On the Subrange and Its Application to the R-Chart
Abstract
:1. Introduction
2. The Distribution of the Subrange
2.1. The Unbiasing Factors for the Subrange
2.2. The Relative Efficiency of the Subrange
2.3. The Breakdown Points
3. The Construction of Control Charts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
2 | 1.1284 | |||||||||
3 | 1.6926 | |||||||||
4 | 2.0588 | 0.5940 | ||||||||
5 | 2.3259 | 0.9900 | ||||||||
6 | 2.5344 | 1.2835 | 0.4031 | |||||||
7 | 2.7044 | 1.5147 | 0.7054 | |||||||
8 | 2.8472 | 1.7044 | 0.9456 | 0.305 | ||||||
9 | 2.9700 | 1.8646 | 1.1439 | 0.5491 | ||||||
10 | 3.0775 | 2.0027 | 1.3121 | 0.7515 | 0.2453 | |||||
11 | 3.1729 | 2.1238 | 1.4577 | 0.924 | 0.4498 | |||||
12 | 3.2585 | 2.2315 | 1.5857 | 1.0737 | 0.6245 | 0.2052 | ||||
13 | 3.3360 | 2.3282 | 1.6997 | 1.2057 | 0.7767 | 0.3810 | ||||
14 | 3.4068 | 2.4158 | 1.8023 | 1.3235 | 0.9111 | 0.5346 | 0.1763 | |||
15 | 3.4718 | 2.4959 | 1.8954 | 1.4298 | 1.0314 | 0.6706 | 0.3306 | |||
16 | 3.532 | 2.5695 | 1.9805 | 1.5263 | 1.1400 | 0.7924 | 0.4675 | 0.1546 | ||
17 | 3.5879 | 2.6376 | 2.0589 | 1.6148 | 1.2389 | 0.9027 | 0.5904 | 0.2920 | ||
18 | 3.6401 | 2.7008 | 2.1315 | 1.6963 | 1.3296 | 1.0032 | 0.7017 | 0.4155 | 0.1376 | |
19 | 3.6890 | 2.7599 | 2.1989 | 1.7717 | 1.4132 | 1.0954 | 0.8033 | 0.5275 | 0.2614 | |
20 | 3.7349 | 2.8152 | 2.2619 | 1.8420 | 1.4908 | 1.1806 | 0.8967 | 0.6299 | 0.3739 | 0.1240 |
21 | 3.7783 | 2.8672 | 2.3209 | 1.9076 | 1.5630 | 1.2596 | 0.983 | 0.7241 | 0.4768 | 0.2367 |
22 | 3.8194 | 2.9163 | 2.3765 | 1.9692 | 1.6305 | 1.3333 | 1.0631 | 0.8112 | 0.5716 | 0.3399 |
23 | 3.8583 | 2.9627 | 2.4289 | 2.0271 | 1.6939 | 1.4023 | 1.1379 | 0.8922 | 0.6593 | 0.4351 |
24 | 3.8953 | 3.0068 | 2.4785 | 2.0818 | 1.7536 | 1.4671 | 1.2080 | 0.9678 | 0.7409 | 0.5233 |
25 | 3.9306 | 3.0486 | 2.5255 | 2.1336 | 1.8100 | 1.5281 | 1.2738 | 1.0387 | 0.8172 | 0.6054 |
26 | 3.9643 | 3.0885 | 2.5702 | 2.1827 | 1.8634 | 1.5858 | 1.3359 | 1.1053 | 0.8887 | 0.6821 |
27 | 3.9965 | 3.1265 | 2.6128 | 2.2294 | 1.9141 | 1.6404 | 1.3945 | 1.1682 | 0.9560 | 0.7541 |
28 | 4.0274 | 3.1629 | 2.6535 | 2.2739 | 1.9623 | 1.6923 | 1.4502 | 1.2277 | 1.0195 | 0.8219 |
29 | 4.0570 | 3.1978 | 2.6924 | 2.3164 | 2.0083 | 1.7417 | 1.5030 | 1.2841 | 1.0796 | 0.8860 |
30 | 4.0855 | 3.2312 | 2.7296 | 2.3571 | 2.0522 | 1.7888 | 1.5533 | 1.3377 | 1.1367 | 0.9466 |
31 | 4.1129 | 3.2633 | 2.7654 | 2.3961 | 2.0942 | 1.8338 | 1.6013 | 1.3888 | 1.1909 | 1.0041 |
32 | 4.1393 | 3.2942 | 2.7997 | 2.4334 | 2.1344 | 1.8768 | 1.6472 | 1.4375 | 1.2426 | 1.0589 |
33 | 4.1648 | 3.324 | 2.8327 | 2.4694 | 2.173 | 1.9181 | 1.6911 | 1.4841 | 1.2919 | 1.1110 |
34 | 4.1894 | 3.3527 | 2.8646 | 2.5039 | 2.2102 | 1.9577 | 1.7332 | 1.5287 | 1.3391 | 1.1609 |
