Assessment of the Possibility of Using Hemp Biomass (Cannabis Sativa L.) for Energy Purposes: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation of Hemp in the Lublin Province
2.2. Raw Materials for Research
2.3. Elemental and Technical Analysis of the Biomass
2.4. Analysis of Physical Characteristics of the Briquettes
2.5. Combustion Tests
2.6. Statistical Analysis of Test Results
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schultes, R.E. Random Thoughts and Queries on the Botany of Cannabis; Joyce, C.R.B., Curry, S.H., Eds.; J. & A. Churchill: London, UK, 1970; pp. 11–38. [Google Scholar]
- Struik, P.C.; Amaducci, S.; Bullard, M.J.; Stutterheim, N.C.; Venturi, G.; Cromack, H.T.H. Agronomy of fibre hemp (Cannabis sativa L.) in Europe. Ind. Crops Prod. 2000, 11, 107–118. [Google Scholar] [CrossRef]
- Van der Werf, H.M.G.; Mathijsen, E.W.J.M.; Haverkort, A.J. The potential of hemp (Cannabis sativa L.) for sustainable fibre production: A crop physiological appraisal. Ann. Appl. Biol. 1996, 129, 109–123. [Google Scholar] [CrossRef]
- Burczyk, H.; Grabowska, L.; Kołodziej, J.; Strybe, M. Industrial Hemp as a Raw Material for Energy Production. J. Ind. Hemp 2008, 13, 37–48. [Google Scholar] [CrossRef]
- Burczyk, H. Konopie oleiste (Cannabis sativa L. var. oleifera) uprawiane na nasiona do produkcji oleju i biogazu. Probl. Inżynierii Rol. 2016, 24, 109–116. [Google Scholar]
- Van der Werf, H.G.M. Crop Physiology of Fibre Hemp (Cannabis Sativa L.). Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands, 1994. [Google Scholar]
- Van der Werf, H.M.G.; Wijlhuizen, M.; De Schutter, J.A.A. Plant density and self-thinning affect yield and quality of fibre hemp (Cannabis sativa L.). Field Crops Res. 1995, 40, 153–164. [Google Scholar] [CrossRef]
- Van der Werf, H.M.G.; Van den Berg, W. Nitrogen fertilization and sex expression affect size variability of fibre hemp (Cannabis sativa L.). Oecologia 1995, 103, 462–470. [Google Scholar] [CrossRef]
- Campiglia, E.; Radicetti, E.; Mancinelli, R. Plant density and nitrogen fertilization affect agronomic performance of industrial hemp (Cannabis sativa L.) in Mediterranean environment. Ind. Crops Prod. 2017, 100, 246–254. [Google Scholar] [CrossRef]
- Dołżyńska, M.; Obidziński, S.; Simiński, P. Ocena granulatów z odpadów konopi siewnej jako biopaliwa. Przem. Chem. 2018, 97, 686–688. (In Polish) [Google Scholar] [CrossRef]
- Saif, M.; Ur, R.; Saif, A.; Mahmoodd, T.; Han, J.I. Potential of bioenergy production from industrial hemp (Cannabis sativa): Pakistan perspective. Renew. Sustain. Energy Rev. 2013, 18, 154–164. [Google Scholar]
- Schluttenhofer, C.; Yuan, L. Challenges towards Revitalizing Hemp: A Multifaceted Crop. Trends Plant Sci. 2017, 22, 917–929. [Google Scholar] [CrossRef] [Green Version]
- Prade, T.; Finell, M.; Svensson, S.E.; Mattsson, J.E. Effect of harvest date on combustion related fuel properties of industrial hemp. Fuel 2012, 102, 592–604. [Google Scholar] [CrossRef]
- Prade, T.; Svensson, S.E.; Mattsson, J.E. Energy balances for biogas and solid biofuel production from industrial hemp. Biomass Bioenergy 2012, 40, 36–52. [Google Scholar] [CrossRef] [Green Version]
- Prade, T.; Svensson, S.E.; Andersson, A.; Mattsson, J.E. Biomass and energy yield of industrial hemp for biogas and solid fuel. Biomass Bioenergy 2011, 35, 3040–3049. [Google Scholar] [CrossRef]
- Kołodziej, J.; Wladyka-Przybylak, M.; Mankowski, J.; Grabowska, L. Heat of Combustion of Hemp and Briquettes Made of Hemp Shives. Renew. Energy Energy Effic. 2012, 163–166. Available online: https://llufb.llu.lv/conference/Renewable_energy_energy_efficiency/Latvia_Univ_Agriculture_REEE_conference_2012-163-166.pdf (accessed on 10 September 2019).
