CornusCornus officinalisChinaantidiabetic, α-glucosidase inhibitor[285,286]
Cornus kousaChinaantidiabetic[287]
Cornus masChinaantidiabetic[288]
Cornus nuttalliiCanadaantidiabetic[289]
Cornus stoloniferaCanadaantidiabetic[290]
CostusCostus igneusIndiaantidiabetic[291]
Costus pictusIndiaantidiabetic[141]
Costus speciosusSri Lankaantidiabetic[279]
CrotonCroton cajucara antidiabetic[292]
Croton celtidifoliusBrazilantidiabetic[293]
Croton guatemalensisGuatemalaantidiabetic[124]
Croton klozchianusIndia (Ayurveda)antidiabetic[294]
Croton zambesicus antidiabetic[295]
CucumisCucumis callosusIndiaantidiabetic[296]
Cucumis sativusMalaysiaantidiabetic[297]
CucurbitaCucurbita ficifoliaIran, Mexicohypoglycemic[175,298,299,300]
Cucurbita pepoSouth Africaantidiabetic[262]
CurculigoCurculigo latifolia antidiabetic[301]
Curculigo orchioidesIndia (Ayurveda)antidiabetic[302]
Curculigo recurvataBangladeshantidiabetic[133]
CurcumaCurcuma angustifoliaIndiaantidiabetic[303]
Curcuma domesticaIndiaantidiabetic[151]
Curcuma longaChina, Bangladesh, India (Ayurveda), Indonesia, Laosantidiabetic[177,181,226,304,305,306]
Curcuma xanthorrhizaBangladesh, Indonesia, Laosantidiabetic[306,307,308]
CuscutaCuscuta reflexaIndia, Bangladeshantidiabetic[125,126]
Cuscuta chinensisChinaantidiabetic[309]
Cuscuta americanaTrinidad and Tobagoantidiabetic[189]
CynomoriumCynomorium coccineumSaudi Arabia, China, Afghanistan, Mongolia, Iranantidiabetic[310]
Cynomorium songaricumSaudi Arabia, China, Afghanistan, Mongolia, Iranantidiabetic[310]
CyperusCyperus kyllingaIndia (Ayurveda)antidiabetic[311]
Cyperus laevigatusIndia (Ayurveda)antidiabetic[312]
Cyperus rotundusIndia (Ayurveda)antidiabetic[313]
DelonixDelonix regiaBangladeshantidiabetic[314]
Delonix elata antidiabetic[315]
DendrobiumDendrobium nobileKoreaantidiabetic[316]
Dendrobium loddigesiiChinaα-glucosidase inhibitor[317]
DesmodiumDesmodium gangeticumIndia (Ayurveda), Sri Lankaantidiabetic[279,318]
Desmodium gyransChina (TCM)antidiabetic[319]
Desmodium styracifoliumChina (TCM)antidiabetic[319]
DioscoreaDioscorea alata antidiabetic[320]
Dioscorea bulbifera α-amylase, α-glucosidase inhibitor[321]
Dioscorea japonicaKoreaantidiabetic[322]
Dioscorea nipponicaKoreaantidiabetic[323]
Dioscorea oppositaChina, India (Ayurveda), China (TCM)antidiabetic[181,226,324]
DiospyrosDiospyros canaliculataCameroonantidiabetic[325]
Diospyros crassifloraCameroonantidiabetic[325]
Diospyros lotus antidiabetic[326]
Diospyros melanoxylonIndia, Sri Lankaantidiabetic[327]
Diospyros peregrinaIndiaantidiabetic[328]
ElephantopusElephantopus scaberIndiaantidiabetic[329]
Elephantopus mollis antidiabetic[330]
EmbeliaEmbelia madagascariensis hypoglycemic[331]
Embelia ribesIndia (Ayurveda)antidiabetic[332]
EnicostemaEnicostema axillareIndia (Ayurveda)antidiabetic[333]
Enicostema littorae antidiabetic[334]
EricaErica arboreaTurkeyantidiabetic[335]
Erica bocquetiiTurkeyantidiabetic[335]
Erica siculaTurkeyantidiabetic[335]
ErythrinaErythrina indicaIndiaantidiabetic[336]
Erythrina variegetaIndiaantidiabetic[315]
EucalyptusEucalyptus globulusIranantihyperglycemic[337,338]
Eucalyptus torrelianaNigeriaantihyperglycemic[339,340]
EugeniaEugenia cumini α-amylase inhibitor[127]
Eugenia jambolanaIndia (Ayurveda)α-amylase inhibitor[172,341]
Eugenia polyanthaIndia, Indonesiaantidiabetic[96,144]
Eugenia unifloraParaguayα-glucosidase inhibitor[342]
EuonymusEuonymus laxiflorusVietnamantidiabetic[343]
Euonymus alatusChina (TCM)antidiabetic[344]
EuphorbiaEuphorbia caducifoliaIndiaantidiabetic[132]
Euphorbia dioeca α-glucosidase inhibitor[345]
Euphorbia drumondiiIndia (Ayurveda)hyperglycemic[136,346]
Euphorbia hirtaIndia, Bangladesh, Nepalα-glucosidase[93,133,150,347]
Euphorbia humifusaMongoliaantidiabetic[60]
Euphorbia kansui antidiabetic[134]
Euphorbia ligulariaIndiaantidiabetic[104]
Euphorbia neriifoliaIndia (Ayurveda)antidiabetic[131]
Euphorbia prostrata antihyperglycemic[348]
Euphorbia thymifoliaBangladeshantihyperglycemic[116]
FerulaFerula assa-foetidaIndia (Ayurveda), Iran, Afghanistanantidiabetic[349,350]
Ferula feruloidesMongoliaantidiabetic[60]
Ferula hermonisLebanon, Syriaantidiabetic[351]
Ferula persicaJordanhypoglycemic[352]
FicusFicus amplissimaIndia (Ayurveda, Siddha, Unani)antidiabetic[353]
Ficus benghalensisIndia (Ayurveda, Siddha, Unani, homoeopathy), Southeast Asiaantidiabetic[114,354,355,356]
Ficus caricaIndia (Ayurveda, Siddha, Unani, homoeopathy)antidiabetic[357,358]
Ficus cuniaIndiaα-glucosidase inhibitor[359]
Ficus deltoideaMalaysia, Southeast Asiaα-glucosidase inhibitor[360,361,362]
Ficus elasticaPhilippinesantidiabetic[62]
Ficus exasperataNigeria, Cameroon, Ivory Coast, Sierra Leoneantidiabetic[253,363]
Ficus glomerataIndia (Ayurveda, Siddha, Unani, homoeopathy)antidiabetic[113,364]
Ficus glumosaNigeria, Cameroonhypoglycemic[365,366,367]
Ficus hispidaBangladeshantihyperglycemic[116,368]
Ficus luteaAfricaantidiabetic[119]
Ficus microcarpain south Asiaantidiabetic[369,370]
Ficus palmata antidiabetic[371]
Ficus racemosaIndia (Ayurveda, Siddha, Unani, homoeopathy), Bangladesh, Southeast Asiaantihyperglycemic, hypoglycemic, α-glucosidase and α-amylase inhibitor[83,356,372,373,374,375,376]
Ficus religiosaIndia (Ayurveda)antidiabetic[354,377]
Ficus sansibaricaAfricaantidiabetic[378]
Ficus thonningiiAfricaantidiabetic[363]
Ficus virensIndia (Ayurveda)antidiabetic[379]
GardeniaGardenia gasminoidesChinaantidiabetic[380]
Gardenia ternifoliaTogoantidiabetic[180]
GentianaGentiana crassicaulis antidiabetic[366]
Gentiana scabraKoreaantidiabetic[381]
GeraniumGeranium dielsianum antidiabetic[382]
Geranium graveolensJordanantidiabetic[383]
GlycyrrhizaGlycyrrhiza glabraChina, Indiaantidiabetic[181,384]
Glycyrrhiza uralensisIndiaantidiabetic[385]
GrewiaGrewia asiaticaIndia (Ayurveda)antidiabetic[386]
Grewia hirsutaIndiaantidiabetic[387]
Grewia nervosa antidiabetic[388]
GynuraGynura divaricataChinaantidiabetic[389]
Gynura formosanaChinaantidiabetic[390]
Gynura procumbensIndonesia, Malaysia, Thailand, Southeast Asia, Koreaantidiabetic[391,392,393,394]
Gynura segetum antidiabetic[395]
HedysarumHedysarum limprichtiiChinaantidiabetic[396]
Hedysarum polybotrysChinaantidiabetic[396]
Hedysarum smithianumChinaantidiabetic[396]