35 | 4.2132 | 3.3805 | 2.8952 | 2.5372 | 2.2459 | 1.9958 | 1.7736 | 1.5715 | 1.3843 | 1.2085 |
36 | 4.2362 | 3.4072 | 2.9249 | 2.5693 | 2.2803 | 2.0325 | 1.8125 | 1.6126 | 1.4276 | 1.2542 |
37 | 4.2586 | 3.4332 | 2.9535 | 2.6003 | 2.3135 | 2.0678 | 1.8499 | 1.6521 | 1.4693 | 1.2980 |
38 | 4.2802 | 3.4583 | 2.9812 | 2.6303 | 2.3456 | 2.1019 | 1.8860 | 1.6902 | 1.5094 | 1.3402 |
39 | 4.3012 | 3.4826 | 3.008 | 2.6593 | 2.3766 | 2.1348 | 1.9208 | 1.7269 | 1.548 | 1.3807 |
40 | 4.3216 | 3.5062 | 3.0340 | 2.6874 | 2.4066 | 2.1666 | 1.9544 | 1.7623 | 1.5852 | 1.4198 |
41 | 4.3414 | 3.5292 | 3.0593 | 2.7146 | 2.4356 | 2.1974 | 1.9870 | 1.7965 | 1.6211 | 1.4574 |
42 | 4.3606 | 3.5514 | 3.0838 | 2.7410 | 2.4638 | 2.2273 | 2.0184 | 1.8296 | 1.6558 | 1.4938 |
43 | 4.3794 | 3.5731 | 3.1075 | 2.7666 | 2.4911 | 2.2562 | 2.0489 | 1.8616 | 1.6894 | 1.5290 |
44 | 4.3976 | 3.5941 | 3.1307 | 2.7915 | 2.5176 | 2.2843 | 2.0785 | 1.8927 | 1.7219 | 1.5630 |
45 | 4.4154 | 3.6147 | 3.1532 | 2.8157 | 2.5434 | 2.3115 | 2.1072 | 1.9228 | 1.7535 | 1.5959 |
46 | 4.4328 | 3.6346 | 3.1751 | 2.8392 | 2.5684 | 2.3380 | 2.1350 | 1.9520 | 1.7840 | 1.6278 |
47 | 4.4497 | 3.6541 | 3.1964 | 2.8622 | 2.5928 | 2.3637 | 2.1621 | 1.9804 | 1.8137 | 1.6588 |
48 | 4.4662 | 3.6731 | 3.2172 | 2.8845 | 2.6165 | 2.3888 | 2.1884 | 2.0079 | 1.8425 | 1.6888 |
49 | 4.4824 | 3.6916 | 3.2375 | 2.9062 | 2.6397 | 2.4132 | 2.2140 | 2.0347 | 1.8705 | 1.7180 |
50 | 4.4981 | 3.7097 | 3.2573 | 2.9275 | 2.6622 | 2.4369 | 2.2390 | 2.0608 | 1.8977 | 1.7464 |
2 | 0.8525 | |||||||||
3 | 0.8884 | |||||||||
4 | 0.8798 | 0.4990 | ||||||||
5 | 0.8641 | 0.5685 | ||||||||
6 | 0.848 | 0.5894 | 0.3548 | |||||||
7 | 0.8332 | 0.5946 | 0.4245 | |||||||
8 | 0.8198 | 0.5936 | 0.4538 | 0.2757 | ||||||
9 | 0.8078 | 0.5899 | 0.4672 | 0.3403 | ||||||
10 | 0.7971 | 0.5851 | 0.4732 | 0.3715 | 0.2256 | |||||
11 | 0.7873 | 0.5798 | 0.4753 | 0.3884 | 0.2844 | |||||
12 | 0.7785 | 0.5745 | 0.4753 | 0.3979 | 0.3153 | 0.191 | ||||
13 | 0.7704 | 0.5692 | 0.4740 | 0.4032 | 0.3335 | 0.2445 | ||||
14 | 0.7630 | 0.5642 | 0.4720 | 0.4060 | 0.3449 | 0.2743 | 0.1656 | |||
15 | 0.7562 | 0.5593 | 0.4695 | 0.4071 | 0.3520 | 0.2929 | 0.2146 | |||
16 | 0.7499 | 0.5546 | 0.4669 | 0.4073 | 0.3565 | 0.3050 | 0.2429 | 0.1462 | ||
17 | 0.7441 | 0.5502 | 0.4641 | 0.4067 | 0.3593 | 0.3133 | 0.2613 | 0.1912 | ||
18 | 0.7386 | 0.5460 | 0.4613 | 0.4057 | 0.3609 | 0.3189 | 0.2738 | 0.2181 | 0.1309 | |
19 | 0.7335 | 0.5420 | 0.4585 | 0.4044 | 0.3617 | 0.3228 | 0.2827 | 0.2360 | 0.1724 | |
20 | 0.7287 | 0.5383 | 0.4557 | 0.4029 | 0.3619 | 0.3254 | 0.2890 | 0.2487 | 0.1979 | 0.1185 |
21 | 0.7242 | 0.5346 | 0.4530 | 0.4013 | 0.3617 | 0.3271 | 0.2936 | 0.2578 | 0.2153 | 0.1571 |
22 | 0.7199 | 0.5312 | 0.4503 | 0.3995 | 0.3611 | 0.3282 | 0.2969 | 0.2646 | 0.2278 | 0.1812 |
