Some Physical Properties and Mass Modelling of Pepper Berries (Piper nigrum L.), Variety Kuching, at Different Maturity Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurements of Physical Properties
2.2. Regression Analysis and Mass Modelling
- Single variable regression of pepper berry mass based on dimensional characteristics of the pepper berry—major axis (L), medium axis (T), minor axis (W), and geometric mean diameter (Dg).
- Single regression of pepper berry volume—actual volume (V).
- Single regression of pepper berry surface area—surface area of the fruit assumed as a spheroid (SAsp).
- Single variable regression of pepper berry projected area —PAL, PAT, PAW, and CPA.
2.3. Statistical Analysis
3. Results and Discussion
3.1. Physical Properties of Pepper Berries
3.2. Mass Modelling
3.3. Models Based on Dimensions
3.4. Models Based on Volume
3.5. Models Based on Surface Area
3.6. Models Based on Projected Area
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#rankings/countries_by_commodity (accessed on 18 June 2020).
- Malaysian Pepper Board (MPB). Available online: https://www.mpb.gov.my/mpb2/index.php/my/ (accessed on 18 June 2020).
- Lorestani, A.N.; Ghari, M. Mass modeling of Fava bean (Vicia faba L.) with some physical characteristics. Sci. Hortic. 2012, 133, 6–9. [Google Scholar] [CrossRef]
- Mohsenin, N.N. Physical properties of plant and animal materials. Structure, physical characteristics and mechanical properties. N. Y. Gordon Breach Sci. Publ. 1986, 31, 987. [Google Scholar]
- Feizollah, S.; Satar, R. Mass modeling of persimmon fruit with some physical characteristics. Agric. Eng. Int. CIGR J. 2014, 16, 289–293. [Google Scholar]
- Pradhan, R.C.; Meda, V.; Naik, S.N.; Tabil, L. Physical properties of canadian grown flaxseed in relation to its processing. Int. J. Food Prop. 2010, 13, 732–743. [Google Scholar] [CrossRef]
- Pathak, S.S.; Pradhan, R.C.; Mishra, S. Physical characterization and mass modeling of dried Terminalia chebula fruit. J. Food Process Eng. 2019, 42, e12992. [Google Scholar] [CrossRef]
- Karimi, N.; Arabhosseini, A.; Kianmehr, M.H.; Khazaei, J. Modelling of raisin berries by some physical and statistical characteristics. Int. Agrophys 2011, 25, 141–147. [Google Scholar]
- Jaiswal, S.G.; Dole, B.R.; Satpathy, S.K.; Naik, S.N. Physical attributes and modelling of trans-himalayan seabuckthorn berries. Curr. Res. Nutr. Food Sci. 2017, 5, 391–397. [Google Scholar] [CrossRef]
- Tabatabaeefar, A.; Vefagh-Nematolahee, A.; Rajabipour, A. Modeling of Orange Mass Based on Dimensions. J. Agric. Sci. Technol. 2000, 2, 299–305. [Google Scholar]
