Storage Placement and Sizing in a Distribution Grid with High PV Generation
Abstract
:1. Introduction
2. Literature Review
3. Cost Analysis
3.1. Energy Storage Costs
3.2. Grid Reinforcement Costs
4. Input Data and Scenario
4.1. PV Generation
4.2. Simulation Scenario
4.3. Battery Sizing and Placement
5. Approach
5.1. Grid Reinforcement
5.2. Grid Reinforcement
5.3. Battery Placement
5.4. Comparison
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Dunn, B.; Kamath, H.; Tarascon, J.M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Divya, K.; Østergaard, J. Battery Energy Storage Technology for Power Systems—An Overview. Electr. Power Syst. Res. 2009, 79, 511–520. [Google Scholar] [CrossRef]
- Beaudin, M.; Zareipour, H.; Schellenberglabe, A.; Rosehart, W. Energy Storage for Mitigating the Variability of Renewable Electricity Sources: An Updated Review. Energy Sustain. Dev. 2010, 14, 302–314. [Google Scholar] [CrossRef]
- Ferreira, H.L.; Garde, R.; Fulli, G.; Kling, W.; Lopes, J.P. Characterisation of Electrical Energy Storage Technologies. Energy 2013, 53, 288–298. [Google Scholar] [CrossRef] [Green Version]
- Mateo, C.; Sánchez, Á.; Frías, P.; Rodriguez-Calvo, A.; Reneses, J. Cost–Benefit Analysis of Battery Storage in Medium-Voltage Distribution Networks. IET Gener. Transm. Distrib. 2016, 10, 815–821. [Google Scholar] [CrossRef]
- Oudalov, A.; Chartouni, D.; Ohler, C. Optimizing a Battery Energy Storage System for Primary Frequency Control. IEEE Trans. Power Syst. 2007, 22, 1259–1266. [Google Scholar] [CrossRef]
- Aditya, S.; Das, D. Battery Energy Storage for Load Frequency Control of an Interconnected Power System. Electr. Power Syst. Res. 2001, 58, 179–185. [Google Scholar] [CrossRef]
- Lazzeroni, P.; Repetto, M. Optimal Planning of Battery Systems for Power Losses Reduction in Distribution Grids. Electr. Power Syst. Res. 2019, 167, 94–112. [Google Scholar] [CrossRef]
- Grover-Silva, E.; Girard, R.; Kariniotakis, G. Optimal Sizing and Placement of Distribution Grid Connected Battery Systems through an SOCP Optimal Power Flow Algorithm. Appl. Energy 2018, 219, 385–393. [Google Scholar] [CrossRef] [Green Version]
- Bose, S.; Gayme, D.F.; Topcu, U.; Chandy, K.M. Optimal Placement of Energy Storage in the Grid. In Proceedings of the 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), Maui, HI, USA, 10–13 December 2012; pp. 5605–5612. [Google Scholar] [CrossRef]
- Prakash, P.; Khatod, D.K. Optimal Sizing and Siting Techniques for Distributed Generation in Distribution Systems: A Review. Renew. Sustain. Energy Rev. 2016, 57, 111–130. [Google Scholar] [CrossRef]
- Motalleb, M.; Reihani, E.; Ghorbani, R. Optimal Placement and Sizing of the Storage Supporting Transmission and Distribution Networks. Renew. Energy 2016, 94, 651–659. [Google Scholar] [CrossRef] [Green Version]
- Fossati, J.P.; Galarza, A.; Martín-Villate, A.; Fontán, L. A Method for Optimal Sizing Energy Storage Systems for Microgrids. Renew. Energy 2015, 77, 539–549. [Google Scholar] [CrossRef]