23 | 0.7159 | 0.5280 | 0.4478 | 0.3978 | 0.3603 | 0.3287 | 0.2993 | 0.2696 | 0.2371 | 0.1980 |
24 | 0.7121 | 0.5248 | 0.4453 | 0.3960 | 0.3594 | 0.3289 | 0.3010 | 0.2735 | 0.2441 | 0.2103 |
25 | 0.7084 | 0.5219 | 0.4428 | 0.3942 | 0.3583 | 0.3288 | 0.3022 | 0.2764 | 0.2495 | 0.2196 |
26 | 0.7050 | 0.5190 | 0.4405 | 0.3924 | 0.3572 | 0.3285 | 0.3029 | 0.2785 | 0.2537 | 0.2267 |
27 | 0.7017 | 0.5163 | 0.4382 | 0.3906 | 0.3560 | 0.3280 | 0.3033 | 0.2801 | 0.2569 | 0.2323 |
28 | 0.6986 | 0.5136 | 0.4360 | 0.3889 | 0.3548 | 0.3274 | 0.3035 | 0.2813 | 0.2595 | 0.2368 |
29 | 0.6956 | 0.5111 | 0.4339 | 0.3872 | 0.3535 | 0.3267 | 0.3035 | 0.2822 | 0.2615 | 0.2403 |
30 | 0.6927 | 0.5087 | 0.4319 | 0.3855 | 0.3523 | 0.3259 | 0.3033 | 0.2827 | 0.2630 | 0.2431 |
31 | 0.6899 | 0.5064 | 0.4299 | 0.3838 | 0.3510 | 0.3250 | 0.3030 | 0.2830 | 0.2641 | 0.2453 |
32 | 0.6873 | 0.5042 | 0.4280 | 0.3822 | 0.3497 | 0.3242 | 0.3025 | 0.2832 | 0.2650 | 0.2471 |
33 | 0.6847 | 0.5020 | 0.4261 | 0.3806 | 0.3484 | 0.3232 | 0.3020 | 0.2832 | 0.2656 | 0.2485 |
34 | 0.6822 | 0.4999 | 0.4243 | 0.3791 | 0.3472 | 0.3223 | 0.3015 | 0.2831 | 0.2661 | 0.2497 |
35 | 0.6799 | 0.4979 | 0.4226 | 0.3776 | 0.3460 | 0.3214 | 0.3009 | 0.2829 | 0.2663 | 0.2505 |
36 | 0.6776 | 0.4960 | 0.4209 | 0.3761 | 0.3447 | 0.3204 | 0.3002 | 0.2826 | 0.2665 | 0.2512 |
37 | 0.6754 | 0.4941 | 0.4192 | 0.3747 | 0.3435 | 0.3194 | 0.2995 | 0.2822 | 0.2665 | 0.2517 |
38 | 0.6733 | 0.4923 | 0.4176 | 0.3733 | 0.3423 | 0.3185 | 0.2988 | 0.2818 | 0.2664 | 0.2521 |
39 | 0.6712 | 0.4905 | 0.4161 | 0.3720 | 0.3412 | 0.3175 | 0.2981 | 0.2813 | 0.2663 | 0.2523 |
40 | 0.6692 | 0.4888 | 0.4146 | 0.3706 | 0.3400 | 0.3166 | 0.2974 | 0.2808 | 0.2661 | 0.2524 |
41 | 0.6673 | 0.4872 | 0.4131 | 0.3694 | 0.3389 | 0.3156 | 0.2966 | 0.2803 | 0.2658 | 0.2524 |
42 | 0.6654 | 0.4856 | 0.4117 | 0.3681 | 0.3378 | 0.3147 | 0.2959 | 0.2798 | 0.2655 | 0.2524 |
43 | 0.6636 | 0.4840 | 0.4103 | 0.3669 | 0.3367 | 0.3137 | 0.2951 | 0.2792 | 0.2652 | 0.2523 |
44 | 0.6618 | 0.4825 | 0.4090 | 0.3657 | 0.3356 | 0.3128 | 0.2943 | 0.2786 | 0.2648 | 0.2522 |
45 | 0.6601 | 0.4810 | 0.4077 | 0.3645 | 0.3346 | 0.3119 | 0.2936 | 0.2780 | 0.2644 | 0.2520 |
46 | 0.6584 | 0.4796 | 0.4064 | 0.3633 | 0.3336 | 0.3110 | 0.2928 | 0.2774 | 0.2639 | 0.2517 |
47 | 0.6568 | 0.4782 | 0.4051 | 0.3622 | 0.3326 | 0.3101 | 0.2921 | 0.2768 | 0.2635 | 0.2514 |
48 | 0.6552 | 0.4768 | 0.4039 | 0.3611 | 0.3316 | 0.3093 | 0.2913 | 0.2761 | 0.2630 | 0.2511 |
49 | 0.6536 | 0.4755 | 0.4027 | 0.3600 | 0.3306 | 0.3084 | 0.2906 | 0.2756 | 0.2625 | 0.2508 |
50 | 0.6521 | 0.4742 | 0.4016 | 0.3590 | 0.3297 | 0.3076 | 0.2898 | 0.2750 | 0.2620 | 0.2505 |
2 | 100 | |||||||||
3 | 100 | |||||||||
4 | 100 | 25.9 | ||||||||
5 | 100 | 41.9 | ||||||||
6 | 100 | 53.1 | 14.5 | |||||||
7 | 100 | 61.6 | 26.2 | |||||||