- Tabatabaeefar, A.; Rajabipour, A. Modeling the mass of apples by geometrical attributes. Sci. Hortic. 2005, 105, 373–382. [Google Scholar] [CrossRef]
- Khoshnam, F.; Tabatabaeefar, A.; Varnamkhasti, M.G.; Borghei, A. Mass modeling of pomegranate (Punica granatum L.) fruit with some physical characteristics. Sci. Hortic. 2007, 114, 21–26. [Google Scholar] [CrossRef]
- Ghabel, R.; Rajabipour, A.; Ghasemi-Varnamkhasti, M.M.O. Modeling the mass of Iranian export onion (Allium cepa L.) varieties using some physical characteristics. Res. Agric. Eng. 2010, 56, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Nur Salihah, B.; Rosnah, S.; Norashikin, A.A. Mass modeling of Malaysian varieties pomelo fruit (Citrus grandis L. Osbeck) with some physical characteristics. Int. Food Res. J. 2015, 22, 488–493. [Google Scholar]
- Khodabakhshian, R.; Emadi, B. Mass model of date fruit (cv. Mazafati) based on its physiological properties. Int. Food Res. J. 2016, 23, 2057–2062. [Google Scholar]
- Mahawar, M.K.; Bibwe, B.; Jalgaonkar, K.; Ghodki, B.M. Mass modeling of kinnow mandarin based on some physical attributes. J. Food Process Eng. 2019, 42, e13079. [Google Scholar] [CrossRef]
- Zainal A’Bidin, F.N.; Shamsudin, R.; Mohd Basri, M.S.; Mohd Dom, Z. Mass Modelling and Effects of Fruit Position on Firmness and Adhesiveness of Banana Variety Nipah. Int. J. Food Eng. 2020, 1. (ahead of print). [Google Scholar]
- Rosnah, S.; Chan, S. Enzymatic rettings of green pepper berries for white pepper production. Int. Food Res. J. 2014, 21, 237–245. [Google Scholar]
- Murthy, C.T.; Bhattacharya, S. Moisture dependant physical and uniaxial compression properties of black pepper. J. Food Eng. 1998, 37, 193–205. [Google Scholar] [CrossRef]
- Akar, R.; Aydin, C. Some physical properties of gumbo fruit varieties. J. Food Eng. 2005, 66, 387–393. [Google Scholar] [CrossRef]
- Aydin, C.; Özcan, M.M. Determination of nutritional and physical properties of myrtle (Myrtus communis L.) fruits growing wild in Turkey. J. Food Eng. 2007, 79, 453–458. [Google Scholar] [CrossRef]
- Karababa, E. Physical properties of popcorn kernels. J. Food Eng. 2006, 72, 100–107. [Google Scholar] [CrossRef]
Immature | Mature | Ripe | |||||||
---|---|---|---|---|---|---|---|---|---|
Parameter | Mean | Maximum Value | Minimum Value | Mean | Maximum Value | Minimum Value | Mean | Maximum Value | Minimum Value |
L (mm) | 4.75 ± 0.38 c | 5.50 | 4.00 | 5.73 ± 0.32 a | 6.60 | 5.40 | 5.55 ± 0.66 b | 7.40 | 4.36 |
T (mm) | 5.09 ± 0.50 c | 5.70 | 4.30 | 6.16 ± 0.44 a | 7.10 | 5.60 | 5.60 ± 0.33 b | 7.10 | 4.31 |