Hedysarum vicioiderChinaantidiabetic[396]
HelichrysumHelichrysum caespititiumSouth Africaantidiabetic[183]
Helichrysum graveolensTurkeyα-amylase inhibitor[142]
Helichrysum italicumEuropeantidiabetic[397]
HelicteresHelicteres hirsutaSoutheast Asiaantidiabetic[398]
Helicteres isoraIndia (Ayurveda)antidiabetic[399]
HolarrhenaHolarrhena antidysentericaIndia (Ayurveda)antidiabetic[400]
Holarrhena floribundaNigeriaα-amylase inhibitor[401]
HydnocarpusHydnocarpus alpina hypoglycemic[402]
Hydnocarpus wightianaIndia (Ayurveda)antidiabetic[403]
JuniperusJuniperus oxycedrusTurkeyα-amylase inhibitor, hypoglycemic activity[142,404]
Juniperus communisTurkeyα-glucosidase inhibitor[142]
JusticiaJusticia adhatodaPakistanantidiabetic[405]
Justicia gendarussa antidiabetic[406]
Justicia secunda antidiabetic[407]
Justicia spicigera antidiabetic[408]
LeucasLeucas asperaIndia, Bangladeshantidiabetic[193,409]
Leucas cephalotesIndia (Ayurveda), Nepal, Pakistanantidiabetic[410]
LiriopeLiriope platyphyllaChinaantidiabetic[411]
Liriope spicataChinaantidiabetic[412]
LoniceraLonicera caeruleanorthern Russia, China, Japanantidiabetic[413]
Lonicera japonicaChinaantidiabetic[414]
LuffaLuffa acutangula antidiabetic[415]
Luffa cylindrica antidiabetic[416]
Luffa echinataIndiaantidiabetic[417]
LyciumLycium barbarumChinaantidiabetic[181,418]
Lycium chinenseChinaantidiabetic, antihyperglycemic[418,419,420]
Lycium ruthenicumChinaantidiabetic[421]
MangiferaMangifera indicaIndia (Ayurveda), Nigeriaα-amylase inhibitor, antihyperglycemic[128,422]
Mangifera mekongensisVietnamα-glucosidase inhibitor[423]
MarrubiumMarrubium alysson α-glucosidase inhibitor[424]
Marrubium desertiTunisiaantidiabetic[425]
Marrubium radiatumLebanonα-amylase inhibitor[137]
Marrubium vulgareMexico, Jordan, Algeriaantidiabetic[231,426,427]
MeliaMelia azadirachtaMexicoantidiabetic[231]
Melia dubiaIndiaantidiabetic[428]
Melia orientalisIndia (Ayurveda)antidiabetic[429]
MenthaMentha arvensisIndiaantidiabetic[151]
Mentha longifoliaIndiaantidiabetic[151]
Mentha piperita antidiabetic[430]
MimosaMimosa invisaNigeriahypoglycemic [431]
Mimosa pigraBangladeshantihyperglycemic [432]
Mimosa pudicaSri Lanka, Thailandhypoglycemic [279,433]
MimusopsMimusops elengiIndia (Ayurveda)antidiabetic[434]
Mimusops zeyheriSouth Africaantidiabetic[183]
MomordicaMomordica balsaminaSouth Africaantidiabetic[183]
Momordica charantiaPhilippines, Vietnam, Mauritius, Trinidad and Tobago, India (Ayurveda), Nigeria, Bangladesh, Taiwan, central Americaα-amylase inhibitor, hypoglycemic, antihyperglycemic [61,85,113,129,186,189,435,436,437,438,439]
Momordica cymbalaria antidiabetic[440]
Momordica foetidaSouth Africaantidiabetic[441]
Momordica grosvenoriChina (TCM)antidiabetic[442]
MoringaMoringa oleiferaSouth Africa, Kenya, Mexico, India (Ayurveda), Nigeria, Mauritius, Senegalhypoglycemic[113,183,194,231,443,444,445]
Moringa peregrina antidiabetic[446]
Moringa stenopetalaEthiopiaα-glucosidase inhibitor[139,444]
MorusMorus albaIran, Philippines, Trinidad and Tobago, India (Ayurveda), China (TCM), Pakistan, Korea, Chileantidiabetic, hypoglycemic, α-glucosidase and α-amylase inhibition [53,62,189,447,448,449,450,451,452,453]
Morus nigraIran, Jordonantidiabetic[53,57]
MucunaMucuna giganteaIndiaantidiabetic[454]
Mucuna pruriensIndia (Ayurveda)antidiabetic[172]
MurrayaMurraya koenigiiIndia (Ayurveda)α amylase inhibitor, hypoglycemic effects, antihyperglycemic [455,456,457,458,459]
Murraya panicutataNigeriaα-glucosidase inhibitor[339]
MusaMusa acuminata antidiabetic[460]
Musa paradisiaca antidiabetic[460]
Musa SapientumIndiaantihyperglycemic[348,461]
NymphaeaNymphaea nouchaliBangladesh, India (Ayurveda)antidiabetic[133,462]
Nymphaea stellataIndia (Ayurveda)α-glucosidase inhibitor, hypoglycemic, antihyperglycemic[463,464,465]
OcimumOcimum campechianumTrinidad and Tobagoantidiabetic[189]
Ocimum canumGhanalowers blood glucose[466,467]
Ocimum gratissimumBangladesh, Nigeriahypoglycemic[133,436,468]
Ocimum sanctumIndia (Ayurveda), China, Bangladeshhypoglycemic [469,470,471,472]
Ocimum tenuiflorumIndia (Ayurveda)α-amylase inhibitor, hypoglycemic, antihyperglycemic[128,473]
OplopanaxOplopanax elatusChina, Russia, and Koreaantidiabetic[474]
Oplopanax horridus antidiabetic[475]
OriganumOriganum onitesTurkeyantidiabetic[476]
Origanum vulgare antidiabetic[477]
OrthosiphonOrthosiphon aristatus antidiabetic[478,479]
Orthosiphon stamineusIndonesia and Malaysiaantidiabetic[480]
OtostegiaOtostegia persicaIranantidiabetic[481]
Otostegia integrifolia antidiabetic[482]
OxalisOxalis corniculataIndiaantidiabetic[151]
Oxalis griffithiiIndiaantidiabetic[125]
PaederiaPaederia foetidaChina, Vietnam, India Japanantidiabetic[483]
Paederia scandensChina, Vietnam, India, Japanantidiabetic[483]
PaeoniaPaeonia lactifloraKorea, China, Japanhypoglycemic[484]
Paeonia suffruticosaChina, Korea, Japanantidiabetic[471,485]
PandanusPandanus amaryllifolius antihyperglycemic[486]
Pandanus fascicularisIndia (Ayurveda)antihyperglycemic[487]
Pandanus tectorius antidiabetic[488]
PanaxPanax ginsengKoreaantidiabetic[489]
Panax notoginsengChinaantihyperglycemic[490,491]
Panax quinquefolius antidiabetic[492]
PhaleriaPhaleria cumingii antidiabetic[493]
Phaleria macrocarpaIndonesia, Malaysia, Papuaα-glucosidase inhibitor[494,495,496,497]
Phaleria nishidae antidiabetic[498]
PhyllanthusPhyllanthus amarusVietnam, India (Ayurveda, Siddha, Unani and homeopathy), Nigeria, Malaysiaα-glucosidase inhibitor, hypoglycemic, α-amylase inhibitor[83,499,500,501,502]
Phyllanthus emblicaThailand, Southeast Asia, India (Ayurveda)antidiabetic[75,356,503]
Phyllanthus engleriTanzaniaantidiabetic[504]
Phyllanthus fraternus antidiabetic[505]
Phyllanthus gardnerianusIndiaantidiabetic[506]
Phyllanthus niruri hypoglycemic[507,508]
Phyllanthus urinariaVietnamα-glucosidase and α-amylase inhibitor[83]
phyllanthus virgatus α-amylase inhibitor[509]
Phyllanthus watsonii antidiabetic[510]
PhysalisPhysalis angulataIndiaantidiabetic[511]
Physalis minimaIndiaantidiabetic[193]
Physalis peruvianaIndiaantidiabetic[248]
PiperPiper angustifoliumLatin Americaantidiabetic[512]
Piper betleAsiahypoglycemic [513,514,515]
Piper crocatum antihyperglycemic[516]