- Chen, C.; Duan, S.; Cai, T.; Liu, B.; Hu, G. Optimal Allocation and Economic Analysis of Energy Storage System in Microgrids. IEEE Trans. Power Electron. 2011, 26, 2762–2773. [Google Scholar] [CrossRef]
- Arabali, A.; Ghofrani, M.; Etezadi-Amoli, M. Cost Analysis of a Power System Using Probabilistic Optimal Power Flow with Energy Storage Integration and Wind Generation. Int. J. Electr. Power Energy Syst. 2013, 53, 832–841. [Google Scholar] [CrossRef]
- Ahmadian, A.; Sedghi, M.; Aliakbar-Golkar, M.; Elkamel, A.; Fowler, M. Optimal Probabilistic Based Storage Planning in Tap-Changer Equipped Distribution Network Including PEVs, Capacitor Banks and WDGs: A Case Study for Iran. Energy 2016, 112, 984–997. [Google Scholar] [CrossRef]
- Kerdphol, T.; Qudaih, Y.; Mitani, Y. Battery Energy Storage System Size Optimization in Microgrid Using Particle Swarm Optimization. In Proceedings of the IEEE PES Innovative Smart Grid Technologies Europe, Istanbul, Turkey, 12–15 October 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Harsha, P.; Dahleh, M. Optimal Management and Sizing of Energy Storage Under Dynamic Pricing for the Efficient Integration of Renewable Energy. IEEE Trans. Power Syst. 2015, 30, 1164–1181. [Google Scholar] [CrossRef]
- Müller, M.; Viernstein, L.; Truong, C.N.; Eiting, A.; Hesse, H.C.; Witzmann, R.; Jossen, A. Evaluation of Grid-Level Adaptability for Stationary Battery Energy Storage System Applications in Europe. J. Energy Storage 2017, 9, 1–11. [Google Scholar] [CrossRef]
- Bansal, V. Building A Bankable Solar + Energy Storage Project. Available online: https://16iwyl195vvfgoqu3136p2ly-wpengine.netdna-ssl.com/wp-content/uploads/2018/10/PV-Magazine-Webinar_11-Oct-2018_Sterling-and-Wilson.pdf (accessed on 3 May 2019).
- Rupp, L.; Brunner, M.; Tenbohlen, S. Einfluss Dezentraler Wärmepumpen auf die Netzausbaukosten des Niederspannungsnetzes; In Proceedings of the Power and Energy Student Summit (PESS) 2015, Dortmund, Germany, 13–14 Januar 2015. [CrossRef]
- Hofman, O. Vergleich Erdkabel–Freileitung Im 110-kV-Hochspannungsbereich. Technical Report. 2010. Available online: https://www.yumpu.com/de/document/view/45325316/vergleich-erdkabel-freileitung-im-110-kv-hochspannungsbereich (accessed on 29 April 2019).
- Heuck, K.; Dettmann, K.D.; Schulz, D. Elektrische Energieversorgung Erzeugung, Übertragung und Verteilung elektrischer Energie für Studium und Praxis; Vieweg+Teubner: Wiesbaden, Germany, 2010. [Google Scholar]
- Holmgren, W.F.; Hansen, C.W.; Mikofski, M.A. Pvlib Python: A Python Package for Modeling Solar Energy Systems. J. Open Source Softw. 2018, 3, 884. [Google Scholar] [CrossRef] [Green Version]
- Matthiss, B.; Kraft, M.; Binder, J. Fast Probabilistic Load Flow for Non-Radial Distribution Grids. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe), Palermo, Italy, 12–15 June 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Matthiss, B.; Momenifarahani, A.; Ohnmeiss, K.; Felder, M. Influence of Demand and Generation Uncertainty on the Operational Efficiency of Smart Grids. arXiv 2018, arXiv:cs/1812.01886. [Google Scholar]