W (mm) | 4.74 ± 0.34 c | 5.30 | 4.00 | 5.87 ± 0.34 a | 6.70 | 5.40 | 5.67 ± 0.51 b | 7.01 | 4.36 |
AR | 1.00 ± 0.03 a | 1.04 | 0.96 | 0.98 ± 0.02 a | 1.00 | 0.93 | 0.98 ± 0.13 a | 1.18 | 0.79 |
Dg (mm) | 4.85 ± 0.38 c | 5.50 | 4.10 | 5.92 ± 0.35 a | 6.80 | 5.47 | 5.61 ± 0.46 b | 7.17 | 4.67 |
Φ | 1.02 ± 0.02 ab | 1.05 | 0.97 | 1.03 ± 0.02 a | 1.08 | 1.01 | 1.01 ± 0.08 b | 1.43 | 0.72 |
Weight (g) | 0.10 ± 0.01 a | 0.11 | 0.09 | 0.14 ± 0.01 a | 0.14 | 0.13 | 0.15 ± 0.04 a | 0.23 | 0.11 |
V (mm3) | 96.67 ± 5.77 b | 100.00 | 90.00 | 120 ± 10.00 a | 130.00 | 110.00 | 120 ± 21.60 a | 140.00 | 90.00 |
SAsp (mm2) | 74.65 ± 11.43 c | 95.03 | 52.81 | 110.49 ± 13.66 a | 145.27 | 93.88 | 99.39 ± 16.66 b | 161.51 | 69.20 |
PAL (mm2) | 17.78 ± 2.75 c | 22.89 | 12.57 | 26.50 ± 3.28 a | 34.73 | 22.90 | 24.78 ± 4.27 b | 40.74 | 17.70 |
PAT (mm2) | 19.04 ± 3.08 c | 23.73 | 13.51 | 28.51 ± 3.93 a | 37.36 | 23.75 | 25.10 ± 4.51 b | 39.09 | 14.96 |
PAW (mm2) | 17.73 ± 2.57 c | 22.06 | 12.57 | 27.16 ± 3.45 a | 35.26 | 22.90 | 25.45 ± 4.56 b | 38.59 | 14.93 |
CPA (mm2) | 18.19 ± 2.73 c | 22.89 | 12.88 | 27.39 ± 3.52 a | 35.78 | 23.18 | 25.11 ± 4.13 b | 39.48 | 16.29 |
Dependent Parameter | Independent Parameter | Model Equation | Maturity Levels | Regression Constant | Statistical Parameters | The Best Fitted Model | |||
---|---|---|---|---|---|---|---|---|---|
a | b | c | R2 | SEE | |||||
M (g) | L (mm) | Linear | Immature | 0.021 | 0.016 | - | 0.828 | 0.003 | Quadratic |
Mature | 0.058 | 0.013 | - | 0.949 | 0.001 | ||||
Ripe | −0.056 | 0.036 | - | 0.894 | 0.014 | ||||
M (g) | L (mm) | Quadratic | Immature | 0.130 | −0.031 | 0.005 | 0.852 | 0.003 | |
Mature | −0.013 | 0.037 | −0.002 | 0.952 | 0.001 | ||||
Ripe | 0.351 | −0.107 | 0.012 | 0.980 | 0.007 | ||||
M (g) | L (mm) | S-curve | Immature | 0.168 | −0.338 | - | 0.781 | 0.004 | |
Mature | 0.218 | −0.478 | - | 0.951 | 0.001 | ||||
Ripe | 0.345 | −1.085 | - | 0.796 | 0.020 | ||||
M (g) | L (mm) | Power | Immature | 0.028 | 0.786 | - | 0.824 | 0.003 | |
Mature | 0.049 | 0.580 | - | 0.950 | 0.001 | ||||
Ripe | 0.012 | 1.432 | - | 0.911 | 0.013 | ||||
M (g) | T (mm) | Linear | Immature | 0.033 | 0.012 | - | 0.862 | 0.003 | Quadratic |
Mature | 0.076 | 0.009 | - | 0.903 | 0.002 | ||||
Ripe | −0.052 | 0.035 | - | 0.795 | 0.020 | ||||
M (g) | T (mm) | Quadratic | Immature | 0.239 | −0.071 | 0.008 | 0.925 | 0.002 | |
Mature | 0.286 | −0.057 | 0.005 | 0.952 | 0.001 | ||||
Ripe | 0.419 | −0.133 | 0.015 | 0.883 | 0.017 | ||||
M (g) | T (mm) | S-curve | Immature | 0.155 | −0.296 | - | 0.821 | 0.003 | |
