Implication of Hemodynamic Assessment during Durable Left Ventricular Assist Device Support
Abstract
:1. Introduction
2. Hemodynamics and Adverse Events
2.1. Heart Failure
2.2. Gastrointestinal Bleeding
2.3. Stroke
2.4. Pump Thrombosis
3. Hemodynamic Patterns by Disease Process
3.1. Right Heart Failure
3.2. Pulmonary Hypertension
3.3. Aortic Insufficiency
4. Hemodynamic-Guided Optimization
5. Non-Invasive Assessment of Hemodynamics
5.1. CardioMEMS
5.2. Remote Dielectric Sensing (ReDS)
5.3. HeartWare LVAD Flow Slope
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Drazner, M.H.; Fonarow, G.C.; Geraci, S.A.; Horwich, T.; Januzzi, J.L.; Johnson, M.R.; et al. 2013 ACCF/AHA guideline for the management of heart failure: Executive summary: A report of the American college of cardiology foundation/American heart association task force on practice guidelines. Circulation 2013, 128, 1810–1852. [Google Scholar] [CrossRef]
- Kinugawa, K. How to treat stage D heart failure?—When to implant left ventricular assist devices in the era of continuous flow pumps? Circ. J. 2011, 75, 2038–2045. [Google Scholar] [CrossRef] [Green Version]
- Kormos, R.L.; Cowger, J.; Pagani, F.D.; Teuteberg, J.J.; Goldstein, D.J.; Jacobs, J.P.; Higgins, R.S.; Stevenson, L.W.; Stehlik, J.; Atluri, P.; et al. The society of thoracic surgeons intermacs database annual report: Evolving indications, outcomes, and scientific partnerships. J. Heart Lung Transplant. 2019, 38, 114–126. [Google Scholar] [CrossRef]
- Teuteberg, J.J.; Cleveland, J.C.; Cowger, J.; Higgins, R.S.; Goldstein, D.J.; Keebler, M.; Kirklin, J.K.; Myers, S.L.; Salerno, C.T.; Stehlik, J.; et al. The society of thoracic surgeons intermacs 2019 annual report: The changing landscape of devices and indications. Ann. Thorac. Surg. 2020, 109, 649–660. [Google Scholar] [CrossRef] [Green Version]
- Rose, E.A.; Gelijns, A.C.; Moskowitz, A.J.; Heitjan, D.F.; Stevenson, L.W.; Dembitsky, W.; Long, J.W.; Ascheim, D.D.; Tierney, A.R.; Levitan, R.G.; et al. Randomized evaluation of mechanical assistance for the treatment of congestive heart failure study, G Long-term use of a left ventricular assist device for end-stage heart failure. N. Engl. J. Med. 2001, 345, 1435–1443. [Google Scholar] [CrossRef]
- Mehra, M.R.; Goldstein, D.J.; Uriel, N.; Cleveland, J.C.; Yuzefpolskaya, M.; Salerno, C.; Walsh, M.N.; Milano, C.A.; Patel, C.B.; Ewald, G.A.; et al. Two-year outcomes with a magnetically levitated cardiac pump in heart failure. N. Engl. J. Med. 2018, 378, 1386–1395. [Google Scholar] [CrossRef]
- Mehra, M.R.; Uriel, N.; Naka, Y.; Cleveland, J.C.; Yuzefpolskaya, M.; Salerno, C.T.; Walsh, M.N.; Milano, C.A.; Patel, C.B.; Hutchins, S.W.; et al. Fully magnetically levitated left ventricular assist device final report. N. Engl. J. Med. 2019, 380, 1618–1627. [Google Scholar] [CrossRef] [PubMed]
- Uriel, N.; Colombo, P.C.; Cleveland, J.C.; Long, J.W.; Salerno, C.; Goldstein, D.J.; Patel, C.B.; Ewald, G.A.; Tatooles, A.J.; Silvestry, S.C.; et al. Hemocompatibility related outcomes in the momentum 3 trial at 6 months: A randomized controlled study of a fully magnetically levitated pump in advanced heart failure. Circulation 2017, 135, 2003–2012. [Google Scholar] [CrossRef]
- Mehra, M.R. The burden of haemocompatibility with left ventricular assist systems: A complex weave. Eur. Heart J. 2019, 40, 673–677. [Google Scholar] [CrossRef] [PubMed]