- Hejft, R.; Obidziński, S. Ciśnieniowa aglomeracja materiałów roślinnych—Innowacje technologiczno-techniczne. Parts 1. J. Res. Appl. Agric. Eng. 2012, 57, 63–65. (In Polish) [Google Scholar]
- Czekała, W.; Dach, J.; Przybył, J.; Boniecki, P.; Lewicki, A.; Carmona, P.C.R.; Janczak, D.; Waliszewska, H. The Energetic Efficiency of Solid Fraction of Digestate Pulp from Biogas Plant in Production of Solid and Gaseous Biofuels—A Case Study of 1 Mwel Biogas Plant in Poland. In Proceedings of the 2nd International Conference on Energy and Environment: Bringing together Engineering and Economics, Guimarães, Portugal, 18–19 June 2015; pp. 547–553. [Google Scholar]
- Niedziółka, I.; Szpryngiel, M.; Kachel-Jakubowska, M.; Kraszkiewicz, A.; Zawiślak, K.; Sobczak, P.; Nadulski, R. Assessment of the energetic and mechanical properties of pellets produced from agricultural biomass. Renew. Energy 2015, 76, 312–317. [Google Scholar] [CrossRef]
- Idler, C.H.; Pecenka, R.; Fürll, C.H.; Gusovius, H.J. Wet Processing of Hemp: An Overview. J. Nat. Fibers 2011, 8, 59–80. [Google Scholar] [CrossRef]
- Kreuger, E. The Potential of Industrial Hemp (Cannabis Sativa L.) for Biogas Production. Biotechnology, Lund University, 2012. Available online: https://lucris.lub.lu.se/ws/files/5436431/2857088.pdf (accessed on 1 August 2019).
- Ivanova, T.; Havrland, B.; Novotny, R.; Muntean, A.; Hutla, P. Influence of raw material properties on energy consumption during briquetting process. Contemporary Research Trends in Agricultural Engineering. BIO Web Conf. 2018, 10, 1–6. [Google Scholar] [CrossRef]
- Kakitis, A.; Berzins, R.; Berzins, U. Cutting Energy Assessment of Hemp Straw. In Proceedings of the International Scientific Conference, Jelgava, Latvia, 25–27 May 2016; pp. 1255–1259. [Google Scholar]
- Kronbergs, A.; Širaks, E.; Adamovičs, A.; Kronbergs, E. Mechanical Properties of Hemp (Cannabis Sativa) Biomass Environment. Technology. Resources. In Proceedings of the 8th International Scientific and Practical Conference, Jelgava, Latvia, 20–22 June 2011; Volume 1, pp. 184–190. [Google Scholar]
- Kraszkiewicz, A.; Kachel-Jakubowska, M.; Szpryngiel, M.; Niedziółka, I. Ocena właściwości fizycznych dendromasy Robinii akacjowej. Inżynieria Rol. 2011, 6, 109–115. [Google Scholar]
- Heykiri-Acma, H. Combustion characteristic of different biomas matterials. Energy Convers. Manag. 2003, 44, 155–162. [Google Scholar] [CrossRef]
- Mc Kendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- Kjallstrand, J.; Olsson, M. Chimney emissions from small-scale burning of pellets and fuelwood—Examples referring to different combustion appliances. Biomass Bioenergy 2004, 27, 557–561. [Google Scholar] [CrossRef]
- Kolarikova, M.; Ivanova, T.; Havrland, B. Energy balance of briquettes made of hemp (Cannabis sativa L.) cultivars (Ferimon, Bialobrzeskie) from autumn harvest to produce heat for household use. In Proceedings of the Engineering for Rural Development, Jelgava, Latvia, 23–24 May 2013; pp. 504–508. [Google Scholar]
- Act of 29 July 2005 on counteracting drug addiction. J. Laws 2005. Available online: https://www.global-regulation.com/translation/poland/2986186/the-act-of-29-july-2005-on-counteracting-drug-addiction.html (accessed on 1 July 2019). (In Polish).