Mature | 0.194 | −0.370 | - | 0.871 | 0.002 | ||||
Ripe | 0.334 | −1.032 | - | 0.711 | 0.024 | ||||
M (g) | T (mm) | Power | Immature | 0.033 | 0.653 | - | 0.856 | 0.003 | |
Mature | 0.060 | 0.439 | - | 0.895 | 0.002 | ||||
Ripe | 0.012 | 1.419 | - | 0.809 | 0.019 | ||||
M (g) | W (mm) | Linear | Immature | 0.012 | 0.018 | - | 0.794 | 0.003 | Quadratic |
Mature | 0.062 | 0.012 | - | 0.927 | 0.001 | ||||
Ripe | −0.065 | 0.038 | - | 0.807 | 0.020 | ||||
M (g) | W (mm) | Quadratic | Immature | 0.306 | −0.110 | 0.014 | 0.895 | 0.003 | |
Mature | 0.260 | −0.053 | 0.005 | 0.960 | 0.001 | ||||
Ripe | 0.557 | −0.186 | 0.020 | 0.926 | 0.014 | ||||
M (g) | W (mm) | S-curve | Immature | 0.172 | −0.357 | - | 0.730 | 0.004 | |
Mature | 0.208 | −0.436 | - | 0.895 | 0.002 | ||||
Ripe | 0.346 | −1.094 | - | 0.722 | 0.023 | ||||
M (g) | W (mm) | Power | Immature | 0.024 | 0.882 | - | 0.790 | 0.003 | |
Mature | 0.051 | 0.543 | - | 0.920 | 0.001 | ||||
Ripe | 0.010 | 1.523 | - | 0.826 | 0.019 | ||||
M (g) | Dg (mm) | Linear | Immature | 0.016 | 0.017 | - | 0.878 | 0.003 | Quadratic |
Mature | 0.063 | 0.012 | - | 0.945 | 0.001 | ||||
Ripe | −0.065 | 0.037 | - | 0.821 | 0.019 | ||||
M (g) | Dg (mm) | Quadratic | Immature | 0.225 | −0.071 | 0.009 | 0.938 | 0.002 | |
Mature | 0.196 | −0.032 | 0.004 | 0.960 | 0.001 | ||||
Ripe | 0.479 | −0.152 | 0.016 | 0.886 | 0.017 | ||||
M (g) | Dg (mm) | S-curve | Immature | 0.171 | −0.360 | - | 0.822 | 0.003 | |
Mature | 0.209 | −0.445 | - | 0.922 | 0.001 | ||||
Ripe | 0.361 | −1.195 | - | 0.767 | 0.021 | ||||
M (g) | Dg (mm) | Power | Immature | 0.026 | 0.840 | - | 0.874 | 0.003 | |
Mature | 0.051 | 0.541 | - | 0.940 | 0.001 | ||||
Ripe | 0.011 | 1.474 | - | 0.832 | 0.018 |
Dependent Parameter | Independent Parameter | Model Equation | Maturity Levels | Regression Constant | Statistical Parameters | The Best Fitted Model | |||
---|---|---|---|---|---|---|---|---|---|
a | b | c | R2 | SEE | |||||
M (g) | V (mm3) | Linear | Immature | 0.108 | −0.015 | - | 0.636 | 0.005 | Quadratic |
Mature | 0.049 | 0.001 | - | 0.806 | 0.002 | ||||
Ripe | −0.095 | 0.002 | - | 0.816 | 0.027 | ||||
M (g) | V (mm3) | Quadratic | Immature | 0.125 | −0.190 | 0.163 | 0.925 | 0.002 | |
Mature | 0.795 | −0.012 | 5.164 10−5 | 0.988 | 0.001 | ||||
Ripe | 0.828 | −0.015 | 7.376 10−5 | 0.995 | 0.006 | ||||
M (g) | V (mm3) | S-curve | Immature | 0.092 | 0.002 | - | 0.692 | 0.004 | |
Mature | 0.217 | −9.947 | - | 0.762 | 0.002 | ||||
Ripe | 0.375 | −24.784 | - | 0.727 | 0.033 | ||||
M (g) | V (mm3) | Power | Immature | 0.096 | 6.619 10−18 | - | 0.000 | 0.008 | |