- Uriel, N.; Sayer, G.; Addetia, K.; Fedson, S.; Kim, G.H.; Rodgers, D.; Kruse, E.; Collins, K.; Adatya, S.; Sarswat, N.; et al. Hemodynamic ramp tests in patients with left ventricular assist devices. JACC Heart Fail. 2016, 4, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Imamura, T.; Nguyen, A.; Kim, G.; Raikhelkar, J.; Sarswat, N.; Kalantari, S.; Smith, B.; Juricek, C.; Rodgers, D.; Ota, T.; et al. Optimal haemodynamics during left ventricular assist device support are associated with reduced haemocompatibility-related adverse events. Eur. J. Heart Fail. 2019, 21, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Imamura, T.; Chung, B.; Nguyen, A.; Sayer, G.; Uriel, N. Clinical implications of hemodynamic assessment during left ventricular assist device therapy. J. Cardiol. 2018, 71, 352–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imamura, T.; Jeevanandam, V.; Kim, G.; Raikhelkar, J.; Sarswat, N.; Kalantari, S.; Smith, B.; Rodgers, D.; Besser, S.; Chung, B.; et al. Optimal hemodynamics during left ventricular assist device support are associated with reduced readmission rates. Circ. Heart Fail. 2019, 12, 5094. [Google Scholar] [CrossRef] [PubMed]
- Dandel, M.; Javier, M.; Javier, E.M.D.; Hetzer, R. Accurate assessment of right heart function before and after long-term left ventricular assist device implantation. Expert Rev. Cardiovasc. Ther. 2020, 18, 289–308. [Google Scholar] [CrossRef]
- Imamura, T.; Kinugawa, K.; Kato, N.; Muraoka, H.; Fujino, T.; Inaba, T.; Maki, H.; Kinoshita, O.M.; Kyo, S.; Ono, M. Late-onset right ventricular failure in patients with preoperative small left ventricle after implantation of continuous flow left ventricular assist device. Circ. J. 2014, 78, 625–633. [Google Scholar] [CrossRef] [Green Version]
- Uriel, N.; Burkhoff, D.; Rich, J.D.; Drakos, S.G.; Teuteberg, J.J.; Imamura, T.; Rodgers, D.; Raikhelkar, J.; Vorovich, E.E.; Selzman, C.H.; et al. Impact of hemodynamic ramp test-guided hvad speed and medication adjustments on clinical outcomes. Circ. Heart Fail. 2019, 12, 6067. [Google Scholar] [CrossRef]
- Narang, N.; Chung, B.; Nguyen, A.; Kalathiya, R.J.; Laffin, L.J.; Holzhauser, L.; Ebong, I.A.; Besser, S.A.; Imamura, T.; Smith, B.A.; et al. Discordance between clinical assessment and invasive hemodynamics in patients with advanced heart failure. J. Card Fail. 2020, 26, 128–135. [Google Scholar] [CrossRef]
- Estep, J.D. Noninvasive assessment of hemodynamics in left ventricular assist device patients: Echocardiographic accuracy and clinical outcome implications. JACC Cardiovasc. Imaging 2019, 12, 1132–1134. [Google Scholar] [CrossRef]
- McCullough, M.; Caraballo, C.; Ravindra, N.G.; Miller, P.E.; Mezzacappa., C.; Levin, A.; Gruen, J.; Rodwin, B.; Reinhardt, S.; van Dijk, D.; et al. Neurohormonal blockade and clinical outcomes in patients with heart failure supported by left ventricular assist devices. JAMA Cardiol. 2019, 18, 175–182. [Google Scholar] [CrossRef]
- Imamura, T.; Nguyen, A.; Chung, B.; Rodgers, D.; Sarswat, N.; Kim, G.; Raikhelkar, J.; Adatya, S.; Ota, T.; Song, T.; et al. Association of inflow cannula position with left ventricular unloading and clinical outcomes in patients with heartmate ii left ventricular assist device. ASAIO J. 2019, 65, 331–335. [Google Scholar] [CrossRef] [Green Version]
- Imamura, T.; Adatya, S.; Chung, B.; Nguyen, A.; Rodgers, D.; Sayer, G.; Sarswat, N.; Kim, G.; Raikhelkar, J.; Ota, T.; et al. Cannula and pump positions are associated with left ventricular unloading and clinical outcome in patients with heartware left ventricular assist device. J. Card Fail. 2018, 24, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Imamura, T.; Narang, N.; Nitta, D.; Fujino, T.; Nguyen, A.; Chung, B.; Holzhauser, L.; Kim, G.; Raikhelkar, J.; Kalantari, S.; et al. HeartWare ventricular assist device cannula position and hemocompatibility-related adverse events. Ann. Thorac. Surg. 2020. [Google Scholar] [CrossRef] [PubMed]