- Resolution No. IV/100/2019 of the Lublin Regional Assembly of 11 March 2019 on Determining the Total Area Intended for the Cultivation of Poppy and Fibrous Hemp and the Regionalization of These Crops in Lublin Province in 2019. Available online: http://edziennik.lublin.uw.gov.pl/Compatible/Details?Oid=46852 (accessed on 5 August 2019). (In Polish)
- Ranalli, P.; Venturi, G. Hemp as a raw material for industrial applications. Euphytica 2004, 140, 1–6. [Google Scholar] [CrossRef]
- Strzelczyk, M. Perspektywiczne kierunki i priorytety w hodowli konopi włóknistych w Polsce i na świecie. Coboru 2018. Available online: https://www.cdr.gov.pl/images/Brwinow/RFN/XV_RFN/prezentacje/M_Strzelczyk_Kierunki%20%20hodowli%20konopi.pdf (accessed on 1 July 2019). (In Polish).
- Salentijn, E.M.J.; Zhang, Q.; Amaducci, S.; Yang, M.; Trindade, L.M. New developments in fiber hemp (Cannabis sativa L.) breeding. Ind. Crops Prod. 2015, 68, 32–41. [Google Scholar] [CrossRef]
- EN ISO 14780: 2017 Solid Biofuels—Sample Preparation. 2017. Available online: Available online: https://www.pkn.pl/ (accessed on 1 July 2019).
- EN ISO 16948: 2015 Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen. 2015. Available online: https://www.pkn.pl/ (accessed on 1 July 2019).
- EN ISO 16994: 2016 Solid Biofuels—Determination of Total Content of Sulfur and Chlorine. 2016. Available online: https://www.pkn.pl/ (accessed on 1 July 2019).
- EN ISO 18134-3: 2015 Solid biofuels—Determination of Moisture Content—Oven dry Method—Part 3: Moisture in General Analysis Sample. 2015. Available online: https://www.pkn.pl/ (accessed on 1 July 2019).
- EN ISO 18123: 2016 Solid Biofuels—Determination of the Content of Volatile Matter. 2016. Available online: https://www.pkn.pl/ (accessed on 1 July 2019).
- EN ISO 18122: 2016 Solid Biofuels—Determination of Ash Content. 2016. Available online: https://www.pkn.pl/ (accessed on 1 July 2019).
- EN ISO 18125: 2017 Solid Biofuels—Determination of Calorific Value. 2017. Available online: https://www.pkn.pl/ (accessed on 1 July 2019).
- EN ISO 17831-2: 2016-02 Solid Biofuels—Determination of Mechanical Durability of Pellets and Briquettes—Part 2: Briquettes. 2016. Available online: https://www.pkn.pl/ (accessed on 1 July 2019).