Piper cubeba α-amylase and α-glucosidase[517]
Piper guineenseNigeriaα-amylase inhibitor[401]
Piper longumBangladesh, India (Ayurveda)antihyperglycemic[305,518,519]
Piper nigrum α-amylase inhibitor, hypoglycemic[128,226,520]
Piper sarmentosumSouth East Asiaantidiabetic[521,522]
PistaciaPistacia atlanticaJordanhypoglycemic [168,352]
Pistacia integerrima antidiabetic[523]
PlantagoPlantago asiatica antidiabetic[524]
Plantago lanceolataTurkeyα-amylase and α-glucosidase inhibitor[525]
Plantago ovataIndiaantidiabetic[341]
PlumeriaPlumeria albaTogoantidiabetic[526]
Plumeria obtusaSouth Africaantidiabetic[183]
Plumeria rubraIndiaα-amylase and α-glucosidase inhibitor[517,527]
PolygonumPolygonum cuspidatumJapan, Korea, Chinaα-glucosidase inhibitor[528,529]
Polygonum hydropiperIndiaantidiabetic[230]
Polygonum multiflorumChina, Asia, Europe, Africahypoglycemic[530,531,532]
Polygonum senegalensis antidiabetic[533]
PsidiumPsidium cattleianumeast Asiaantidiabetic[534]
Psidium guajavaMauritius, Togo, Sri Lanka, central America, Japan, China (TCM), Papua New Guineaantihyperglycemic, hypoglycemic[173,180,279,438,535,536,537]
PterocarpusPterocarpus santalinusIndia (Ayurveda)antidiabetic[538]
Pterocarpus marsupiumIndiaantidiabetic[539]
Pterocarpus soyauxii antidiabetic[540]
PrunusPrunus persicaIndiaantidiabetic[541]
Prunus capuliPeruantidiabetic[542]
Prunus emarginataCanadaantidiabetic[289]
Prunus mumeChinaantidiabetic[543]
PuerariaPueraria lobataKorea, China (TCM)antidiabetic, α-glucosidase inhibitor[544,545,546,547]
Pueraria thomsonii antidiabetic[548]
Pueraria thunbergianaKoreaantidiabetic[549]
RheumRheum emodiIndia (Ayurveda), Chinaantidiabetic[550]
Rheum officinaleChinaantidiabetic[551]
Rheum palmatumChinaantidiabetic[552]
Rheum ribesIran, Jordonhypoglycemic[52,553,554]
Rheum tanguticumChinaantidiabetic[552]
Rheum turkestanicumIranantidiabetic[555]
Rheum undulatumKoreaantidiabetic[556]
RhododendronRhododendron brachycarpumKoreaantidiabetic[557,558]
Rhododendron groenlandicum antidiabetic[559]
Rhododendron tomentosumCanadaantidiabetic[560]
RhusRhus coriariaIranantidiabetic[561]
Rhus chinensis antidiabetic[562]
Rhus hirta antidiabetic[290]
Rhus mysorensis antidiabetic[563]
Rhus vernicifluaKoreaantidiabetic[564]
Rhus virensMexicoantidiabetic[231]
RosaRosa caninaIran, Turkeyantidiabetic[565,566]
Rosa rugosaKorea, Chinahypoglycemic[109,567,568]
SalaciaSalacia chinensisIndia (Ayurveda, Unani), Japan, Koreahypoglycemic, antihyperglycaemic[569,570,571]
Salacia oblongaIndia (Ayurveda, Unani), Japan, Koreahypoglycemic[569,570,572]
Salacia prinoidesIndia (Ayurveda), Sri Lanka, Southeast Asiaantidiabetic[573]
Salacia reticulataIndia (Ayurveda, Unani), Japan, Korea, Sri Lankahypoglycemic, α-glucosidase inhibitor[569,570,574,575]
SalviaSalvia acetabulosaLebanonα-amylase inhibitor[137]
Salvia hispanicaCentral and South Americaantidiabetic[576]
Salvia hypoleucaIranantidiabetic[577]
Salvia officinalisIranhypoglycemic, α-glucosidase inhibitor[178]
Salvia libanotica antidiabetic[578]
Salvia limbataTurkeyα-amylase and α-glucosidase inhibitor[525]
Salvia miltiorrhizaChinaantidiabetic[181,579]
SidaSida acutaIndiaantidiabetic[580]
Sida cordifoliaBangladesh, India (Ayurveda)antidiabetic[471,581]
Sida rhombifolia antidiabetic[582]
SmilaxSmilax chinaKoreaantidiabetic[583]
Smilax glabraChinaantidiabetic[584]
Smilax officinalisLatin Americaantidiabetic[512]
Smilax perfoliataBangladeshantihyperglycemic[585]
SolanumSolanum americanumGuatemalaantidiabetic[124]
Solanum indicumUganda, Indiaantidiabetic[104,187]
Solanum lycocarpumBrazilantidiabetic[586]
Solanum muricatum antidiabetic[587]
Solanum nigrumAsiahypoglycemic[588,589]
Solanum torvum antihyperglycemic[590]
Solanum trilobatumIndia (Ayurveda, Siddha)antidiabetic[118]
Solanum tuberosum antidiabetic[591]
Solanum viarumIndiaantidiabetic[125]
Solanum virginianumPakistanantidiabetic[592]
Solanum xanthocarpum hypoglycemic[593]
SpondiasSpondias mombinNigeriaα-amylase inhibition, hypoglycemic[594]
Spondias pinnataIndonesia, Sri Lankaantihyperglycemic[595,596]
StereospermumStereospermum colais α-glucosidase inhibitor[597]
Stereospermum suaveolensIndiaantidiabetic[598]
SwertiaSwertia chirataBangladeshantidiabetic[126]
Swertia chirayitaIndia (Ayurveda)hypoglycemic[113,599]
Swertia cordata antidiabetic[600]
Swertia longifolia α-amylase inhibitor[601]
Swertia macrospermaTibet, Chinaantidiabetic[602]
Swertia mussotiiChinaα-glycosidase inhibitor[603]
SyzygiumSyzygium alternifolium antidiabetic[604]
Syzygium aromaticum antihyperglycemic, hypoglycemic[605]
Syzygium cuminiBangladesh, India (Ayurveda), Brazilα-glucosidase and α-amylase inhibitor, antihyperglycemic[83,172,220,376,606,607,608]
Syzygium densiflorumIndiaantidiabetic[609]
Syzygium jambolanumIndia (Ayurveda)hypoglycemic[610,611]
Syzygium jambosaPuerto Ricohypoglycemic[612]
Syzygium samarangenseBangladeshantihyperglycemic[116]
TabernaemontanaTabernaemontana corymbosaMalaysiaantidiabetic[613]
Tabernaemontana divaricataIndiaantidiabetic[104]
Tabernaemontana heyneana antidiabetic[614]
TaxusTaxus baccataIndiaantidiabetic[151]
Taxus yunnanensisChinaantidiabetic[615]
TerminaliaTerminalia alataVietnamantidiabetic[616]
Terminalia arjunaBangladesh, India (Ayurveda)α-amylase inhibitor, antihyperglycemic[126,127,617,618]
Terminalia belliricaBangladesh, Vietnam, India (Ayurveda, Siddha, Unani), Sri Lanka, Southeast Asiaantidiabetic[133,616,619,620]
Terminalia catappa antidiabetic[621]
Terminalia chebulaThailand, India (Ayurveda), Bangladesh, Iranα-amylase inhibitor[75,128,130,622,623]
Terminalia citrinaBangladeshantidiabetic[133]
Terminalia corticosaVietnamantidiabetic[616]
Terminalia glaucescensCameroonantidiabetic[624]
Terminalia macropteraAfricaα-glucosidase inhibitor[625]
Terminalia sericea antidiabetic[626]
Terminalia superba antidiabetic[627]
TeucriumTeucrium oliverianum antidiabetic[628]
Teucrium poliumJordan, Iranhypoglycemic[553,629,630]
ThymusThymus caramanicusIranantidiabetic[631]
Thymus satureioidesMoroccoantidiabetic[632]
TinosporaTinospora cordifoliaSoutheast Asia, India (Ayurveda), Thailand, Malaysia, Guyana, Bangladeshα-amylase inhibitors, hypoglycemic, antihyperglycemic[113,128,135,356,619,633,634,635]