- Tsushima, Y.; Imamura, T.; Landeras, L.; Kitahara, H.; Gonoi, W.; Sayer, G.; Uriel, N.; Jeevanandam, V.; Ota, T. Novel formula to calculate three-dimensional angle between inflow cannula and device body of HeartMate II LVAD. Ann. Thorac. Surg. 2020, 109, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Demirozu, Z.T.; Radovancevic, R.; Hochman, L.F.; Gregoric, I.D.; Letsou, G.V.; Kar, B.; Bogaev, R.C.; Frazier, O.H. Arteriovenous malformation and gastrointestinal bleeding in patients with the HeartMate II left ventricular assist device. J. Heart Lung Transpl. 2011, 30, 849–853. [Google Scholar] [CrossRef]
- Juricek, C.; Imamura, T.; Nguyen, A.; Chung, B.; Rodgers, D.; Sarswat, N.; Kim, G.; Raikhelkar, J.; Ota, T.; Song, T.; et al. Long-acting octreotide reduces the recurrence of gastrointestinal bleeding in patients with a continuous-flow left ventricular assist device. J. Card Fail. 2018, 24, 249–254. [Google Scholar] [CrossRef] [Green Version]
- Kataria, R.; Jorde, U.P. Gastrointestinal bleeding during continuous-flow left ventricular assist device support: State of the field. Cardiol. Rev. 2019, 27, 8–13. [Google Scholar] [CrossRef]
- Imamura, T.; Kinugawa, K.; Uriel, N. therapeutic strategy for gastrointestinal bleeding in patients with left ventricular assist device. Circ. J. 2018, 82, 2931–2938. [Google Scholar] [CrossRef] [Green Version]
- Imamura, T. How to prevent gastrointestinal bleeding in the high-risk patients following left ventricular assist device implantation. J. Card Surg. 2019, 34, 746. [Google Scholar] [CrossRef]
- Nakamura, M.; Imamura, T.; Hori, M.; Nakagaito, M.; Ueno, H.; Yokoyama, S.; Doi, T.; Fukahara, K.; Kinugawa, K. Regulation of angiopoietin-2 before and after mechanical circulatory support therapy. J. Card Fail 2020, in press. [Google Scholar] [CrossRef]
- Imamura, T.; Nguyen, A.; Rodgers, D.; Kim, G.; Raikhelkar, J.; Sarswat, N.; Kalantari, S.; Smith, B.; Chung, B.; Narang, N.; et al. Omega-3 therapy is associated with reduced gastrointestinal bleeding in patients with continuous-flow left ventricular assist device. Circ. Heart Fail. 2018, 11, 5082. [Google Scholar] [CrossRef]
- Imamura, T.; Nguyen, A.; Rodgers, D.; Kim, G.; Raikhelkar, J.; Kalantari, S.; Narang, N.; Juricek, C.; Ota, T.; Jeevanandam, V.; et al. Omega-3 and hemocompatibility-related adverse events. J. Card Surg. 2020, 35, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Vukelic, S.; Vlismas, P.P.; Patel, S.R.; Xue, X.; Shitole, S.G.; Saeed, O.; Sims, D.B.; Chinnadurai, T.; Shin, J.J.; Forest, S.J.; et al. Digoxin is associated with a decreased incidence of angiodysplasia-related gastrointestinal bleeding in patients with continuous-flow left ventricular assist devices. Circ. Heart Fail. 2018, 11, 4899. [Google Scholar] [CrossRef] [PubMed]
- Imamura, T.; Ono, M.; Kinugawa, K.; Fukushima, N.; Shiose, A.; Matsui, Y.; Yamazaki, K.; Saiki, Y.; Usui, A.; Niinami, H.; et al. Hemocompatibility-related adverse events following heartmate ii left ventricular assist device implantation between Japan and United States. Medicina (Kaunas) 2020, 56, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodwin, K.; Kluis, A.; Alexy, T.; John, R.; Voeller, R. Neurological complications associated with left ventricular assist device therapy. Expert Rev. Cardiovasc. Ther. 2018, 16, 909–917. [Google Scholar] [CrossRef]