- Demirbas, A. Combustion characteristics of different biomass fuels. Prog. Eergy Combust. Sci. 2004, 30, 219–230. [Google Scholar] [CrossRef]
- Eisenbies, M.H.; Volk, T.A.; Patel, A. Changes in feedstock quality in willow chip piles created in winter from a commercial scale harvest. Biomass Bioenergy 2016, 86, 180–190. [Google Scholar] [CrossRef] [Green Version]
- Obernberger, I.; Brunner, T.; Bärnthaler, G. Chemical properties of solid biofuels—Significance and impact. Biomass Bioenergy 2006, 30, 973–982. [Google Scholar] [CrossRef]
- Krzywański, J.; Rajczyk, R.; Nowak, W. Model research of gas emissions from lignite and biomass co-combustion in a large scale CFB boiler. Chem. Process Eng. 2014, 35, 217–231. [Google Scholar] [CrossRef]
- Zawiślak, K.; Sobczak, P.; Kraszkiewicz, A.; Niedziółka, I.; Parafiniuk, S.; Kuna-Broniowska, I.; Tanaś, W.; Żukiewicz-Sobczak, W.; Obidziński, S. The use of lignocellulosic waste in the production of pellets for energy purposes. Renew. Energy 2020, 145, 997–1003. [Google Scholar] [CrossRef]
- Ryu, C.H.; Yang, Y.B.; Khor, A.; Yates, N.E.; Sharifi, V.N.; Swithenbank, J. Effect of fuel properties on biomass combustion: Part I. Experiments—Fuel type, equivalence ratio and particle size. Fuel 2006, 85, 1039–1046. [Google Scholar] [CrossRef]
- Yang, Y.B.; Ryu, C.H.; Khor, A.; Yates, N.E.; Sharifi, V.N.; Swithenbank, J. Effect of fuel properties on biomass combustion. Part II. Modelling approach identification of the controlling factors. Fuel 2005, 84, 2116–2130. [Google Scholar] [CrossRef]
- Jewiarz, M.; Kubica, K. Technologie spalania słomy. In Słoma—Wykorzystanie w Energetyce Cieplnej; ITP: Falenty, Poland, 2012. (In Polish) [Google Scholar]
- Juszczak, M. Concentration of carbon monoxide and nitrogen oxides from a 25 kW boiler supplied periodically. Chem. Process Eng. 2014, 35, 163–172. [Google Scholar] [CrossRef]
- Kordylewski, W. Spalanie i Paliwa; Oficyna Wydawnicza Politechniki Wrocławskiej: Wroclaw, Poland, 2008; p. 244. (In Polish) [Google Scholar]
- Szyszlak-Bargłowicz, J.; Zając, G.; Słowik, T. Badanie emisji wybranych zanieczyszczeń gazowych podczas spalania peletów z agro biomasy w kotle małej mocy. Annu. Set Environ. Protect. 2017, 19, 715–730. [Google Scholar]
- PN-EN 303-5: 2012 Kotły Grzewcze—Część 5: Kotły Grzewcze na Paliwa Stałe z Ręcznym I Automatycznym Zasypem Paliwa o Mocy Nominalnej do 500 kW—Terminologia, Wymagania, Badania i Oznakowanie. 2012. Available online: https://www.pkn.pl/ (accessed on 1 July 2019). (In Polish).
- Commission Regulation (EU) 2015/1189 of 28 April 2015 on the Implementation of Directive 2009/125/EC of the European Parliament and of the Council with Regard to the Ecodesign Requirements for Solid Fuel Boilers. 2015. Available online: https://op.europa.eu/en/publication-detail/-/publication/8809cda2-2f6e-11e5-9f85-01aa75ed71a1/ (accessed on 13 September 2019).