ture | 0.006 | 0.639 | - | 0.798 | 0.002 | ||||
Ripe | 2.626 10−5 | 1.819 | - | 0.849 | 0.024 | ||||
M (g) | SAsp (mm2) | Linear | Immature | 0.055 | 6 10−4 | - | 0.899 | 0.002 | Quadratic |
Mature | 0.100 | 3 10−4 | - | 0.952 | 0.001 | ||||
Ripe | 0.020 | 0.001 | - | 0.955 | 0.009 | ||||
M (g) | SAsp (mm2) | Quadratic | Immature | 0.097 | −6 10−4 | 7.825 10−6 | 0.936 | 0.002 | |
Mature | 0.124 | −1 10−4 | 1.715 10−6 | 0.960 | 0.001 | ||||
Ripe | 0.117 | −0.001 | 7.80 10−6 | 0.983 | 0.006 | ||||
M (g) | SAsp (mm2) | S-curve | Immature | 0.132 | −2.596 | - | 0.789 | 0.003 | |
Mature | 0.172 | −4.186 | - | 0.905 | 0.002 | ||||
Ripe | 0.280 | −12.808 | - | 0.827 | 0.018 | ||||
M (g) | SAsp (mm2) | Power | Immature | 0.016 | 0.419 | - | 0.874 | 0.003 | |
Mature | 0.038 | 0.270 | - | 0.940 | 0.001 | ||||
Ripe | 0.002 | 0.885 | - | 0.950 | 0.010 |
Dependent Parameter | Independent Parameter | Model Equation | Maturity Levels | Regression Constant | Statistical Parameters | The Best Fitted Model | |||
---|---|---|---|---|---|---|---|---|---|
a | b | c | R2 | SEE | |||||
M (g) | PAL (mm2) | Linear | Immature | 0.055 | 0.002 | - | 0.831 | 0.003 | Quadratic |
Mature | 0.098 | 0.001 | - | 0.912 | 0.001 | ||||
Ripe | 0.042 | 0.004 | - | 0.792 | 0.020 | ||||
M (g) | PAL (mm2) | Quadratic | Immature | 0.086 | −0.001 | 1 10−4 | 0.856 | 0.003 | |
Mature | 0.111 | 0.001 | 1.466 10−5 | 0.913 | 0.002 | ||||
Ripe | 0.158 | −0.005 | 1 10−4 | 0.835 | 0.020 | ||||
M (g) | PAL (mm2) | S-curve | Immature | 0.132 | −0.614 | - | 0.729 | 0.004 | |
Mature | 0.175 | −1.063 | - | 0.883 | 0.002 | ||||
Ripe | 0.252 | −2.626 | - | 0.700 | 0.024 | ||||
M (g) | PAL (mm2) | Power | Immature | 0.029 | 0.422 | - | 0.807 | 0.003 | |
Mature | 0.054 | 0.280 | - | 0.906 | 0.002 | ||||
Ripe | 0.013 | 0.723 | - | 0.782 | 0.021 | ||||
M (g) | PAT (mm2) | Linear | Immature | 0.055 | 0.002 | - | 0.887 | 0.003 | Quadratic |
Mature | 0.102 | 0.001 | - | 0.941 | 0.001 | ||||
Ripe | 0.040 | 0.004 | - | 0.810 | 0.019 | ||||
M (g) | PAT (mm2) | Quadratic | Immature | 0.114 | −0.004 | 2 10−4 | 0.946 | 0.002 | |
Mature | 0.146 | −0.002 | 4.808 10−5 | 0.971 | 0.001 | ||||
Ripe | 0.199 | −0.009 | 2 10−4 | 0.930 | 0.013 | ||||
M (g) | PAT (mm2) | S-curve | Immature | 0.131 | −0.647 | - | 0.783 | 0.004 | |
Mature | 0.169 | −0.980 | - | 0.874 | 0.001 | ||||
Ripe | 0.239 | −2.167 | - | 0.642 | 0.027 | ||||
M (g) | PAT (mm2) | Power | Immature | 0.029 | 0.412 | - | 0.860 | 0.003 | |
Mature | 0.058 | 0.250 | - | 0.921 | 0.001 | ||||
Ripe | 0.013 | 0.741 | - | 0.790 | 0.020 | ||||