- Milano, C.A.; Rogers, J.G.; Tatooles, A.J.; Bhat, G.; Slaughter, M.S.; Birks, E.J.; Mokadam, N.A.; Mahr, C.; Miller, J.S.; Markham, D.W.; et al. HVAD: The ENDURANCE supplemental trial. JACC Heart Fail. 2018, 6, 792–802. [Google Scholar] [CrossRef]
- Nguyen, A.B.; Uriel, N.; Adatya, S. New challenges in the treatment of patients with left ventricular support: LVAD thrombosis. Curr. Heart Fail. Rep. 2016, 13, 302–309. [Google Scholar] [CrossRef]
- Maltais, S.; Kilic, A.; Nathan, S.; Keebler, M.; Emani, S.; Ransom, J.; Katz, J.N.; Sheridan, B.; Brieke, A.; Egnaczyk, G.; et al. PREVENtion of heartmate ii pump thrombosis through clinical management: The PREVENT multi-center study. J. Heart Lung Transpl. 2017, 36, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Imamura, T. What is optimal definition of right ventricular dysfunction and right ventricular failure? J. Card Fail. 2019, 25, 698. [Google Scholar] [CrossRef]
- Najjar, E.; Thorvaldsen, T.; Dalen, M.; Svenarud, P.; Hallberg, K.A.; Eriksson, M.J.; Maret, E.; Lund, L.H. Validation of non-invasive ramp testing for HeartMate 3. ESC Heart Fail. 2020, 7, 663–672. [Google Scholar] [CrossRef] [Green Version]
- Cesini, S.; Bhagra, S.; Pettit, S.J. Low pulmonary artery pulsatility index is associated with adverse outcomes in ambulatory patients with advanced heart failure. J. Card Fail. 2020, 26, 352–359. [Google Scholar] [CrossRef]
- Morine, K.J.; Kiernan, M.S.; Pham, D.T.; Paruchuri, V.; Denofrio, D.; Kapur, N.K. Pulmonary artery pulsatility index is associated with right ventricular failure after left ventricular assist device surgery. J. Card Fail. 2016, 22, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Imamura, T.; Nitta, D.; Fujino, T.; Smith, B.; Kalantari, S.; Nguyen, A.; Narang, N.; Holzhauser, L.; Rodgers, D.; Song, T.; et al. Deep Y-Descent in right atrial waveforms following left ventricular assist device implantation. J. Card Fail. 2020, 26, 360–367. [Google Scholar] [CrossRef]
- Galie, N.; Humbert, M.; Vachiery, J.L.; Gibbs, S.; Lang, I.; Torbicki, A.; Simonneau, G.; Peacock, A.; Vonk, N.A.; Beghetti, M.; et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur. J. 2016, 37, 67–119. [Google Scholar]
- Selim, A.M.; Wadhwani, L.; Burdorf, A.; Raichlin, E.; Lowes, B.; Zolty, R. Left ventricular assist devices in pulmonary hypertension group 2 with significantly elevated pulmonary vascular resistance: A bridge to cure. Heart Lung Circ. 2019, 28, 946–952. [Google Scholar] [CrossRef]
- Mikus, E.; Stepanenko, A.; Krabatsch, T.; Loforte, A.; Dandel, M.; Lehmkuhl, H.B.; Hetzer, R.; Potapov, E.V. Reversibility of fixed pulmonary hypertension in left ventricular assist device support recipients. Eur. J. Cardiothorac. Surg. 2011, 40, 971–977. [Google Scholar] [CrossRef] [Green Version]
- Tsukashita, M.; Takayama, H.; Takeda, K.; Han, J.; Colombo, P.C.; Yuzefpolskaya, M.; Topkara, V.K.; Garan, A.R.; Mancini, D.M.; Kurlansky, P.A.; et al. Effect of pulmonary vascular resistance before left ventricular assist device implantation on short and long-term post-transplant survival. J. Thorac. Cardiovasc. Surg. 2015, 150, 1352–1360. [Google Scholar] [CrossRef] [Green Version]
- Imamura, T.; Chung, B.; Nguyen, A.; Rodgers, D.; Sayer, G.; Adatya, S.; Sarswat, N.; Kim, G.; Raikhelkar, J.; Ota, T.; et al. Decoupling between diastolic pulmonary artery pressure and pulmonary capillary wedge pressure as a prognostic factor after continuous flow ventricular assist device implantation. Circ. Heart Fail. 2017, 10. [Google Scholar] [CrossRef] [Green Version]