Tinospora crispaMalaysia, Thailand, Malaysia, Guyana, Bangladesh, Indonesia, Malaysiahypoglycemic, antihyperglycemic[613,635,636,637,638,639,640]
Tinospora malabarica antidiabetic[641]
Tinospora sinensisNepal, Indiaantidiabetic[150,642]
Tinospora bakisSudanantidiabetic[643]
TrichosanthesTrichosanthes cucumerinaIndia (Ayurveda)hypoglycemic[113]
Trichosanthes dioicaIndia (Ayurveda)antidiabetic[644]
Trichosanthes kirilowiiChina (TCM)hypoglycemic, α-amylase inhibitor[645,646]
Trichosanthes tricuspidata hyperglycemic[647]
UrticaUrtica angustifolia hypoglycemic[648]
Urtica dioicaKenya, Iran, Turkeyα-amylase inhibitor[248,649,650,651]
Urtica urens antidiabetic[652]
VacciniumVaccinium angustifolium antidiabetic[653]
Vaccinium arctostaphylosIranα-amylase inhibitor[654]
Vaccinium bracteatumChinaantidiabetic[655]
Vaccinium myrtillus antidiabetic[656]
Vaccinium ovalifolium antidiabetic[657]
Vaccinium uliginosum antidiabetic[657]
Vaccinium vitis antidiabetic[658]
WithaniaWithania coagulansIndia (Ayurveda), Pakistanantihyperglycemic [659,660,661]
Withania somniferaIndia (Ayurveda)hypoglycemic [96,662]
ZanthoxylumZanthoxylum alatum antidiabetic[663]
Zanthoxylum armatumIndia (Ayurveda)antidiabetic[251]
Zanthoxylum capenseSouth Africanantidiabetic[664]
Zanthoxylum chalybeumTanzaniaantidiabetic[188]
Zanthoxylum humileIndia (Ayurveda)antidiabetic[665]
ZingiberZingiber officinaleIndia (Ayurveda), Latin America Africaα-amylase inhibitor, hypoglycemic[113,128,512,666]
Zingiber striolatumChina (TCM)hypoglycemic[667]
ZiziphusZiziphus amole antidiabetic[668]
Ziziphus jujubaTurkeyα glucosidase inhibitor[76,669]
Ziziphus lotusAlgeriaantidiabetic[670]
Ziziphus mauritianaSoutheast Asia, Maliantidiabetic[356,671]
Ziziphus mucronataNigeriaantidiabetic[672]
Ziziphus nummulariaIndiaantidiabetic[132]
Ziziphus oxyphyllaPakistanantidiabetic[673]
Ziziphus spina-christiEgypthypoglycemic and anti-hyperglycemic [674]
Ziziphus xylopyrusIndia (Ayurveda), Pakistan, Chinaantidiabetic[675]
TCM Traditional Chinese Medicine.
Table 2. Antidiabetic plants where only one species is available.
Table 2. Antidiabetic plants where only one species is available.
Plant NameCountry/RegionActivityReference
Abrus precatoriusIndia (Ayurveda, Unani, Siddha)antidiabetic[676]
Acorus calamusIndia, Indonesia, Americaα-glucosidase inhibitor[93,677,678]
Actinidia argutaKoreaantidiabetic[679]
Adansonia digitataIndia (Ayurveda)α-amylase inhibitor[128]
Adiantum capillus-venerisIndiaantidiabetic[151]
Ageratum conyzoidesBangladeshantidiabetic[126]
Agrimonia pilosaChinaα-glucosidase inhibitor[680]
Ailanthus excelsaIndiaantidiabetic[681]
Alangium salvifoliumIndia (Ayurveda)hypoglycemic[682,683]
Alstonia scholarisIndia, Thailandα-glucosidase inhibitor[87,684]
Amomum villosumChinaantidiabetic[109]
Amygdalus lycioidesIranantidiabetic[685]
Andrographis paniculataIndia (Ayurveda), Bangladesh, Nepal, Malaysia, Southeast Asiaantihyperglycemic[126,150,356,686,687]
Anemarrhena asphodeloidesChinaantidiabetic, α-glucosidase inhibitor[181,688,689]
Anethum graveolensIran, Asiaantidiabetic[690,691]
Anogeissus acuminateThailandhypoglycemic[433]
Anthocephalus cadambaIndia (Ayurveda), Australia, China, Indonesia, Malaysia, Papua New Guinea, Philippines, Singapore, Vietnamantidiabetic[692]
Aphanamixis polystachyaIndia (Ayurveda)antidiabetic[693]
Arctium lappaChinahypoglycemic[694]
Argyreia nervosaIndia (Ayurveda)antidiabetic[695]
Asanadi ganaIndia (Ayurveda)antidiabetic[696]
Azadirachta indicaIndia (Ayurveda), Nigeria, Pakistan, Mexico, Bangladesh, Nepal, Saudi Arabia, South East Asia, Mauritius, Malaysia, Indonesiaα-glucosidase and α-amylase inhibitor, hypoglycemic[65,113,126,135,150,190,220,231,253,356,697,698,699]
Barringtonia acutangulaIndia (Ayurveda)antidiabetic[700]
Basella rubraIndiaα-amylase inhibitor[701]
Begonia roxburghiiIndiaantidiabetic[125]
Bergenia ciliataNepalα-glucosidase, α-amylase inhibitor[702]
Biophytum sensitivumNepalantidiabetic[703]
Blepharis molluginifoliaIndiaantidiabetic[704]
Boerhavia diffusaIndia (Ayurveda)antidiabetic[226]
Boswellia ovalifoliolataIndiaantidiabetic[705]
Caccinium myrtillusEuropeα-glucosidase inhibitor[706]
Cajanus cajanIndia (Ayurveda)antidiabetic[172]
Callicarpa arboreaIndiaantidiabetic[125]
Camellia sinensisIranα-amylase inhibitor[651]
Canna indica antidiabetic[707]
Cardia obaliquaPakistanantidiabetic[708]
Carthamus tinctoriusIranα-glucosidase inhibitor[709,710]
Casia fistulaIndia (Ayurveda)α-amylase inhibitor[128]
Catharanthus roseusIndia (Ayurveda), South Africa, China, Malaysia, South East Asian Countries, South Africa, Trinidad, Tobagoα amylase inhibitor, antihyperglycemic, hypoglycemic[113,189,234,356,711,712,713,714,715]
Catunaregam tormentosaThailandhypoglycemic[433]
Cayratia trifoliaIndiaantidiabetic[716]
Ceiba pentandraIndia, Nigeriaα-amylase inhibition, hypoglycemic, antihyperglycemic[717,718,719]
Celosia argenteaChinaantidiabetic[720]
Centella asiaticaIndia (Ayurveda), Bangladesh, Malaysia, Laos, Southeast Asiaantidiabetic[133,306,356,721,722]
Centranthus longiflorusTurkeyantidiabetic[723]
Centratherum anthelminticumIndia (Ayurveda)hypoglycemic[580,724]
Cerinthe minorTurkeyantidiabetic[723]
Chlorophytum borivilianumIndia (Ayurveda)antidiabetic[725]
Cirsium japonicumTaiwanantidiabetic[726]
Cistanche tubulosaChinaantihyperglycemic[727]
Citrullus colocynthisIran, Algeria, Southeast Asiahypoglycemic[356,728,729]
Clinacanthus nutansIndonesia, Malaysia, Thailandantidiabetic[730,731]
Clitoria ternateaIndia (Ayurveda)α-glucosidase, α-amylase inhibitor hypoglycemic[452,732,733]
Cocculus hirsutusIndiaα-amylase inhibitor[701]
Coldenia procumbensIndiaantidiabetic[734]
Commiphora wightiiIndia (Ayurveda)antidiabetic[226]
Coscinium fenestratumIndia, Sri Lankaantidiabetic[735,736]
Cressa creticaBahrainantidiabetic[737]
Crossostephium chinenseChinaantidiabetic[289]
Cuminum cyminumIndiaantidiabetic[738]
Cupressus sempervirensCyprusantidiabetic[739]
Cyamopsis tetragonolobaIndia (Ayurveda)antidiabetic[740]
Cyclocarya paliurusChinaantidiabetic[741]
Cydonia oblongaTurkeyhypoglycemic[176]
Dendrocalamus hamiltoniiIndia (Ayurveda)hypoglycemic[113]
Dendrophthoe pentandraIndonesiaantidiabetic[742]