8 | 100 | 68.4 | 36.0 | 10.1 | ||||||
9 | 100 | 73.9 | 44.3 | 19.3 | ||||||
10 | 100 | 78.6 | 51.6 | 27.5 | 7.9 | |||||
11 | 100 | 82.6 | 57.9 | 34.9 | 15.4 | |||||
12 | 100 | 86.1 | 63.5 | 41.6 | 22.4 | 6.6 | ||||
13 | 100 | 89.2 | 68.6 | 47.7 | 28.9 | 13.0 | ||||
14 | 100 | 92.0 | 73.2 | 53.3 | 35.0 | 19.1 | 5.7 | |||
15 | 100 | 94.5 | 77.3 | 58.5 | 40.7 | 24.9 | 11.3 | |||
16 | 100 | 96.7 | 81.1 | 63.3 | 46.1 | 30.4 | 16.7 | 5.0 | ||
17 | 100 | 98.8 | 84.6 | 67.8 | 51.1 | 35.7 | 22.0 | 10.0 | ||
18 | 100 | 100.7 | 87.9 | 72.0 | 55.9 | 40.7 | 27.0 | 14.9 | 4.5 | |
19 | 100 | 102.5 | 90.9 | 75.9 | 60.3 | 45.5 | 31.9 | 19.7 | 9.1 | |
20 | 100 | 104.1 | 93.8 | 79.6 | 64.6 | 50.1 | 36.6 | 24.4 | 13.6 | 4.2 |
21 | 100 | 105.7 | 96.4 | 83.0 | 68.6 | 54.5 | 41.2 | 29.0 | 18.0 | 8.3 |
22 | 100 | 107.1 | 98.9 | 86.3 | 72.4 | 58.7 | 45.5 | 33.4 | 22.4 | 12.5 |
23 | 100 | 108.4 | 101.3 | 89.4 | 76.1 | 62.7 | 49.8 | 37.7 | 26.6 | 16.6 |
24 | 100 | 109.7 | 103.5 | 92.4 | 79.6 | 66.5 | 53.8 | 41.9 | 30.8 | 20.7 |
25 | 100 | 110.9 | 105.7 | 95.2 | 82.9 | 70.2 | 57.7 | 45.9 | 34.8 | 24.7 |
26 | 100 | 112.0 | 107.7 | 97.9 | 86.1 | 73.7 | 61.5 | 49.8 | 38.8 | 28.6 |
27 | 100 | 113.1 | 109.6 | 100.4 | 89.1 | 77.1 | 65.2 | 53.6 | 42.7 | 32.5 |
28 | 100 | 114.1 | 111.4 | 102.9 | 92.0 | 80.4 | 68.7 | 57.3 | 46.4 | 36.3 |
29 | 100 | 115.0 | 113.2 | 105.2 | 94.8 | 83.6 | 72.1 | 60.9 | 50.1 | 40.0 |
30 | 100 | 116.0 | 114.8 | 107.5 | 97.6 | 86.6 | 75.4 | 64.4 | 53.7 | 43.6 |
31 | 100 | 116.8 | 116.4 | 109.6 | 100.2 | 89.6 | 78.6 | 67.7 | 57.2 | 47.1 |
32 | 100 | 117.7 | 118.0 | 111.7 | 102.7 | 92.4 | 81.7 | 71.0 | 60.6 | 50.6 |
33 | 100 | 118.5 | 119.4 | 113.7 | 105.1 | 95.2 | 84.7 | 74.2 | 63.9 | 54.0 |
34 | 100 | 119.3 | 120.9 | 115.7 | 107.5 | 97.8 | 87.6 | 77.3 | 67.2 | 57.3 |
35 | 100 | 120.0 | 122.2 | 117.6 | 109.7 | 100.4 | 90.5 | 80.4 | 70.3 | 60.6 |
36 | 100 | 120.7 | 123.6 | 119.4 | 111.9 | 103.0 | 93.3 | 83.3 | 73.4 | 63.8 |
37 | 100 | 121.4 | 124.8 | 121.1 | 114.1 | 105.4 | 95.9 | 86.2 | 76.5 | 66.9 |
38 | 100 | 122.1 | 126.1 | 122.8 | 116.2 | 107.8 | 98.6 | 89.0 | 79.4 | 69.9 |
39 | 100 | 122.7 | 127.3 | 124.5 | 118.2 | 110.1 | 101.1 | 91.7 | 82.3 | 72.9 |
40 | 100 | 123.4 | 128.4 | 126.1 | 120.1 | 112.3 | 103.6 | 94.4 | 85.1 | 75.9 |
41 | 100 | 124.0 | 129.5 | 127.6 | 122.0 | 114.5 | 106.0 | 97.0 | 87.9 | 78.7 |
42 | 100 | 124.6 | 130.6 | 129.1 | 123.9 | 116.6 | 108.4 | 99.6 | 90.6 | 81.5 |
43 | 100 | 125.1 | 131.7 | 130.6 | 125.7 | 118.7 | 110.7 | 102.1 | 93.2 | 84.3 |
44 | 100 | 125.7 | 132.7 | 132.0 | 127.4 | 120.7 | 112.9 | 104.5 | 95.8 | 87.0 |
45 | 100 | 126.2 | 133.7 | 133.4 | 129.1 | 122.7 | 115.1 | 106.9 | 98.3 | 89.7 |
46 | 100 | 126.7 | 134.7 | 134.7 | 130.8 | 124.7 | 117.3 | 109.2 | 100.8 | 92.3 |