Type | Perc. | Costs/Value |
---|---|---|
capacity | 42% | 130 EUR/kwh |
periphery | 28% | 87 EUR/kwh |
power electronics | 30% | 93 EUR/kw |
installation | - | 20,000 EUR/batt |
batt. lifetime | - | 10 yr |
Line Type | Cost Type | Costs |
---|---|---|
0.4 kV, mm | installation | 60,000 EUR/km |
acquisition | 3500 EUR/km | |
0.4 kV, mm | installation | 60,000 EUR/km |
acquisition | 9900 EUR/km | |
0.4 kV, mm | installation | 60,000 EUR/km |
acquisition | 12,000 EUR/km | |
parallel line installation | installation | additional 15% of installation costs |
Trafo, 630 kVA | total | 21,000 EUR |
From Bus | To Bus | n Parallel | Type | Cost [k€] |
---|---|---|---|---|
1 | 105 | 2 | NAYY SE | 109.5 |
1 | 73 | 2 | NAYY SE | 109.5 |
1 | 106 | 3 | NAYY SE | 131.1 |
2 | 28 | 1 | NAYY SE | 87.9 |
2 | 104 | 2 | NAYY SE | 109.5 |
3 | 61 | 1 | NAYY SE | 87.9 |
3 | 73 | 2 | NAYY SE | 109.5 |
6 | 43 | 1 | NAYY SE | 81.5 |
6 | 68 | 2 | NAYY SE | 109.5 |
28 | 29 | 1 | NAYY SE | 81.5 |
29 | 30 | 1 | NAYY SE | 81.5 |
50 | 57 | 1 | NAYY SE | 87.9 |
50 | 61 | 1 | NAYY SE | 87.9 |
56 | 57 | 1 | NAYY SE | 87.9 |
63 | 70 | 2 | NAYY SE | 109.5 |
63 | 69 | 2 | NAYY SE | 109.5 |
65 | 70 | 2 | NAYY SE | 109.5 |
65 | 106 | 1 | NAYY SE | 87.9 |
68 | 100 | 2 | NAYY SE | 109.5 |
69 | 100 | 2 | NAYY SE | 109.5 |
104 | 105 | 2 | NAYY SE | 109.5 |
PV Pen. | Batt. 1 | Batt. 2 | Batt. 3 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
[] | [] | C [kWh] | P [kW] | Bus # | C [kWh] | P [kW] | Bus # | C [kWh] | P [kW] | Bus # |
50% | 5% | - | - | - | - | - | - | - | - | - |
3% | 61 | 15 | 30 | 99 | 20 | 42 | - | - | - | |
80% | 5% | 75 | 20 | 30 | 149 | 30 | 43 | - | - | - |
3% | 377 | 61 | 29 | 414 | 67 | 45 | 909 | 25 | 59 |
PV Pen. | Grid Reinf. | 5 Batt. | 10 Batt. | Unconstrained | ||
---|---|---|---|---|---|---|
[] | [] | [k€] | [k€] | [k€] | [k€] | [n batt.] |
50% | 3% | 710 | 138 | 238 | 79 | 2 |
5% | - | - | - | - | - | |
80% | 3% | 1679 | 307 | 406 | 273 | 3 |
5% | 488 | 154 | 254 | 94 | 2 |
PV Pen. | Grid Reinf. | 5 Batt. | 10 Batt. | Unconstrained | ||
---|---|---|---|---|---|---|
[] | [] | [k€] | [k€] | [k€] | [k€] | [n batt.] |
50% | 3% | 18 | 14 | 24 | 8 | 2 |
5% | 0 | 0 | 0 | 0 | 0 | |
80% | 3% | 42 | 31 | 41 | 27 | 3 |
5% | 12 | 15 | 25 | 9 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matthiss, B.; Momenifarahani, A.; Binder, J. Storage Placement and Sizing in a Distribution Grid with High PV Generation. Energies 2021, 14, 303. https://doi.org/10.3390/en14020303
Matthiss B, Momenifarahani A, Binder J. Storage Placement and Sizing in a Distribution Grid with High PV Generation. Energies. 2021; 14(2):303. https://doi.org/10.3390/en14020303
Chicago/Turabian StyleMatthiss, Benjamin, Arghavan Momenifarahani, and Jann Binder. 2021. "Storage Placement and Sizing in a Distribution Grid with High PV Generation" Energies 14, no. 2: 303. https://doi.org/10.3390/en14020303