Desmostachya bipinnataIndia (Ayurveda)antidiabetic[743]
Dillenia indicaIndiaantidiabetic[125]
Dioecrescis erythrocladaThailandhypoglycemic[433]
Diplazium esculentumIndiaantidiabetic[125]
Dorema aucheriIranhypoglycemic[744]
Eclipta albaBangladesh, India (Ayurveda)α-glucosidase inhibitor[409,745,746]
Elaeocarpus ganitrusIndia (Ayurveda), Nepalantidiabetic[747]
Eleutherine palmifoliaIndonesiahyperglycemic[748]
Emblica officinalisIndia (Ayurveda), Bangladeshantidiabetic[89,409,749]
Enhydra fluctuansIndiaantidiabetic[750]
Eremurus persicusIranantidiabetic[751]
Erigeron breviscapusChinaantidiabetic[752]
Eryngium creticumJordanantidiabetic[753]
Eucommia ulmoidesChina, Japan, Koreaantidiabetic[754]
Eulophia herbaceaBangladeshantidiabetic[755]
Fagonia creticaPakistanantidiabetic[143,756]
Fagopyrum cymosumChinahypoglycemic[109]
Feronia limoniaIndiaantidiabetic[757]
Foeniculum vulgareSudan, Iran, Portugalantidiabetic[154,758,759]
Gloriosa superbaIndia (Ayurveda)antidiabetic[760]
Glycosmis pentaphyllaSiddha, India (Ayurveda)antidiabetic[761]
Gmelina arboreaIndia, Sri Lankaantidiabetic[762,763]
Gymnema sylvestreAyurveda, Pakistan, Southeast Asiahypoglycemic and antihyperglycemic[356,764,765,766,767]
Gynostemma pentaphyllumChina, Vietnamhypoglycemic[768,769,770]
Helianthus tuberosusTurkeyhypoglycemic[176]
Hemidesmus indicusIndia (Ayurveda)antidiabetic[771]
Heritiera fomesIndiaantidiabetic[772]
Hippophae rhamnoidesChinaantidiabetic[773]
Hordeum vulgareIranantidiabetic[774]
Houttuynia cordataJapanantidiabetic[775]
Ichnocarpus frutescensIndia (Ayurveda)antidiabetic[776]
Imperata cylindricaIndia (Ayurveda)antidiabetic[777]
Ixeris dentataKorea, Japan, and Chinaantidiabetic[778]
Juglans regiaIran, Algeria, Turkey, Austriahypoglycemic[779,780,781,782,783]
Kaempferia parvifloraThailandantidiabetic[784]
Kalopanax pictusKoreaantidiabetic[785]
Kickxia ramosissimaPakistanantidiabetic[786]
Korthalsella japonicaKoreaantidiabetic[787]
Lagenaria sicereriaMauritius, India (Ayurveda)antihyperglycemic[186,788,789]
Lagerstroemia speciosaPhilippineshypoglycemic, α-glucosidase inhibitor[790,791,792]
Lannea coromandelicaBangladeshantidiabetic[793]
Lactuca gracilisIndiaantidiabetic[125]
Leonurus sibiricusMongoliaantidiabetic[794]
Leptospermum flavescensMalaysiaantidiabetic[795]
Linum usitatisumumIndia (Ayurveda)α-amylase inhibitor[128]
Litchi chinensisIndonesiaantidiabetic[796]
Lycopus lucidusChina (TCM), Koreaα-amylase inhibitor[646,797]
Macrotyloma uniflorumAsia, Africaantidiabetic[798]
Magnolia officinalisChina, Japanantidiabetic[799]
Mahonia bealeiChinaantidiabetic[800]
Medicago sativaChinaantidiabetic[801]
Meyna laxifloraIndiaantidiabetic[802]
Mezzetia parvifloraIndonesiaantidiabetic[803]
Millingtonia hortensisIndiaantidiabetic[125]
Mitragyna speciosaMalaysia, Thailand, Southeast Asiaantidiabetic[804]
Mukia maderaspatanaIndia (Ayurveda, Siddha)antidiabetic[805]
Murdannia loriformisChinaantidiabetic[806]
Myrica rubraChinaantidiabetic[807]
Nelumbo nuciferaIndia (Ayurveda), China (TCM), Southeast Asiaα-glucosidase, α-amylase inhibitor, hypoglycemic[140,356,808,809]
Neolamarckia cadambaBangladeshantidiabetic[810]
Nicotiana plumbaginifoliaIndiaantidiabetic[151]
Nigella sativaAlgeria, India (Ayurveda, Siddha, Unani), Pakistan, Morocco, Middle East, Mediterranean, North Africaantidiabetic[174,766,811,812,813,814,815,816]
Nycantus arbor-tristisIndia (Ayurveda), Sri Lankahypoglycemic[117]
Nypa fruticansMalaysiaantidiabetic[817]
Odina wodierIndiaantidiabetic[818]
Ophiopogon japonicusChina, Japan, Southeast Asiaantidiabetic[181,819]
Oreocnide integrifoliaIndiaantidiabetic[820]
Oroxylum indicumBangladesh, India (Ayurveda)antidiabetic[133,821]
Paronychia argenteaJordanhypoglycemic[352,553]
Pavonia zeylanicaIndia (Ayurveda)antidiabetic[682]
Pergularia daemiaIndia (Ayurveda)antidiabetic[822]
Persea americanaTogo, Tanzania, Trinidad and Tobago, Central America, India (Ayurveda), Nigeriaantidiabetic[180,188,189,438,823,824]
Peucedanum praeruptorumIndia (Ayurveda), Chinaantidiabetic[825]
Phaseolus vulgarisJordanantihyperglycemic[175,258]
Phlomis armeniacaTurkeyα-amylase and an α-glucosidase inhibitor[525]
Phoenix dactyliferaJordan, India (Ayurveda), Pakistan, Egyptantidiabetic[258,826,827,828]
Phragmanthera austroarabicaSaudi Arabiaantidiabetic[829]
Phyllostachys edulisChinaantidiabetic[830]
Pilea microphyllaChinaantidiabetic[831]
Pimpinella tirupatiensisTurkey, China, Korea, Iran, Egypt, Palestine, Lebanon, Europeantidiabetic[832,833]
Pisonia grandisIndiaantidiabetic[834]
Platycodon grandiflorumKoreaantidiabetic[835]
Pluchea indicaIndonesiaα-glucosidase inhibitor[836]
Plumbago zeylanicaIndiaantidiabetic[151]
Polyalthia longifoliaIndiaantidiabetic[837]
Polygonatum sibiricumChinaantidiabetic[181]
Pongamia pinnataIndia (Ayurveda)antihyperglycemic[838,839]
Poria cocosChinaantidiabetic[840]
Portulaca oleraceaTrinidad and Tobago, India (Ayurveda), Algeria, Iran, China (TCM), Mexicohypoglycemic[189,841,842,843,844,845,846]
Premna integrifoliaIndia (Ayurveda)hypoglycemic[113]
Pseuderanthemum palatiferumVietnam, Thailandhypoglycemic[847]
Psoralea corylifoliaIndia (Ayurveda)antidiabetic[848]
Punica granatumIndia (Ayurveda, unani)antidiabetic[849,850,851,852]
Raphanus sativusIran, Chinaantidiabetic[853,854]
Rauwolfia serpentinaThailandhypoglycemic[433]
Rehmannia glutinosaChina, Koreaantidiabetic[855,856]
Retama raetamSaudi Arabiaantihyperglycemic[857]
Rhodamnia cinereaMalaysiaantidiabetic[858]
Roscoea purpureaNepalantidiabetic[859]
Rosmarinus officinalisAlgeria, Jordan, Turkeyantidiabetic[174,860,861]
Roylea cinereaIndiaantidiabetic[862]
Rubia cordifoliaIndiaantidiabetic[863]
Saccharum spontaneumIndiaantidiabetic[125]
Salicornia herbaceaKoreaantidiabetic[864]
Sanguis draxonisChinaantidiabetic[865]
Sasa borealisKoreaantidiabetic[866]
Schisandra chinensisChinaantidiabetic[181]
Schizonepeta tenuifoliaKoreaantidiabetic[867]
Securigera securidacaIranantidiabetic[868]
Sesbenia aegyptiacaIndia (Ayurveda)hypoglycemic[113]
Siraitia grosvenoriChinaantidiabetic[869]
Sphaeranthus indicusIndiaantidiabetic[870]
Stevia rebaudianaIndia, Paraguay, Brazil, south Americaantidiabetic[871,872,873]
Swietenia macrophyllaMalaysiaantidiabetic[874]