47 | 100 | 127.2 | 135.6 | 136.0 | 132.4 | 126.5 | 119.4 | 111.5 | 103.2 | 94.8 |
48 | 100 | 127.7 | 136.5 | 137.3 | 134.0 | 128.4 | 121.4 | 113.8 | 105.6 | 97.3 |
49 | 100 | 128.2 | 137.4 | 138.6 | 135.5 | 130.2 | 123.5 | 115.9 | 108.0 | 99.8 |
50 | 100 | 128.6 | 138.3 | 139.8 | 137.1 | 131.9 | 125.4 | 118.1 | 110.3 | 102.2 |
2 | 100.00 | |||||||||
3 | 99.19 | |||||||||
4 | 97.52 | 25.24 | ||||||||
5 | 95.48 | 39.97 | ||||||||
6 | 93.30 | 49.55 | 13.48 | |||||||
7 | 91.12 | 56.14 | 23.88 | |||||||
8 | 89.00 | 60.84 | 32.05 | 9.03 | ||||||
9 | 86.95 | 64.27 | 38.56 | 16.75 | ||||||
10 | 84.99 | 66.80 | 43.83 | 23.33 | 6.74 | |||||
11 | 83.13 | 68.67 | 48.14 | 28.97 | 12.80 | |||||
12 | 81.36 | 70.07 | 51.69 | 33.82 | 18.21 | 5.36 | ||||
13 | 79.68 | 71.09 | 54.65 | 38.00 | 23.04 | 10.32 | ||||
14 | 78.09 | 71.83 | 57.12 | 41.64 | 27.34 | 14.88 | 4.44 | |||
15 | 76.57 | 72.35 | 59.20 | 44.80 | 31.19 | 19.05 | 8.62 | |||
16 | 75.13 | 72.69 | 60.95 | 47.57 | 34.63 | 22.86 | 12.54 | 3.78 | ||
17 | 73.76 | 72.89 | 62.44 | 50.00 | 37.71 | 26.34 | 16.19 | 7.40 | ||
18 | 72.46 | 72.98 | 63.70 | 52.14 | 40.48 | 29.52 | 19.58 | 10.83 | 3.30 | |
19 | 71.21 | 72.98 | 64.76 | 54.03 | 42.97 | 32.42 | 22.73 | 14.06 | 6.47 | |
20 | 70.02 | 72.91 | 65.67 | 55.70 | 45.23 | 35.09 | 25.65 | 17.10 | 9.51 | 2.92 |
21 | 68.88 | 72.78 | 66.43 | 57.19 | 47.26 | 37.53 | 28.36 | 19.96 | 12.41 | 5.75 |
22 | 67.79 | 72.59 | 67.08 | 58.51 | 49.11 | 39.76 | 30.88 | 22.64 | 15.16 | 8.48 |
23 | 66.75 | 72.37 | 67.62 | 59.68 | 50.78 | 41.82 | 33.21 | 25.16 | 17.77 | 11.09 |
24 | 65.75 | 72.11 | 68.07 | 60.73 | 52.31 | 43.72 | 35.38 | 27.52 | 20.24 | 13.60 |
25 | 64.78 | 71.82 | 68.45 | 61.66 | 53.69 | 45.46 | 37.40 | 29.73 | 22.57 | 15.99 |
26 | 63.86 | 71.52 | 68.76 | 62.49 | 54.96 | 47.07 | 39.28 | 31.81 | 24.78 | 18.28 |
27 | 62.97 | 71.19 | 69.00 | 63.24 | 56.11 | 48.56 | 41.03 | 33.76 | 26.87 | 20.45 |
28 | 62.11 | 70.86 | 69.20 | 63.90 | 57.17 | 49.94 | 42.66 | 35.59 | 28.85 | 22.52 |
29 | 61.29 | 70.51 | 69.35 | 64.49 | 58.13 | 51.21 | 44.19 | 37.31 | 30.72 | 24.49 |
30 | 60.49 | 70.15 | 69.46 | 65.01 | 59.01 | 52.39 | 45.61 | 38.93 | 32.49 | 26.36 |
31 | 59.72 | 69.78 | 69.53 | 65.48 | 59.82 | 53.49 | 46.94 | 40.45 | 34.16 | 28.15 |
32 | 58.97 | 69.41 | 69.57 | 65.90 | 60.56 | 54.50 | 48.19 | 41.89 | 35.74 | 29.85 |
33 | 58.25 | 69.03 | 69.58 | 66.26 | 61.24 | 55.44 | 49.36 | 43.24 | 37.24 | 31.46 |
34 | 57.56 | 68.65 | 69.57 | 66.59 | 61.86 | 56.32 | 50.45 | 44.51 | 38.66 | 33.00 |
35 | 56.88 | 68.27 | 69.53 | 66.87 | 62.43 | 57.13 | 51.48 | 45.71 | 40.01 | 34.46 |
36 | 56.23 | 67.89 | 69.48 | 67.12 | 62.95 | 57.89 | 52.44 | 46.85 | 41.29 | 35.86 |
37 | 55.60 | 67.51 | 69.41 | 67.34 | 63.43 | 58.60 | 53.34 | 47.92 | 42.50 | 37.19 |
38 | 54.98 | 67.13 | 69.32 | 67.53 | 63.86 | 59.26 | 54.19 | 48.93 | 43.66 | 38.46 |