- Imamura, T.; Narang, N.; Kim, G.; Raikhelkar, J.; Chung, B.; Nguyen, A.; Holzhauser, L.; Rodgers, D.; Kalantari, S.; Smith, B.; et al. Decoupling between diastolic pulmonary artery and pulmonary capillary wedge pressures is associated with right ventricular dysfunction and hemocompatibility-related adverse events in patients with left ventricular assist devices. J. Am. Heart Assoc. 2020, 9, 14801. [Google Scholar] [CrossRef]
- Jensen, C.W.; Goldstone, A.B.; Woo, Y.J. Treatment and prognosis of pulmonary hypertension in the left ventricular assist device patient. Curr. Heart Fail. Rep. 2016, 13, 140–150. [Google Scholar] [CrossRef]
- Imamura, T.; Kinugawa, K.; Fujino, T.; Inaba, T.; Maki, H.; Hatano, M.; Kinoshita, O.; Nawata, K.; Kyo, S.; Ono, M. Aortic insufficiency in patients with sustained left ventricular systolic dysfunction after axial flow assist device implantation. Circ. J. 2015, 79, 104–111. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, M.L.; Bobba, C.M.; Mokadam, N.A.; Whitson, B.A.; Essandoh, M.; Hasan, A.; Ganapathi, A.M. Continuous-flow left ventricular assist devices and the aortic valve: Interactions.; issues.; and surgical therapy. Curr. Heart Fail. Rep. 2020, 17, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Imamura, T.; Narang, N.; Kim, G.; Nitta, D.; Fujino, T.; Nguyen, A.; Grinstein, J.; Rodgers, D.; Ota, T.; Jeevanandam, V.; et al. Aortic insufficiency during HeartMate 3 left ventricular assist device support. J. Card Fail. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Grinstein, J.; Kruse, E.; Sayer, G.; Fedson, S.; Kim, G.H.; Jorde, U.P.; Juricek, C.; Ota, T.; Jeevanandam, V.; Lang, R.M.; et al. Accurate quantification methods for aortic insufficiency severity in patients with LVAD: Role of diastolic flow acceleration and systolic-to-diastolic peak velocity ratio of outflow cannula. JACC Cardiovasc. Imaging 2016, 9, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Imamura, T.; Narang, N.; Rodgers, D.; Nitta, D.; Fujino, T.; Kalantari, S.; Smith, B.; Kim, G.; Nguyen, A.; Chung, B.; et al. Estimation of the severity of aortic insufficiency by HVAD flow waveform. Ann. Thorac. Surg. 2020, 109, 945–949. [Google Scholar] [CrossRef] [PubMed]
- Imamura, T.; Kim, G.; Nitta, D.; Fujino, T.; Smith, B.; Kalantari, S.; Nguyen, A.; Narang, N.; Holzhauser, L.; Grinstein, J.; et al. Aortic insufficiency and hemocompatibility-related adverse events in patients with left ventricular assist devices. J. Card Fail. 2019, 25, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Fujino, T.; Imamura, T.; Nguyen, A.; Chung, B.; Raikhelkar, J.; Rodgers, D.; Nitta, D.; Smith, B.; Sarswat, N.; Kalantari, S.; et al. Short-term efficacy and safety of tolvaptan in patients with left ventricular assist devices. ASAIO J. 2020, 66, 253–257. [Google Scholar] [CrossRef]
- Imamura, T.; Kim, G.; Raikhelkar, J.; Sarswat, N.; Kalantari, S.; Smith, B.; Rodgers, D.; Chung, B.; Nguyen, A.; Ota, T.; et al. decoupling between diastolic pulmonary arterial pressure and pulmonary arterial wedge pressure at incremental left ventricular assist device (lvad) speeds is associated with worse prognosis after LVAD implantation. J. Card Fail. 2018, 24, 575–582. [Google Scholar] [CrossRef]
- Sayer, G.; Sarswat, N.; Kim, G.H.; Adatya, S.; Medvedofsky, D.; Rodgers, D.; Kruse, E.; Ota, T.; Jeevanandam, V.; Lang, R.; et al. The hemodynamic effects of aortic insufficiency in patients supported with continuous-flow left ventricular assist devices. J. Card Fail. 2017, 23, 545–551. [Google Scholar] [CrossRef]
- Yehya, A.; Rajagopal, V.; Meduri, C.; Kauten, J.; Brown, M.; Dean, L.; Webster, J.; Krishnamoorthy, A.; Hrobowski, T.; Dean, D. Short-term results with transcatheter aortic valve replacement for treatment of left ventricular assist device patients with symptomatic aortic insufficiency. J. Heart Lung Transpl. 2019, 38, 920–926. [Google Scholar] [CrossRef] [Green Version]