Tamarindus indicaIndia (Ayurveda), Trinidad and Tobago, Africaα amylase inhibitor[189,234,875]
Tecoma stansJordan, Central America, Egypt, Mexicoα-glucosidase inhibitor[145,258,438,876]
Tephrosia purpureaIndia (Ayurveda)antihyperglycemic [877,878]
Thespesia populneaIndia (Ayurveda)antihyperglycemic and hypoglycemic [879]
Tithonia diversifoliaCosta Rica, Democratic Republic of Congo, Kenya, Nigeria, Mexico, the Philippines, São Tomé and Príncipe, Taiwan, Uganda, Venezuelaantidiabetic[880]
Toona sinensisChinaantidiabetic[881]
Tragia involucrataIndia (Ayurveda)antidiabetic[882]
Trichosanthis kirilowiiChinaantidiabetic[181]
Trigonella foenum-graecumIran, Turkey, Algeria, Bangladesh, Pakistan, Morocco, Algeria, Mediterranean, China, India (Ayurveda)antidiabetic, α-amylase inhibitor, antihyperlipidemic effect, hypoglycemic[50,76,128,129,174,181,651,766,767,813,883,884,885,886,887,888,889]
Varthemia iphionoidesJordanantidiabetic[753]
Vinca majorSouth Africaantidiabetic[441]
Viola odorataIndiaantidiabetic[151]
Wedelia trilobataSouth America, China, Japan, Indiaantidiabetic[890]
Table 3. Plant extracts with antidiabetic potential.
Table 3. Plant extracts with antidiabetic potential.
SpeciesExtractPart of the PlantDosage (mg/kg)Experimental ModelInduction of DiabetesReference
Acacia arabicachloroformbark250, 500male Wistar rats and albino micealloxan[891]
chloroformbark100, 200female albino ratsstreptozotocin[892]
Achyranthes rubrofuscaaqueous and ethanolicleaves200ratsalloxan[893]
Albizzia lebbeckmethanol/dichloro-methanestem bark100, 200, 300, 400male albino Wistar ratsstreptozotocin[894]
methanolicbark200, 350, 620female Sprague–Dawley ratsstreptozotocin-nicotinamide[895]
Aloe veraaqueousleaves130swiss albino micestreptozotocin[896]
ethanolicleaves300male albino Wistar ratsstreptozotocin[897]
Amaranthus tricolormethanolicwhole plant50, 100, 200, 400male swiss albino miceglucose-induced hyperglycemia[898]
Anacardium occidentaleaqueousleaves175male albino Wistar ratsstreptozotocin[899]
methanolicleaves100female albino micestreptozotocin[900]
Azadirachta indicaethanolicleaves200adult rabbitsalloxan[901]
Barleria prionitisethanolicleaves and root200adult albino ratsalloxan[902]
Bauhinia thoningiiaqueousleaves500Wistar albino ratsalloxan[903]
Caesalpinia ferreaaqueousstem bark300, 450male Wistar ratsstreptozotocin[904]
Camellia sinensiscrude tealeaves0.5 mL/daymale albino micestreptozotocin[905]
Casearia esculenta Roxbaqueousroot200, 300male albino Wistar ratsstreptozotocin[906]
Cassia fistulaethanolicstem bark250, 500Wistar ratsalloxan[907]
Cassia grandisaqueous and ethanolicstem150male albino Wistar ratsalloxan[908]
Catharanthus roseusdichloromethane-methanolleaves and twigs500male Sprague–Dawley ratsstreptozotocin[909]
ethanolicleaves100, 200male Wistar ratsstreptozotocin[711]
Cecropia pachystachyamethanolicleaves80male Wistar ratsalloxan[910]
Ceriops decandraethanolicleaves30, 60, 120male albino Wistar ratsalloxan[911]
Chiliadenus iphionoidesethanolicaerial parts1000male and female diabetes-prone Psammomys obesus-[912]
Cinnamomum cassiaethanolicbark200, 300male Kunming micestreptozotocin[913]
Cinnamomum japonicaethanolicbark200, 300male Kunming micestreptozotocin[913]
Citrullus colocynthisaqueousroot2000male and female Wistar rats and Swiss albino micealloxan[914]
aqueousseed1, 2 mL/kgmale Wistar albino ratsalloxan[915]
Coscinium fenestratumethanolicstem250male albino Wistar ratsstreptozotocin-nicotinamide[916]
Eucalyptus citriodoraaqueousleaves250, 500albino ratsalloxan[917]
Gymnema sylvestreethanolicleaves100male Sprague–Dawley ratsstreptozotocin[918]
Heinsia crinataethanolicleaves450–1350ratsalloxan[919]
Helicteres isorabutanol and aqueous ethanolroots250male Wistar ratsalloxan[920]
Momordica charantiaaqueouspulp13.33 g pulp/kgmale albino Wistar ratsalloxan[921]
ethanolicfruit200adult rabbitsalloxan[901]
ethanolicfruit400male Sprague–Dawley ratsstreptozotocin[922]
Moringa oleiferamethanolicpod150, 300Wistar albino ratsstreptozotocin[923]
-leaves50male Sprague–Dawley ratsalloxan[924]
Murraya koenigiiaqueousleaves200, 300, 400male albino rabbitsalloxan[458]
ethanolicleaves100, 250male albino Swiss micedexamethasone[925]
Opuntia ficus-indicapetroleum etherstems200male ICR micestreptozotocin[926]
Origanum vulgaremethanolicleaves5male C57BL/6 micestreptozotocin[927]
Passiflora nitidahydro-ethanolicleaves50female Wistar ratsstreptozotocin[928]
Paspalum scrobiculatumaqueous and ethanolicgrains250, 500male Wistar albino ratsalloxan[929]
Persea americanahydro-alcoholicleaves150, 300male Wistar ratsstreptozotocin[930]
aqueousseed20, 30, 40 g/Lmale Wistar albino ratsalloxan[931]
Phoenix dactyliferaethanolicleaves50-400male Wistar ratsalloxan[932]
Phyllanthus niruriaqueousleaves200, 400male Wistar ratsstreptozotocin-nicotinamide[934]
Phyllanthus simplexpetroleum ether, ethyl acetate, methanol and water fraction 100–400ratsalloxan[935]
Picralima nitidamethanolicsteam bark and leaves75, 150, 300Wistar ratsstreptozotocin[936]
Piper longumaqueousroot200, 300, 400male Wistar albino ratsstreptozotocin[937]
Sonchus oleraceushydro-alcoholicwhole plant75, 150, 300Wistar ratsstreptozotocin[936]
Syzygium jambolanaethanolicseed200adult rabbitsalloxan[901]
Tamarindus indicaethanolicstem bark250, 500Wistar ratsalloxan[907]
ethanolicseed coat500Wistar albino ratsalloxan[938]
Terminalia chebulachloroformseed100, 200, 300male Sprague–Dawley ratsstreptozotin[939]
Terminalia catappapetroleum ether, methanol and aqueousfruit68, 40, 42Wistar albino rats and micealloxan[940]
Trigonella foenum-graecumethanolicseed100, 500, 1000, 2000male Wistar albino ratsalloxan[941]
hydro-alcoholicseed500, 1000, 2000Sprague–Dawley ratsalloxan[942]
Vaccinium arctostaphylosethanolicfruit200, 400male Wistar ratsalloxan[943]
Vernonia amygdalinaaqueousleaves100Wistar albino ratsalloxan[944]
Witheringia solanaceaaqueousleaves500, 1000male Sprague–Dawley ratsGTT[945]
Zaleya decandraethanolicroots200Wistar albino ratsalloxan[946]
Zizyphus mauritianapetroleum ether, chloroform, acetone, ethanol and aqueousfruit200, 400female Wistar ratsalloxan[947]
* unless otherwise noted, GTT glucose tolerance test; ICR Institute of Cancer Research.