39 | 54.38 | 66.76 | 69.21 | 67.69 | 64.26 | 59.87 | 54.99 | 49.89 | 44.75 | 39.67 |
40 | 53.80 | 66.38 | 69.10 | 67.82 | 64.63 | 60.44 | 55.74 | 50.80 | 45.79 | 40.82 |
41 | 53.24 | 66.00 | 68.97 | 67.94 | 64.96 | 60.97 | 56.44 | 51.66 | 46.78 | 41.92 |
42 | 52.69 | 65.63 | 68.83 | 68.03 | 65.27 | 61.46 | 57.11 | 52.47 | 47.72 | 42.97 |
43 | 52.16 | 65.26 | 68.69 | 68.10 | 65.54 | 61.93 | 57.73 | 53.24 | 48.61 | 43.97 |
44 | 51.64 | 64.89 | 68.53 | 68.16 | 65.80 | 62.35 | 58.32 | 53.96 | 49.47 | 44.93 |
45 | 51.14 | 64.53 | 68.37 | 68.20 | 66.03 | 62.75 | 58.87 | 54.66 | 50.28 | 45.85 |
46 | 50.64 | 64.17 | 68.20 | 68.22 | 66.23 | 63.13 | 59.39 | 55.31 | 51.05 | 46.72 |
47 | 50.16 | 63.81 | 68.02 | 68.24 | 66.42 | 63.48 | 59.89 | 55.93 | 51.79 | 47.56 |
48 | 49.69 | 63.46 | 67.84 | 68.23 | 66.59 | 63.80 | 60.35 | 56.55 | 52.49 | 48.36 |
49 | 49.24 | 63.11 | 67.66 | 68.22 | 66.74 | 64.10 | 60.79 | 57.08 | 53.16 | 49.13 |
50 | 48.79 | 62.76 | 67.47 | 68.20 | 66.87 | 64.38 | 61.20 | 57.61 | 53.80 | 49.86 |
References
- Tesfay, Y.Y. Process Control Charts. In Developing Structured Procedural and Methodological Engineering Designs; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Montgomery, D.C. Statistical Quality Control: An Modern Introduction, 7th ed.; John Wiley & Sons: Singapore, 2013. [Google Scholar]
- Benneyan, J.C. Statistical quality control methods in infection control and hospital epidemiology, part I introduction and basic theory. Infect. Control. Hosp. Epidemiol. 1998, 19, 194–214. [Google Scholar] [CrossRef]
- Birnbaum, D.; Benneyan, J.C. Statistical quality control methods in infection control and hospital epidemiology, part II: Chart use, statistical properties, and research issues. Infect. Control. Hosp. Epidemiol. 1998, 19, 265–283. [Google Scholar] [CrossRef]
- Gao, X.; Huang, G.; Zhao, Q.; Cao, C.; Jiang, H. Robust optimization model for medical staff rebalancing problem with data contamination during COVID-19 pandemic. Int. J. Prod. Res. 2021, 1, 1–30. [Google Scholar] [CrossRef]
- Ouyang, L.; Park, C.; Byun, J.H.; Leeds, M. Robust Design in the Case of Data Contamination and Model Departure. Statistical Quality Technologies; Springer: Cham, Switzerland, 2019; pp. 347–373. [Google Scholar]
- Gao, X.; Cui, C. A note on the warehouse location problem with data contamination. RAIRO Rech. Opérationnelle 2021, 55, 1113. [Google Scholar] [CrossRef]
- Park, C.; Leeds, M. A highly efficient robust design under data contamination. Comput. Ind. Eng. 2016, 93, 131–142. [Google Scholar] [CrossRef]
- Goetz, S.; Roth, M.; Schleich, B. Early Robust Design—Its Effect on Parameter and Tolerance Optimization. Appl. Sci. 2021, 11, 9407. [Google Scholar] [CrossRef]