M (g) | PAW (mm2) | Linear | Immature | 0.052 | 0.003 | - | 0.820 | 0.003 | Quadratic |
Mature | 0.099 | 0.001 | - | 0.934 | 0.001 | ||||
Ripe | 0.039 | 0.004 | - | 0.815 | 0.019 | ||||
M (g) | PAW (mm2) | Quadratic | Immature | 0.112 | −0.005 | 2 10−4 | 0.888 | 0.003 | |
Mature | 0.139 | −0.002 | 4.768 10−5 | 0.955 | 0.001 | ||||
Ripe | 0.207 | −0.010 | 3 10−4 | 0.942 | 0.012 | ||||
M (g) | PAW (mm2) | S-curve | Immature | 0.132 | −0.619 | - | 0.695 | 0.004 | |
Mature | 0.172 | −1.011 | - | 0.872 | 0.002 | ||||
Ripe | 0.240 | −2.168 | - | 0.652 | 0.026 | ||||
M (g) | PAW (mm2) | Power | Immature | 0.027 | 0.441 | - | 0.790 | 0.003 | |
Mature | 0.055 | 0.271 | - | 0.916 | 0.001 | ||||
Ripe | 0.013 | 0.744 | - | 0.795 | 0.020 | ||||
M (g) | CPA | Linear | Immature | 0.054 | 0.002 | - | 0.832 | 0.003 | Quadratic |
Mature | 0.099 | 0.001 | - | 0.950 | 0.001 | ||||
Ripe | 0.034 | 0.004 | - | 0.833 | 0.018 | ||||
M (g) | CPA | Quadratic | Immature | 0.102 | −0.003 | 2 10−4 | 0.880 | 0.003 | |
Mature | 0.130 | −0.001 | 3.55 10−5 | 0.962 | 0.001 | ||||
Ripe | 0.221 | −0.011 | 3 10−4 | 0.966 | 0.009 | ||||
M (g) | CPA | S-curve | Immature | 0.132 | −0.632 | - | 0.716 | 0.004 | |
Mature | 0.172 | −1.037 | - | 0.896 | 0.002 | ||||
Ripe | 0.250 | −2.445 | - | 0.683 | 0.025 | ||||
M (g) | CPA | Power | Immature | 0.028 | 0.431 | - | 0.805 | 0.003 | |
Mature | 0.055 | 0.272 | - | 0.935 | 0.001 | ||||
Ripe | 0.011 | 0.784 | - | 0.816 | 0.019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Megat Ahmad Azman, P.N.; Shamsudin, R.; Che Man, H.; Ya’acob, M.E. Some Physical Properties and Mass Modelling of Pepper Berries (Piper nigrum L.), Variety Kuching, at Different Maturity Levels. Processes 2020, 8, 1314. https://doi.org/10.3390/pr8101314
Megat Ahmad Azman PN, Shamsudin R, Che Man H, Ya’acob ME. Some Physical Properties and Mass Modelling of Pepper Berries (Piper nigrum L.), Variety Kuching, at Different Maturity Levels. Processes. 2020; 8(10):1314. https://doi.org/10.3390/pr8101314
Chicago/Turabian StyleMegat Ahmad Azman, Puteri Nurain, Rosnah Shamsudin, Hasfalina Che Man, and Mohammad Effendy Ya’acob. 2020. "Some Physical Properties and Mass Modelling of Pepper Berries (Piper nigrum L.), Variety Kuching, at Different Maturity Levels" Processes 8, no. 10: 1314. https://doi.org/10.3390/pr8101314
APA StyleMegat Ahmad Azman, P. N., Shamsudin, R., Che Man, H., & Ya’acob, M. E. (2020). Some Physical Properties and Mass Modelling of Pepper Berries (Piper nigrum L.), Variety Kuching, at Different Maturity Levels. Processes, 8(10), 1314. https://doi.org/10.3390/pr8101314