Table 4. Sources, structure, and target of some potential antidiabetic phytochemicals.
Table 4. Sources, structure, and target of some potential antidiabetic phytochemicals.
CompoundSourcesStructureTargetReference
BaicaleinOroxylum indicum,
Scutellaria baicalensis
Biomolecules 09 00551 i001mitigates renal oxidative stress, suppresses activation of NF-κB, decreases expression of iNOS and TGF-β1, ameliorates structural changes in renal tissues, and normalizes the levels of serum proinflammatory cytokines and liver function enzymes[953,987]
BerberineArgemone mexicana,
Berberis aquifolium,
Berberis aristata,
Berberis vulgaris,
Coptis chinensis,
Eschscholzia californica,
Hydrastis canadensis,
Tinospora cordifolia,
Xanthorhiza simplicissima, Phellodendron amurense
Biomolecules 09 00551 i002regulates glucose and lipid metabolism[1041,1042]
BoldinePeumus boldus Biomolecules 09 00551 i003reduces overproduction of reactive oxygen species by inhibiting Ang II-stimulated BMP4 expression[953,954]
Boswellic acidsthe oleo gum resin from the trees of different Boswellia species (Boswellia serrata,
Boswellia carteri)
Biomolecules 09 00551 i004for the prophylaxis and/or treatment of damage to and/or inflammation of the islets of langerhans;
stimulates β cells to release more insulin
[990,991]
Butein Toxicodendron vernicifluum, Dalbergia odorifera,
Cyclopia subternata, Semecarpus anacardium,
Creopsis tungtoria
Biomolecules 09 00551 i005inhibits central NF-κB signaling and improves glucose homeostasis[1016]
Catechins (catechin, epicatechin and epigallocatechin gallate (EGCG))tea and cocoa,
Camellia sinensis,
Theobroma cacao
Biomolecules 09 00551 i006antioxidative;
by protective effects against oxidative damage;
by modification of oxidative stress; reduces lipid peroxidation by enhancing the SOD, GST, and CAT activities
[1043,1044]
Celastrol Tripterygium wilfordii,
Celastrus orbiculatus,
Celastrus aculeatus,
Celastrus reglii,
Celastrus scandens
Biomolecules 09 00551 i007protective effects on diabetic liver injury via TLR4/MyD88/NF-kB signaling pathway in
T2DM; suppresses obesity process via increase in antioxidant capacity and improves lipid metabolism; an NF-κB inhibitor; improves insulin resistance and attenuates renal injury
[992,993,994]
Chlorogenic acidin many varieties of plant species Biomolecules 09 00551 i008stimulates glucose transport in skeletal muscle via AMPK activation; effects on hepatic glucose release and glycemia[1025,1026,1027]
ChrysinPassiflora caerulea,
Passiflora incarnata,
Oroxylum indicum
Biomolecules 09 00551 i009suppresses transforming growth factor-beta (TGF-β), fibronectin, and collagen-IV protein expressions in renal tissues; reduces the serum levels of pro-inflammatory cytokines, interleukin-1beta (IL-1β), and IL-6[953,985]
CurcuminZingiberaceae plants,
Curcuma longa
Biomolecules 09 00551 i010blood glucose-lowering effect; lowers glycosylated hemoglobin levels
[1017,1018,1019]
Ellagic acidin fruits (pomegranates, persimmon,
raspberries, black raspberries, strawberries, peach, plums), nuts (walnuts,
almonds), vegetables, wine
Biomolecules 09 00551 i011by the action on β cells of the pancreas that stimulates insulin secretion and decreases glucose intolerance;
possesses superior antioxidant properties and genotoxicitypreventive;
inhibits a-amylase activity; reduces hyperglycemia and insulin resistance in T2DM
[1028,1029,1030]
Embelin Embelia ribes,
Lysimachia punctata,
Lysimachia erythrorhiza
Biomolecules 09 00551 i012reduces the elevated plasma glucose, glycosylated hemoglobin, and pro-inflammatory mediators[1031,1032]
Erianin Dendrobium chrysotoxum Biomolecules 09 00551 i013inhibits high glucose-induced retinal angiogenesis via blocking ERK1/2-regulated HIF-1α-VEGF/VEGFR2 signaling pathway[1033]
FisetinAcacia greggii,
Acacia berlandieri,
Gleditschia triacanthow,
Butea fronds,
Gleditsia triacanthos,
Quebracho colorado,
Rhus cotinus,
Rhus vemiciflua
Cotinus coggygria,
Callitropsis
Nootkatensis
Biomolecules 09 00551 i014improves glucose homeostasis through the inhibition of gluconeogenic enzymes;
increases the level and activity of glyoxalase 1;
significantly reduces blood glucose
[963,964,965]
Galactomannan gumCyamopsis tetragonolobus Amorphophallus konjac Biomolecules 09 00551 i015delays the rate of glucose absorption and thereby helps to reduce postprandial hyperglycemia[1003,1004]
Gambogic acidGarcinia hanburyi.