Parameter | Symbol | Unit | Value |
---|---|---|---|
Total moisture | Wtr | % | 10.977 ± 0.015 |
Volatile parts | Vd | % | 69.630 ± 0.096 |
Heat of combustion | Qsd | MJ·kg−1 | 18.089 ± 0.034 |
Calorific value | Qid | MJ·kg−1 | 16.636 ± 0.031 |
Ash | Ad | % | 2.51 ± 0.135 |
Elemental composition | Cd | % | 43.366 ± 0.276 |
Hd | % | 6.669 ± 0.040 | |
Nd | % | 0.248 ± 0.049 | |
Sd | % | 0.056 ± 0.002 |
Parameter | Symbol | Unit | Briquettes Type A | Briquettes Type B |
---|---|---|---|---|
Length | L | mm | 48 ± 22 | 51 ± 13 |
Diameter | D | mm | 52 ± 0.5 | 53 ± 0.5 |
Mass | m | kg | 86.75 ± 44.89 | 93.51 ± 30.91 |
Bulk density | – | kg·m−3 | 828 ± 71 | 818 ± 82 |
Mechanical durability | DU | % | 98.17 ± 0.25 | 97.57 ± 0.21 |
Assortment | Combustion Speed (kg·h−1) | Excess Air Coefficient (−) | Exhaust Gas Temperature (°C) |
---|---|---|---|
Hemp straw | 5.14 ± 0.10 | 2.06 ± 3.23 | 354.0 ± 153.7 |
Type A briquettes | 4.30 ± 0.08 | 4.16 ± 3.74 | 297.2 ± 104.8 |
Type B briquettes | 3.93 ± 0.07 | 5.48 ± 4.44 | 234.9 ± 82.4 |
Assortment | Values | CO ppm | CO mg·m−3 At 10% O2 | NO ppm | NO mg·m−3 At 10% O2 | SO2 ppm | SO2 mg·m−3 At 10% O2 | CO2 % |
---|---|---|---|---|---|---|---|---|
Hemp straw | Minimum | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Maximum | 19,750 | 34,964 | 399 | 587 | 794 | 342 | 14.39 | |
Average | 7405 | 7260 | 174 | 180 | 131 | 61 | 8.60 | |
Standard deviation | 5735 | 9841 | 80 | 182 | 195 | 65 | 4.78 | |
Kurtosis | –0.18 | 0.30 | –0.19 | –1.31 | 4.82 | 1.22 | –1.51 | |
Skewness coefficient | 1.04 | 1.24 | –0.04 | 0.13 | 2.15 | 1.50 | –0.24 | |
Type A briquettes | Minimum | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Maximum | 9010 | 8429 | 228 | 345 | 92 | 143 | 12.1 | |
Average | 4237 | 2938 | 136 | 138 | 32 | 49 | 6.90 | |
Standard deviation | 1792 | 1802 | 64 | 119 | 18 | 34 | 3.29 | |
Kurtosis | 0.05 | 1.32 | –1.34 | –1.49 | 1.91 | 0.18 | –1.30 | |
Skewness coefficient | 0.76 | 1.22 | –0.12 | 0.29 | 1.49 | 1.07 | –0.07 | |
Type B briquettes | Minimum | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Maximum | 9935 | 3686 | 284 | 353 | 94 | 107 | 9.48 | |
Average | 3429 | 1565 | 135 | 108 | 37 | 46 | 5.03 | |
Standard deviation | 2459 | 741 | 62 | 88 | 24 | 26 | 2.27 | |
Kurtosis | −0.04 | −0.08 | −0.35 | 0.25 | −0.52 | −0.17 | –0.83 | |
Skewness coefficient | 0.91 | 1.02 | 0.47 | 1.01 | 0.88 | 0.82 | –0.02 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraszkiewicz, A.; Kachel, M.; Parafiniuk, S.; Zając, G.; Niedziółka, I.; Sprawka, M. Assessment of the Possibility of Using Hemp Biomass (Cannabis Sativa L.) for Energy Purposes: A Case Study. Appl. Sci. 2019, 9, 4437. https://doi.org/10.3390/app9204437
Kraszkiewicz A, Kachel M, Parafiniuk S, Zając G, Niedziółka I, Sprawka M. Assessment of the Possibility of Using Hemp Biomass (Cannabis Sativa L.) for Energy Purposes: A Case Study. Applied Sciences. 2019; 9(20):4437. https://doi.org/10.3390/app9204437
Chicago/Turabian StyleKraszkiewicz, Artur, Magdalena Kachel, Stanisław Parafiniuk, Grzegorz Zając, Ignacy Niedziółka, and Maciej Sprawka. 2019. "Assessment of the Possibility of Using Hemp Biomass (Cannabis Sativa L.) for Energy Purposes: A Case Study" Applied Sciences 9, no. 20: 4437. https://doi.org/10.3390/app9204437
APA StyleKraszkiewicz, A., Kachel, M., Parafiniuk, S., Zając, G., Niedziółka, I., & Sprawka, M. (2019). Assessment of the Possibility of Using Hemp Biomass (Cannabis Sativa L.) for Energy Purposes: A Case Study. Applied Sciences, 9(20), 4437. https://doi.org/10.3390/app9204437