- Burrell, A.; Hayward, C.; Mariani, J.; Leet, A.; Kaye, D.M. Clinical utility of invasive exercise hemodynamic evaluation in LVAD patients. J. Heart Lung Transpl. 2015, 34, 1635–1637. [Google Scholar] [CrossRef]
- Abraham, W.T.; Adamson, P.B.; Bourge, R.C.; Aaron, M.F.; Costanzo, M.R.; Stevenson, L.W.; Strickland, W.; Neelagaru, S.; Raval, N.; Krueger, S.; et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: A randomised controlled trial. Lancet 2011, 377, 658–666. [Google Scholar] [CrossRef]
- Costanzo, M.R.; Stevenson, L.W.; Adamson, P.B.; Desai, A.S.; Heywood, J.T.; Bourge, R.C.; Bauman, J.; Abraham, W.T. Interventions linked to decreased heart failure hospitalizations during ambulatory pulmonary artery pressure monitoring. JACC Heart Fail. 2016, 4, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Veenis, J.F.; Manintveld, O.C.; Constantinescu, A.A.; Caliskan, K.; Birim, O.; Bekkers, J.A.; van Mieghem, N.M.; den Uil, C.A.; Boersma, E.; Lenzen, M.J.; et al. Design and rationale of haemodynamic guidance with CardioMEMS in patients with a left ventricular assist device: The HEMO-VAD pilot study. ESC Heart Fail. 2019, 6, 194–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uriel, N.; Sayer, G.; Imamura, T.; Rodgers, D.; Kim, G.; Raikhelkar, J.; Sarswat, N.; Kalantari, S.; Chung, B.; Nguyen, A.; et al. Relationship between noninvasive assessment of lung fluid volume and invasively measured cardiac hemodynamics. J. Am. Heart Assoc. 2018, 7, 9175. [Google Scholar] [CrossRef] [Green Version]
- Amir, O.; Azzam, Z.S.; Gaspar, T.; Faranesh-Abboud, S.; Andria, N.; Burkhoff, D.; Abbo, A.; Abraham, W.T. Validation of remote dielectric sensing (ReDS) technology for quantification of lung fluid status: Comparison to high resolution chest computed tomography in patients with and without acute heart failure. Int. J. Cardiol. 2016, 221, 841–846. [Google Scholar] [CrossRef] [Green Version]
- Grinstein, J.; Rodgers, D.; Kalantari, S.; Sayer, G.; Kim, G.H.; Sarswat, N.; Adatya, S.; Ota, T.; Jeevanandam, V.; Burkhoff, D.; et al. Waveform analysis as a noninvasive marker of pulmonary capillary wedge pressure: A first step toward the development of a smart left ventricular assist device pump. ASAIO J. 2018, 64, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Imamura, T.; Narang, N.; Rodgers, D.; Nitta, D.; Grinstein, J.; Fujino, T.; Kim, G.; Nguyen, A.; Jeevanandam, V.; Sayer, G.; et al. HVAD flow waveform estimates left ventricular filling pressure. J. Card Fail. 2020, 26, 342–348. [Google Scholar] [CrossRef]
- Imamura, T.; Narang, N. Advances in hemodynamic monitoring in heart failure patients. Intern. Med. 2020. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imamura, T.; Narang, N. Implication of Hemodynamic Assessment during Durable Left Ventricular Assist Device Support. Medicina 2020, 56, 413. https://doi.org/10.3390/medicina56080413
Imamura T, Narang N. Implication of Hemodynamic Assessment during Durable Left Ventricular Assist Device Support. Medicina. 2020; 56(8):413. https://doi.org/10.3390/medicina56080413
Chicago/Turabian StyleImamura, Teruhiko, and Nikhil Narang. 2020. "Implication of Hemodynamic Assessment during Durable Left Ventricular Assist Device Support" Medicina 56, no. 8: 413. https://doi.org/10.3390/medicina56080413
APA StyleImamura, T., & Narang, N. (2020). Implication of Hemodynamic Assessment during Durable Left Ventricular Assist Device Support. Medicina, 56(8), 413. https://doi.org/10.3390/medicina56080413