- Park, C.; Kim, H.; Wang, M. Investigation of finite-sample properties of robust location and scale estimators. Commun. Stat. Simul. Comput. 2021, 1, 1–27. [Google Scholar] [CrossRef]
- Hampel, F.R. The influence curve and its role in robust estimation. J. Am. Stat. Assoc. 1974, 69, 383–393. [Google Scholar] [CrossRef]
- Shamos, M.I. Geometry and statistics: Problems at the interface. In Algorithms and Complexity: New Directions and Recent Results; Traub, J.F., Ed.; Academic Press: New York, NY, USA, 1976; pp. 251–280. [Google Scholar]
- Abu-Shawiesh, M.O.A.; Saeed, N. Monitoring process variability using decile mean standard deviation. Qual. Reliab. Eng. Int. 2021, 1, 2996. [Google Scholar] [CrossRef]
- Mutlu, E.C.; Alakent, B. Revisiting reweighted robust standard deviation estimators for univariate Shewhart S-charts. Qual. Reliab. Eng. Int. 2019, 35, 995–1009. [Google Scholar] [CrossRef]
- Langenberg, P.; Iglewicz, B. Trimmed mean X and R charts. J. Qual. Technol. 1986, 18, 152–161. [Google Scholar] [CrossRef]
- Dey, K.K.; Dhara, K.; Karmakar, B.; Sengupta, S. Univariate and data-depth based multivariate control charts using trimmed mean and winsorized standard deviation. arXiv 2012, arXiv:1211.4262. [Google Scholar]
- Sindhumol, M.R.; Srinivasan, M.M.; Gallo, M. Robust control charts based on modified trimmed standard deviation and Gini’s mean difference. J. Appl. Quant. 2016, 11, 18–30. [Google Scholar]
- Abu-Shawiesh, M.O.A. A simple robust control chart based on MAD. J. Math. Stat. 2008, 4, 102–107. [Google Scholar]
- Riaz, M.; Saghir, A. A mean deviation-based approach to monitor process variability. J. Stat. Comput. Simul. 2009, 79, 1173–1193. [Google Scholar] [CrossRef]
- Schoonhoven, M.; Nazir, H.Z.; Riaz, M.; Does, R.J.M.M. Robust location estimators for the control chart. J. Qual. Technol. 2021, 43, 363–379. [Google Scholar] [CrossRef]
- Nazir, H.Z.; Riaz, M.; Does, R.J.; Abbas, N. Robust CUSUM control charting. Qual. Eng. 2013, 25, 211–224. [Google Scholar] [CrossRef]
- Riaz, M. A dispersion control chart. Commun. Stat. Simul. Comput. 2008, 37, 1239–1261. [Google Scholar] [CrossRef]
- Marchant, C.; Leiva, V.; Cysneiros, F.J.A.; Liu, S. Robust multivariate control charts based on Birnbaum–Saunders distributions. J. Stat. Comput. Simul. 2018, 88, 182–202. [Google Scholar] [CrossRef]
- Ouyang, L.; Zhu, S.; Ye, K.; Park, C.; Wang, M. Robust Bayesian hierarchical modeling and inference using scale mixtures of normal distributions. IISE Trans. 2021, 1, 1–13. [Google Scholar] [CrossRef]
- Tukey, J.W.; McLaughlin, D.H. Less Vulnerable Confidence and Significance Procedures for Location Based on a Single Sample: Trimming/Winsorization 1. Sankhyā Indian J. Stat. Ser. A 1963, 25, 331–352. Available online: http://www.jstor.org/stable/25049278 (accessed on 1 December 2021).