Garcinia indica,
Garcinia cambogia
Biomolecules 09 00551 i016ameliorates diabetes-induced proliferative retinopathy through inhibition of the HIF-1α/VEGF expression via targeting the PI3K/AKT pathway[1034]
Garcinol Garcinia spp. plants (Garcinia indica) Biomolecules 09 00551 i017decreases plasma insulin, HOMA-β-cell functioning index, glycogen, high-density lipoprotein cholesterol, body weight, and antioxidant enzyme activities, viz. SOD, CAT, and glutathione;
causes a significant reduction in elevated levels of blood glucose, glycosylated hemoglobin, and lipids
[1035,1036]
HonokiolMagnolia plant spp. (Magnolia officinalis) Biomolecules 09 00551 i018significantly increases phosphorylations of the IRβ and the downstream insulin signaling factors including AKT and ERK1/2;
potential binding mode of honokiol to PTP1B; protects pancreatic β cells against high glucose and intermittent hypoxia-induced injury by activating the Nrf2/ARE pathway
[1037,1038]
Kaempferolin a variety of plants and plant-derived foods Biomolecules 09 00551 i019promotes insulin sensitivity and preserves pancreatic β-cell mass[966]
LupanineLupinus species (Lupinus perennis) Biomolecules 09 00551 i020enhances insulin secretion; improves glucose homeostasis by influencing KATP channels and insulin gene[955]
LuteolinLamiaceae plant family Biomolecules 09 00551 i021diabetic nephropathy; ameliorates cardiac failure in T1DM cardiomyopathy[967,968]
Indole-3-Carbinolin cruciferous vegetables Biomolecules 09 00551 i022increases the antioxidant-scavenging action by increasing levels of SOD, CAT, GPx, vitamin C, vitamin E, and glutathione[1023,1024]
Inulinthe Helianthus tuberosus tubers contain 75 to 80% of carbohydrates in the form of inulin Biomolecules 09 00551 i023acts as a biogenetic factor for the development of natural intestinal microflora after dysbacteriosis; in the modulation of blood metabolites and liver enzymes[1005,1006]
MorinMorus alba,
Maclura pomifera,
Psidium guajava,
Chlorophora tinctoria,
Prunus dulcis,
Maclura tinctoria,
Castanea sativa
Biomolecules 09 00551 i024as an activator and sensitizer of the insulin receptor stimulating the metabolic pathways;
rescues endothelial dysfunction in a diabetic mouse model by activating the Akt/eNOS pathway;
downregulation of the miR-29a level;
attenuates ER stress throughout the downregulation of the PERK-eIF2α-ATF4 pathway by interacting with the PERK protein
[975,976]
NaringeninGrapefruit (Citrus × paradisi) Biomolecules 09 00551 i025attenuates diabetic nephropathy via its anti-inflammatory and anti-fibrotic activities[953,969]
NeferineNelumbo nucifera Biomolecules 09 00551 i026reduces expression of CCL5 and CCR5 mRNA in the superior cervical ganglion of T2D; prevents hyperglycemia-induced endothelial cell apoptosis through suppressing the OS/Akt/NF-κB signal[953,957]
OxymatrineSophora flavescens Biomolecules 09 00551 i027prevents oxidative stress and reduces the contents of renal advanced glycation end products, transforming growth factor-β1, connective tissue growth factor, and inflammatory cytokines in diabetic rats[953,958]
Piceatannolin a variety of plant sources (grapes, rhubarb, peanuts, sugarcane, white tea) and in the seeds of Passiflora edulis Biomolecules 09 00551 i028lowers the blood glucose level; promotes glucose uptake through glucose transporter 4 translocation to the plasma membrane in L6 myocytes; and suppresses blood glucose levels in T2DM[1008,1009]
PiperinePiper species (Piper nigrum, Piper longum) Biomolecules 09 00551 i029bio-enhancing effect of piperine with metformin in lowering blood glucose levels; blood glucose-lowering effect[959,1045]
Quercetinin many fruits, vegetables, leaves, grains Biomolecules 09 00551 i030decreases the cell percentages of G(0)/G(1) phase, Smad 2/3 expression, laminin and type IV collagen, and TGF-β(1) mRNA level; activates the Akt/cAMP response element-binding protein pathway[970,971]
Resveratrolwine and grape (Vitis vinifera) juice, peanuts (Arachis hypogaea), pistachios (Pistacia vera), blueberries (Vaccinium corymbosum) Biomolecules 09 00551 i031decreases blood insulin levels; reduces adiposity, changes in gene expression, and changes in the activities of some enzymes; enhances GLUT-4 translocation; activates SIRT1 and AMPK; affects insulin secretion and blood insulin concentration; reduces blood insulin; diabetes-related metabolic changes via activation of AMP-activated protein kinase[1046,1047,1048,1049]
Rutinpresent in certain fruits and vegetables Biomolecules 09 00551 i032improves glucose homeostasis by altering glycolytic and gluconeogenic enzymes; involvement of GLUT-4 in the stimulatory effect on glucose uptake; potentiates insulin receptor kinase to enhance insulin-dependent glucose transporter 4 translocation[972,973,974]
SanguinarineSanguinaria canadensis Biomolecules 09 00551 i033was targets and candidate agent for T2DM treatment with a computational bioinformatics approach[960]
Silymarinthe milk thistle plant (Silybum marianum) Biomolecules 09 00551 i034reduction in levels of blood glucose, glycosylated hemoglobin, urine volume, serum creatinine, serum uric acid, and urine albumin; nephroprotective effects in T2DM; ameliorates diabetic cardiomyopathy through the inhibition of TGF-β1/Smad signaling[953,982]
Tocotrienolin a wide variety of
plants;
Bixa orellana,
Zea mays,
Garcinia mangostana,
Elaeis guineensis,
Hevea brasiliensis
Biomolecules 09 00551 i035reduced the high-sensitivity C-reactive protein in a group of patients with T2DM; involved in the NF-κB signaling pathway, oxidative-nitrosative stress, and inflammatory cascade in an experimental model[1021,1022]
Triptolide Tripterygium wilfordii Biomolecules 09 00551 i036levels of phosphorylated protein kinase B and phosphorylated inhibitor of kappa B in splenocytes were reduced, and caspases 3, 8, and 9 were increased; diabetic nephropathy; triptolide treatment, accompanied with alleviated glomerular hypertrophy and podocyte injury[1001,1002]
Ursolic acid, ursolic acid stearoyl glucosideCalluna vulgaris,
Crataegus laevigata,
Eriobotrya japonica,
Eugenia jambolana,
Melissa officinalis,
Mentha piperita,
Ocimum sanctum,
Rosmarinus officinalis,
Thymus vulgaris
Dracocephalum heterrophyllum, Hyssopus seravshanicus
Biomolecules 09 00551 i037decreased hepatic glucose-6-phosphatase activity and increased glucokinase activity;
reduced blood glucose levels; insulin secretagogue and insulinomimetic is mediated by cross-talk between calcium and kinases to regulate glucose balance
[1050,1051,1052]
WithanolidesWithania somnifera
in plant sources from the
Dioscoreaceae, Fabaceae, Lamiaceae, Myrtaceae, Taccaceae families
Biomolecules 09 00551 i038hypoglycaemic and hypolipidaemic activities[1040]
AMPK 5′ AMP-activated protein kinase; ATF4 activating transcription factor 4;CAT catalase; eIF2α eukaryotic initiation factor 2 alpha; GPx glutathione peroxidase; GST glutathione S-transferase; KATP ATP-sensitive potassium; PERK endoplasmic reticulum kinase; SOD superoxide dismutase.

Share and Cite

MDPI and ACS Style

Salehi, B.; Ata, A.; V. Anil Kumar, N.; Sharopov, F.; Ramírez-Alarcón, K.; Ruiz-Ortega, A.; Abdulmajid Ayatollahi, S.; Valere Tsouh Fokou, P.; Kobarfard, F.; Amiruddin Zakaria, Z.; et al. Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules 2019, 9, 551. https://doi.org/10.3390/biom9100551

AMA Style

Salehi B, Ata A, V. Anil Kumar N, Sharopov F, Ramírez-Alarcón K, Ruiz-Ortega A, Abdulmajid Ayatollahi S, Valere Tsouh Fokou P, Kobarfard F, Amiruddin Zakaria Z, et al. Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules. 2019; 9(10):551. https://doi.org/10.3390/biom9100551

Chicago/Turabian Style

Salehi, Bahare, Athar Ata, Nanjangud V. Anil Kumar, Farukh Sharopov, Karina Ramírez-Alarcón, Ana Ruiz-Ortega, Seyed Abdulmajid Ayatollahi, Patrick Valere Tsouh Fokou, Farzad Kobarfard, Zainul Amiruddin Zakaria, and et al. 2019. "Antidiabetic Potential of Medicinal Plants and Their Active Components" Biomolecules 9, no. 10: 551. https://doi.org/10.3390/biom9100551

APA Style

Salehi, B., Ata, A., V. Anil Kumar, N., Sharopov, F., Ramírez-Alarcón, K., Ruiz-Ortega, A., Abdulmajid Ayatollahi, S., Valere Tsouh Fokou, P., Kobarfard, F., Amiruddin Zakaria, Z., Iriti, M., Taheri, Y., Martorell, M., Sureda, A., N. Setzer, W., Durazzo, A., Lucarini, M., Santini, A., Capasso, R., ... Sharifi-Rad, J. (2019). Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules, 9(10), 551. https://doi.org/10.3390/biom9100551

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop