Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,190)

Search Parameters:
Keywords = low-voltage grid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1285 KB  
Article
Stability Assessment of Fully Inverter-Based Power Systems Using Grid-Forming Controls
by Zahra Ahmadimonfared and Stefan Eichner
Electronics 2025, 14(21), 4202; https://doi.org/10.3390/electronics14214202 (registering DOI) - 27 Oct 2025
Abstract
The displacement of synchronous machines by inverter-based resources raises critical concerns regarding the stability of future low-inertia power systems. Grid-forming (GFM) inverters offer a pathway to address these challenges by autonomously establishing voltage and frequency while emulating inertia and damping. This paper investigates [...] Read more.
The displacement of synchronous machines by inverter-based resources raises critical concerns regarding the stability of future low-inertia power systems. Grid-forming (GFM) inverters offer a pathway to address these challenges by autonomously establishing voltage and frequency while emulating inertia and damping. This paper investigates the feasibility of operating a transmission-scale network with 100% GFM penetration by fully replacing all synchronous generators in the IEEE 39-bus system with a heterogeneous mix of droop, virtual synchronous machine (VSM), and synchronverter controls. System stability is assessed under a severe fault-initiated separation, focusing on frequency and voltage metrics defined through center-of-inertia formulations and standard acceptance envelopes. A systematic parameter sweep of virtual inertia (H) and damping (Dp) reveals their distinct and complementary roles: inertia primarily shapes the Rate of Change in Frequency and excursion depth, while damping governs convergence speed and steady-state accuracy. All tested parameter combinations remain within established stability limitations, confirming the robust operability of a fully inverter-dominated grid. These findings demonstrate that properly tuned GFM inverters can enable secure and reliable operation of future power systems without reliance on synchronous machines. Full article
(This article belongs to the Topic Power System Dynamics and Stability, 2nd Edition)
14 pages, 2105 KB  
Article
A Unified Control Strategy Integrating VSG and LVRT for Current-Source PMSGs
by Yang Yang, Zaijun Wu, Xiangjun Quan, Junjie Xiong, Zijing Wan and Zetao Wei
Processes 2025, 13(11), 3432; https://doi.org/10.3390/pr13113432 (registering DOI) - 25 Oct 2025
Viewed by 5
Abstract
The growing penetration of renewable energy has reduced system inertia and damping, threatening grid stability. This paper proposes a novel control strategy that seamlessly integrates virtual synchronous generator (VSG) emulation with low-voltage ride-through (LVRT) capability for direct-drive permanent magnet synchronous generators (PMSGs). The [...] Read more.
The growing penetration of renewable energy has reduced system inertia and damping, threatening grid stability. This paper proposes a novel control strategy that seamlessly integrates virtual synchronous generator (VSG) emulation with low-voltage ride-through (LVRT) capability for direct-drive permanent magnet synchronous generators (PMSGs). The unified control framework enables simultaneous inertia support during frequency disturbances and compliant reactive current injection during voltage sags—eliminating mode switching. Furthermore, the proposed strategy has been validated through both a single-machine model and actual wind farm topology. Results demonstrate that the strategy successfully achieves VSG control functionality while simultaneously meeting LVRT requirements. Full article
Show Figures

Figure 1

19 pages, 3770 KB  
Article
Inertia Support Method for LFAC Enabled by Optimized Energy Utilization of Dual-Port Grid-Forming Modular Multilevel Matrix Converters
by Junchao Ma, Jianing Liu, Ruofan Li, Chenxu Wang, Wen Hua and Qianhao Sun
Electronics 2025, 14(21), 4173; https://doi.org/10.3390/electronics14214173 (registering DOI) - 25 Oct 2025
Viewed by 37
Abstract
The Modular Multilevel Matrix Converter (M3C) has the potential to contribute to onshore grid frequency response by utilizing the electrostatic energy stored in its submodules. However, in the current offshore wind power domain, control schemes for M3C-based Low-Frequency AC transmission systems (M3C-LFACs) fail [...] Read more.
The Modular Multilevel Matrix Converter (M3C) has the potential to contribute to onshore grid frequency response by utilizing the electrostatic energy stored in its submodules. However, in the current offshore wind power domain, control schemes for M3C-based Low-Frequency AC transmission systems (M3C-LFACs) fail to effectively exploit the capacitor energy of M3C to provide adequate inertia support. Existing M3C controls are typically grid-following and thus suffer from stability issues under weak-grid conditions. To address this challenge, a dual-port grid-forming control strategy for M3C-LFAC systems is proposed, based on an energy synchronization loop. This approach enables phase-locked-loop-free synchronization between the M3C and the grid while establishing low-frequency link voltage vectors. Building on this foundation, an optimized energy utilization method for M3C total energy is introduced, featuring a two-stage preset curve to maximize the system’s inherent energy for frequency response. Under varying levels of grid load disturbances, the proposed scheme ensures that M3C-LFAC systems can provide optimal inertia support. Finally, simulation studies in MATLAB 2024b/Simulink validate the effectiveness and advantages of the proposed method. Full article
Show Figures

Figure 1

37 pages, 3734 KB  
Article
A Surrogate Modeling Approach for Aggregated Flexibility Envelopes in Transmission–Distribution Coordination: A Case Study on Resilience
by Marco Rossi, Andrea Pitto, Emanuele Ciapessoni and Giacomo Viganò
Energies 2025, 18(21), 5567; https://doi.org/10.3390/en18215567 - 22 Oct 2025
Viewed by 199
Abstract
The role of distributed energy resources in distribution networks is evolving to support system operation, facilitated by their participation in local flexibility markets. Future scenarios envision a significant share of low-power resources providing ancillary services to efficiently manage network congestions, offering a competitive [...] Read more.
The role of distributed energy resources in distribution networks is evolving to support system operation, facilitated by their participation in local flexibility markets. Future scenarios envision a significant share of low-power resources providing ancillary services to efficiently manage network congestions, offering a competitive alternative to conventional grid reinforcement. Additionally, the interaction between distribution and transmission systems enables the provision of flexibility services at higher voltage levels for various applications. In such cases, the aggregated flexibility of low-power resources is typically represented as a capability envelope at the interface between the distribution and transmission network, constructed by accounting for distribution grid constraints and subsequently communicated to the transmission system operator. This paper revisits this concept and introduces a novel approach for envelope construction. The proposed method is based on a surrogate model composed of a limited set of standard power flow components—loads, generators, and storage units—enhancing the integration of distribution network flexibility into transmission-level optimization frameworks. Notably, this advantage can potentially be achieved without significant modifications to the optimization tools currently available to grid operators. The effectiveness of the approach is demonstrated through a case study in which the adoption of distribution network surrogate models within a coordinated framework between transmission and distribution operators enables the provision of ancillary services for transmission resilience support. This results in improved resilience indicators and lower control action costs compared to conventional shedding schemes. Full article
(This article belongs to the Section F1: Electrical Power System)
26 pages, 2428 KB  
Review
A Review of Transmission Line Icing Disasters: Mechanisms, Detection, and Prevention
by Jie Hu, Longjiang Liu, Xiaolei Zhang and Yanzhong Ju
Buildings 2025, 15(20), 3757; https://doi.org/10.3390/buildings15203757 - 17 Oct 2025
Viewed by 412
Abstract
Transmission line icing poses a significant natural disaster threat to power grid security. This paper systematically reviews recent advances in the understanding of icing mechanisms, intelligent detection, and prevention technologies, while providing perspectives on future development directions. In mechanistic research, although a multi-physics [...] Read more.
Transmission line icing poses a significant natural disaster threat to power grid security. This paper systematically reviews recent advances in the understanding of icing mechanisms, intelligent detection, and prevention technologies, while providing perspectives on future development directions. In mechanistic research, although a multi-physics coupling framework has been established, characterization of dynamic evolution over complex terrain and coupled physical mechanisms remains inadequate. Detection technology is undergoing a paradigm shift from traditional contact measurements to non-contact intelligent perception. Visual systems based on UAVs and fixed platforms have achieved breakthroughs in ice recognition and thickness retrieval, yet their performance remains constrained by image quality, data scale, and edge computing capabilities. Anti-/de-icing technologies have evolved into an integrated system combining active intervention and passive defense: DC de-icing (particularly MMC-based topologies) has become the mainstream active solution for high-voltage lines due to its high efficiency and low energy consumption; superhydrophobic coatings, photothermal functional coatings, and expanded-diameter conductors show promising potential but face challenges in durability, environmental adaptability, and costs. Future development relies on the deep integration of mechanistic research, intelligent perception, and active prevention technologies. Through multidisciplinary innovation, key technologies such as digital twins, photo-electro-thermal collaborative response systems, and intelligent self-healing materials will be advanced, with the ultimate goal of comprehensively enhancing power grid resilience under extreme climate conditions. Full article
Show Figures

Figure 1

22 pages, 24181 KB  
Review
Battery Energy Storage for Ancillary Services in Distribution Networks: Technologies, Applications, and Deployment Challenges—A Comprehensive Review
by Franck Cinyama Mushid and Mohamed Fayaz Khan
Energies 2025, 18(20), 5443; https://doi.org/10.3390/en18205443 - 15 Oct 2025
Viewed by 547
Abstract
The integration of distributed energy resources into distribution networks creates operational challenges, including voltage instability and power quality issues. While battery energy storage systems (BESSs) can address these challenges, research has focused primarily on transmission-level applications or single services. This paper bridges this [...] Read more.
The integration of distributed energy resources into distribution networks creates operational challenges, including voltage instability and power quality issues. While battery energy storage systems (BESSs) can address these challenges, research has focused primarily on transmission-level applications or single services. This paper bridges this gap through a comprehensive review of BESS technologies and control strategies for multi-service ancillary support in distribution networks. Real-world case studies demonstrate BESS effectiveness: Hydro-Québec’s 1.2 MW system maintained voltage within 5% and responded to frequency events in under 10 ms; Germany’s hybrid 5 MW M5BAT project optimized multiple battery chemistries for different services; and South Africa’s Eskom deployment improved renewable hosting capacity by 15–70% using modular BESS units. The analysis reveals grid-forming inverters and hierarchical control architectures as critical enablers, with model predictive control optimizing performance and droop control ensuring robustness. However, challenges like battery degradation, regulatory barriers, and high costs persist. This paper identifies future research directions in degradation-aware dispatch, cyber-resilient control, and market-based valuation of BESS flexibility services. By combining theoretical analysis with empirical results from international deployments, this study provides utilities and policymakers with actionable insights for implementing BESS in modern distribution grids. Full article
(This article belongs to the Special Issue Advancements in Energy Storage Technologies)
Show Figures

Figure 1

23 pages, 4758 KB  
Article
Virtual Inertia of Electric Vehicle Fast Charging Stations with Dual Droop Control and Augmented Frequency Support
by Nargunadevi Thangavel Sampathkumar, Anbuselvi Shanmugam Velu, Brinda Rajasekaran and Kumudini Devi Raguru Pandu
Sustainability 2025, 17(20), 8997; https://doi.org/10.3390/su17208997 - 10 Oct 2025
Viewed by 301
Abstract
High penetration of Inverter-Based Resources (IBRs) into the power grid could diminish the rotational inertia offered by a traditional power system and thus impact frequency stability. Several techniques are adopted to provide virtual inertial support to the grid for a short duration in [...] Read more.
High penetration of Inverter-Based Resources (IBRs) into the power grid could diminish the rotational inertia offered by a traditional power system and thus impact frequency stability. Several techniques are adopted to provide virtual inertial support to the grid for a short duration in the presence of IBRs. This paper uses the combined inertia support of a Dual Active Bridge (DAB) and a Voltage Source Converter (VSC)-fed Electric Vehicle Fast Charging System (EVFCS) is used to provide virtual inertia support to the grid. The Voltage Source Converter is designed to provide DC bus voltage regulation. Coordinated control of DAB converters and VSCs for mitigating frequency oscillations using cascaded droop-integrated Proportional Integral (PI) controllers is proposed. An aggregated low-frequency model of a DAB converter is considered in this work. The inertia of the DC link capacitor of the VSCs and battery is sequentially extracted to offer grid frequency support. In this work, the single droop control, dual droop control, grid-forming and Augmented Frequency Support (AFS) modes are explored to provide virtual inertia support to the grid. Full article
Show Figures

Figure 1

19 pages, 4365 KB  
Article
Enhancing Load Stratification in Power Distribution Systems Through Clustering Algorithms: A Practical Study
by Williams Mendoza-Vitonera, Xavier Serrano-Guerrero, María-Fernanda Cabrera, John Enriquez-Loja and Antonio Barragán-Escandón
Energies 2025, 18(19), 5314; https://doi.org/10.3390/en18195314 - 9 Oct 2025
Viewed by 357
Abstract
Accurate load profile identification is crucial for effective and sustainable power system planning. This study proposes a characterization methodology based on clustering techniques applied to consumption data from medium- and low-voltage users, as well as distribution transformers from an electric utility. Three algorithms—K-means, [...] Read more.
Accurate load profile identification is crucial for effective and sustainable power system planning. This study proposes a characterization methodology based on clustering techniques applied to consumption data from medium- and low-voltage users, as well as distribution transformers from an electric utility. Three algorithms—K-means, DBSCAN (Density-Based Spatial Clustering of Applications with Noise), and Gaussian Mixture Models (GMM)—were implemented and compared in terms of their ability to form representative strata using variables such as observation count, projected energy, load factor (LF), and characteristic power levels. The methodology includes data cleaning, normalization, dimensionality reduction, and quality metric analysis to ensure cluster consistency. Results were benchmarked against a prior study conducted by Empresa Eléctrica Regional Centro Sur C.A. (EERCS). Among the evaluated algorithms, GMM demonstrated superior performance in modeling irregular consumption patterns and probabilistically assigning observations, resulting in more coherent and representative segmentations. The resulting clusters exhibited an average LF of 58.82%, indicating balanced demand distribution and operational consistency across the groups. Compared to alternative clustering techniques, GMM demonstrated advantages in capturing heterogeneous consumption patterns, adapting to irregular load behaviors, and identifying emerging user segments such as induction-cooking households. These characteristics arise from its probabilistic nature, which provides greater flexibility in cluster formation and robustness in the presence of variability. Therefore, the findings highlight the suitability of GMM for real-world applications where representativeness, efficiency, and cluster stability are essential. The proposed methodology supports improved transformer sizing, more precise technical loss assessments, and better demand forecasting. Periodic application and integration with predictive models and smart grid technologies are recommended to enhance strategic and operational decision-making, ultimately supporting the transition toward smarter and more resilient power distribution systems. Full article
Show Figures

Figure 1

38 pages, 2683 KB  
Article
Minimally Invasive Design and Energy Efficiency Evaluation of Photovoltaic–Energy Storage–Direct Current–Flexible Systems in Low-Carbon Retrofitting of Existing Buildings
by Chenxi Jia, Longyue Yang, Wei Jin, Jifeng Zhao, Chuanjin Zhang and Yutan Li
Buildings 2025, 15(19), 3599; https://doi.org/10.3390/buildings15193599 - 7 Oct 2025
Viewed by 471
Abstract
To overcome the challenges of conventional low-carbon retrofits for existing buildings—such as high construction volume, cost, and implementation difficulty—this study proposes a minimally invasive design and optimization method for Photovoltaic–Energy Storage–Direct Current–Flexible (PEDF) systems. The goal is to maximize energy savings and economic [...] Read more.
To overcome the challenges of conventional low-carbon retrofits for existing buildings—such as high construction volume, cost, and implementation difficulty—this study proposes a minimally invasive design and optimization method for Photovoltaic–Energy Storage–Direct Current–Flexible (PEDF) systems. The goal is to maximize energy savings and economic benefits while minimizing physical intervention. First, the minimally invasive retrofit challenge is decomposed into two coupled problems: (1) collaborative PV-ESS layout optimization and (2) flexible energy management optimization. A co-optimization framework is then developed to address them. For the layout problem, a model with multiple constraints is established to minimize retrofitting workload and maximize initial system performance. A co-evolutionary algorithm is employed to handle the synergistic effects of electrical pathways on equipment placement, efficiently obtaining an optimal solution set that satisfies the minimally invasive requirements. For the operation problem, an energy management model is developed to maximize operational economy and optimize grid interactivity. A deep reinforcement learning (DRL) agent is trained to adaptively make optimal charging/discharging decisions. Case simulations of a typical office building show that the proposed method performs robustly across various scenarios (e.g., office, commercial, and public buildings). It achieves an energy saving rate exceeding 20% and reduces operational costs by 10–15%. Moreover, it significantly improves building–grid interaction: peak demand is reduced by 33%, power fluctuations are cut by 75%, and voltage deviation remains below 5%. The DRL-based policy outperforms both rule-based strategies and the DDPG algorithm in smoothing grid power fluctuations and increasing the PV self-consumption rate. Full article
Show Figures

Figure 1

27 pages, 1513 KB  
Article
Accurate Fault Classification in Wind Turbines Based on Reduced Feature Learning and RVFLN
by Mehmet Yıldırım and Bilal Gümüş
Electronics 2025, 14(19), 3948; https://doi.org/10.3390/electronics14193948 - 7 Oct 2025
Viewed by 394
Abstract
This paper presents a robust and computationally efficient fault classification framework for wind energy conversion systems (WECS), built upon a Robust Random Vector Functional Link Network (Robust-RVFLN) and validated through real-time simulations on a Real-Time Digital Simulator (RTDS). Unlike existing studies that depend [...] Read more.
This paper presents a robust and computationally efficient fault classification framework for wind energy conversion systems (WECS), built upon a Robust Random Vector Functional Link Network (Robust-RVFLN) and validated through real-time simulations on a Real-Time Digital Simulator (RTDS). Unlike existing studies that depend on high-dimensional feature extraction or purely data-driven deep learning models, our approach leverages a compact set of five statistically significant and physically interpretable features derived from rotor torque, phase current, DC-link voltage, and dq-axis current components. This reduced feature set ensures both high discriminative power and low computational overhead, enabling effective deployment in resource-constrained edge devices and large-scale wind farms. A synthesized dataset representing seven representative fault scenarios—including converter, generator, gearbox, and grid faults—was employed to evaluate the model. Comparative analysis shows that the Robust-RVFLN consistently outperforms conventional classifiers (SVM, ELM) and deep models (CNN, LSTM), delivering accuracy rates of up to 99.85% for grid-side line-to-ground faults and 99.81% for generator faults. Beyond accuracy, evaluation metrics such as precision, recall, and F1-score further validate its robustness under transient operating conditions. By uniting interpretability, scalability, and real-time performance, the proposed framework addresses critical challenges in condition monitoring and predictive maintenance, offering a practical and transferable solution for next-generation renewable energy infrastructures. Full article
Show Figures

Figure 1

30 pages, 4177 KB  
Article
Techno-Economic Analysis of Peer-to-Peer Energy Trading Considering Different Distributed Energy Resources Characteristics
by Morsy Nour, Mona Zedan, Gaber Shabib, Loai Nasrat and Al-Attar Ali
Electricity 2025, 6(4), 57; https://doi.org/10.3390/electricity6040057 - 4 Oct 2025
Viewed by 402
Abstract
Peer-to-peer (P2P) energy trading has emerged as a novel approach to enhancing the coordination and utilization of distributed energy resources (DERs) within modern power distribution networks. This study presents a techno-economic analysis of different DER characteristics, focusing on the integration of photovoltaic [...] Read more.
Peer-to-peer (P2P) energy trading has emerged as a novel approach to enhancing the coordination and utilization of distributed energy resources (DERs) within modern power distribution networks. This study presents a techno-economic analysis of different DER characteristics, focusing on the integration of photovoltaic (PV) systems and energy storage systems (ESS) within a community-based P2P energy trading framework in Aswan, Egypt, under a time-of-use (ToU) electricity tariff. Eight distinct cases are evaluated to assess the impact of different DER characteristics on P2P energy trading performance and an unbalanced low-voltage (LV) distribution network by varying the PV capacity, ESS capacity, and ESS charging power. To the best of the authors’ knowledge, this is the first study to comprehensively examine the effects of different DER characteristics on P2P energy trading and the associated impacts on an unbalanced distribution network. The findings demonstrate that integrating PV and ESS can substantially reduce operational costs—by 37.19% to 68.22% across the analyzed cases—while enabling more effective energy exchanges among peers and with the distribution system operator (DSO). Moreover, DER integration reduced grid energy imports by 30.09% to 63.21% and improved self-sufficiency, with 30.10% to 63.21% of energy demand covered by community DERs. However, the analysis also reveals that specific DER characteristics—particularly those with low PV capacity (1.5 kWp) and high ESS charging rates (e.g., ESS 13.5 kWh with 2.5 kW inverter)—can significantly increase transformer and line loading, reaching up to 19.90% and 58.91%, respectively, in Case 2. These setups also lead to voltage quality issues, such as increased voltage unbalance factors (VUFs), peaking at 1.261%, and notable phase voltage deviations, with the minimum Vb dropping to 0.972 pu and maximum Vb reaching 1.083 pu. These findings highlight the importance of optimal DER sizing and characteristics to balance economic benefits with technical constraints in P2P energy trading frameworks. Full article
Show Figures

Figure 1

19 pages, 11570 KB  
Article
Impact of Voltage Supraharmonics on Power Supply Units in Low-Voltage Grids
by Primož Sukič, Danilo Dmitrašinović and Gorazd Štumberger
Electronics 2025, 14(19), 3918; https://doi.org/10.3390/electronics14193918 - 1 Oct 2025
Viewed by 279
Abstract
Voltage supraharmonics present in the electrical grid can trigger chain reactions in grid-connected household and industrial power supplies equipped with Power Factor Correction (PFC). A single source of voltage supraharmonics may significantly increase the current in switching devices with PFC, leading to higher-amplitude [...] Read more.
Voltage supraharmonics present in the electrical grid can trigger chain reactions in grid-connected household and industrial power supplies equipped with Power Factor Correction (PFC). A single source of voltage supraharmonics may significantly increase the current in switching devices with PFC, leading to higher-amplitude disturbances throughout the electrical network. When addressing issues in a real low-voltage (LV) grid, it was observed that activation of a single device emitting supraharmonics caused oscillating currents across all feeders connected to the transformer’s busbars, matching the frequency of the supraharmonic source. To investigate this phenomenon further, the grid voltage containing supraharmonics was replicated in a controlled laboratory environment and used to supply various power electronic devices. The laboratory results closely mirrored those observed in the field. Supraharmonics present in the supply voltage caused current oscillations in the power electronic devices at the same frequency. Moreover, the amplitude of the observed current oscillations increased with the amplitude of the injected supply voltage supraharmonics. In some cases, the root mean square (RMS) value of the current drawn by the power electronic devices doubled, indicating a substantial impact on device behaviour and potential implications for grid stability and energy efficiency. Full article
Show Figures

Figure 1

18 pages, 1425 KB  
Article
Exploring DC Power Quality Measurement and Characterization Techniques
by Yara Daaboul, Daniela Istrate, Yann Le Bihan, Ludovic Bertin and Xavier Yang
Sensors 2025, 25(19), 6043; https://doi.org/10.3390/s25196043 - 1 Oct 2025
Viewed by 387
Abstract
Within the modernizing energy infrastructure of today, the integration of renewable energy sources and direct current (DC)-powered technologies calls for the re-examination of traditional alternative current (AC) networks. Low-voltage DC (LVDC) grids offer an attractive way forward in reducing conversion losses and simplifying [...] Read more.
Within the modernizing energy infrastructure of today, the integration of renewable energy sources and direct current (DC)-powered technologies calls for the re-examination of traditional alternative current (AC) networks. Low-voltage DC (LVDC) grids offer an attractive way forward in reducing conversion losses and simplifying local power management. However, ensuring reliable operation depends on a thorough understanding of DC distortions—phenomena generated by power converters, source instability, and varying loads. Two complementary traceable measurement chains are presented in this article with the purpose of measuring the steady-state DC component and the amplitude and frequency of the distortions around the DC bus with low uncertainties. One chain is optimized for laboratory environments, with high effectiveness in a controlled setup, and the other one is designed as a flexible and easily transportable solution, ensuring efficient and accurate assessments of DC distortions for field applications. In addition to our hardware solutions fully characterized by the uncertainty budget, we present the measurement method used for assessing DC distortions after evaluating the limitations of conventional AC techniques. Both arrangements are set to measure voltages of up to 1000 V, currents of up to 30 A, and frequency components of up to 150–500 kHz, with an uncertainty varying from 0.01% to less than 1%. This level of accuracy in the measurements will allow us to draw reliable conclusions regarding the dynamic behavior of future LVDC grids. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

20 pages, 2322 KB  
Article
Transient Stability-Oriented Nonlinear Power Control of PMSG-WT Using Power Transfer Matrix Modeling with DC Link Behavior
by Muhammad Ali Bijarani, Ghulam S. Kaloi, Mazhar Baloch, Rameez Akbar Talani, Muhammad I. Masud, Mohammed Aman and Touqeer Ahmed Jumani
Machines 2025, 13(10), 886; https://doi.org/10.3390/machines13100886 - 26 Sep 2025
Viewed by 331
Abstract
In this paper, a nonlinear power transfer matrix model is presented for power control of Permanent Magnet Synchronous Generator (PMSG) wind turbines, incorporating the DC link dynamics to account for transient stability, thereby clarifying the technical aspect and purpose. The rising penetration of [...] Read more.
In this paper, a nonlinear power transfer matrix model is presented for power control of Permanent Magnet Synchronous Generator (PMSG) wind turbines, incorporating the DC link dynamics to account for transient stability, thereby clarifying the technical aspect and purpose. The rising penetration of wind turbines (WTs) into the power grid necessitates that they remain connected during and after faults to ensure system reliability. During voltage dips, the stator and grid-side converter (GSC) of a permanent magnet synchronous generator (PMSG) system are directly impacted by the sudden voltage changes. These disturbances can induce large transient voltages and currents in the stator, which in turn may lead to uncontrolled current flow in the rotor circuit and stress the converter components. Moreover, Low Voltage Ride-Through (LVRT) is a critical requirement for grid connection to Wind Energy Conversion Systems (WECS). It ensures that WTs remain connected and operational during short periods of grid voltage dips (faults), instead of disconnecting immediately. This capability is essential for maintaining grid stability. However, in this paper, the authors propose an LVRT scheme for a grid-connected PMSG-based WECS. A sequence of attempts was performed to validate the effectiveness of the proposed control scheme under fault conditions and to improve its overall performance. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

17 pages, 2864 KB  
Article
Green Hydrogen Production with 25 kW Alkaline Electrolyzer Pilot Plant Shows Hydrogen Flow Rate Exponential Asymptotic Behavior with the Stack Current
by Debajeet K. Bora
Hydrogen 2025, 6(4), 75; https://doi.org/10.3390/hydrogen6040075 - 25 Sep 2025
Viewed by 1137
Abstract
Green H2 production using electrolyzer technology is an emerging method in the current mandate, using renewable-based power sources integrated with electrolyzer technology. Prior research has been extensively studied to understand the effects of intermittent power sources on the hydrogen production output. However, [...] Read more.
Green H2 production using electrolyzer technology is an emerging method in the current mandate, using renewable-based power sources integrated with electrolyzer technology. Prior research has been extensively studied to understand the effects of intermittent power sources on the hydrogen production output. However, in this context, the characteristics of the working electrolyzer behave differently under system-level operation. In this paper, we investigated a 25 kW alkaline electrolyzer for its stack performance in terms of stack efficiency, the stack current vs. stack voltage, and the relationship between the H2 flow rate and stack current. It was found that the current of 52 A produces the best system efficiency of 64% under full load operation for 1 h. The H2 flow rate behaves in an exponential asymptotic pattern, and it is also found that the ramp-up time for hydrogen generation by the electrolyzer is significantly low, thus marking it as an efficient option for producing green hydrogen with the input of a hybrid grid and renewable PV-based power sources. Hydrogen production techno-economic analysis has been conducted, and the LCOH is found to be on the higher side for the current electrolyzer under investigation. Full article
Show Figures

Graphical abstract

Back to TopTop