- Osório, C.; António, M. Performance Evaluation: Subjectivity, Bias and Judgement Style in Sport Data. Bias and Judgement Style in Sport Data. 24 January 2019. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3321838 (accessed on 1 December 2021).
- Bialik, C. Removing Judges’ Bias Is Olympic-Size Challenge. The Wall Street Journal. Available online: https://www.wsj.com/articles/SB10000872396390443477104577551253521597214 (accessed on 7 September 2014).
- George, C.; Berger, R.L. Statistical Inference; Pacific Grove: Duxbury, CA, USA, 2002; Volume 2. [Google Scholar]
- David, H.A.; Nagaraja, H.N. Order Statistics; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Hogg, R.V.; Tanis, E.A.; Zimmerman, D.L. Probability and Statistical Inference; Pearson/Prentice Hall: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Tippett, L.H.C. On the extreme individuals and the range of samples taken from a normal population. Biometrika 1925, 17, 364–387. [Google Scholar] [CrossRef]
- Shewhart, W.A. Economic Control of Quality of Manufactured Product; Macmillan: London, UK, 1931. [Google Scholar]
- Oakland, R. Quality, Processes and Control. Statistical Process Control; Routledge: London, UK, 2018; pp. 3–23. [Google Scholar]
- Siotani, M. Order statistics for discrete case with a numerical application to the binomial distribution. Ann. Inst. Stat. Math. 1956, 8, 95–104. [Google Scholar] [CrossRef]
- Abdel-Aty, S.H. Ordered variables in discontinuous distributions. Stat. Neerl. 1954, 8, 61–82. [Google Scholar] [CrossRef]
- Hartley, H.O.; David, H.A. Universal bounds for mean range and extreme observation. Ann. Math. Stat. 1954, 25, 85–99. [Google Scholar] [CrossRef]
- Patnaik, P.B. The use of mean range as an estimator of variance in statistical tests. Biometrika 1950, 37, 78–87. [Google Scholar] [CrossRef]
- Cadwell, J.H. The distribution of quasi-ranges in samples from a normal population. Ann. Math. Stat. 1953, 24, 603–613. [Google Scholar] [CrossRef]
- Serfling, R. Asymptotic Relative Efficiency in Estimation. Int. Encycl. Stat. Sci. 2011, 23, 68–72. [Google Scholar]
- Lehmann, E.L. Elements of Large-Sample Theory; Springer: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Yu, M.; Zhou, Y.; Tsung, F. Robust Online Detection in Serially Correlated Directed Network. arXiv Prepr. 2021, arXiv:2111.02653. [Google Scholar]
- Nidsunkid, S.; Lao, M.; Thaithanan, J. The impact of a random vector with variables from normal and non-normal distributions on multivariate control charts. Qual. Reliab. Eng. Int. 2021, 1, 1–25. [Google Scholar] [CrossRef]
- Hodges, J.L., Jr.; Lehmann, E.L. Estimates of location based on rank tests. Ann. Math. Stat. 1963, 34, 598–611. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, E.; Ma, Y.; Ouyang, L.; Park, C. On the Subrange and Its Application to the R-Chart. Appl. Sci. 2021, 11, 11632. https://doi.org/10.3390/app112411632
Xie E, Ma Y, Ouyang L, Park C. On the Subrange and Its Application to the R-Chart. Applied Sciences. 2021; 11(24):11632. https://doi.org/10.3390/app112411632
Chicago/Turabian StyleXie, En, Yizhong Ma, Linhan Ouyang, and Chanseok Park. 2021. "On the Subrange and Its Application to the R-Chart" Applied Sciences 11, no. 24: 11632. https://doi.org/10.3390/app112411632
APA StyleXie, E., Ma, Y., Ouyang, L., & Park, C. (2021). On the Subrange and Its Application to the R-Chart. Applied Sciences, 11(24), 11632. https://doi.org/10.3390/app112411632