Auditory Property-Based Features and Artificial Neural Network Classifiers for the Automatic Detection of Low-Intensity Snoring/Breathing Episodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Snoring/Breathing Episodes
- The amplitude of SBE within the 120 s interval did not change considerably across all the recorded data
- SBEs with low SNR were repeated in the 120 s interval of recorded data
2.2. Auditory Property-Based Features and Artificial Neural Network Classifiers
2.3. Evaluation of the Performance of the Proposed Detection Method
3. Results
3.1. Normalization Used for NAPCC and Optimum Number of NAPCC
3.2. Evaluation of the Performance of the Proposed Method and Comparison of the Proposed Method with Our Previous Method
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McLoughlin, I.; Zhang, H.; Xie, Z.; Song, Y.; Xiao, W. Robust sound event classification using deep neural networks. IEEE ACM Trans. Audio Speech Lang. Process. 2015, 23, 540–552. [Google Scholar] [CrossRef] [Green Version]
- Parish, J.M.; Somers, V.K. Obstructive sleep apnea and cardiovascular disease. Mayo Clin. Proc. 2004, 79, 1036–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senaratna, C.V.; Perret, J.L.; Lodge, C.J.; Lowe, A.J.; Campbell, B.E.; Matheson, M.C.; Hamilton, G.S.; Dharmage, S.C. Prevalence of obstructive sleep apnea in the general population: A systematic review. Sleep Med. Rev. 2017, 34, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Agnew, H.W., Jr.; Webb, W.B.; Williams, R.L. The first night effect: An EEG study of sleep. Psychophysiology 1966, 2, 263–266. [Google Scholar] [CrossRef]
- Curcio, G.; Ferrara, M.; Piergianni, A.; Fratello, F.; De Gennaro, L. Paradoxes of the first-night effect: A quantitative analysis of antero-posterior EEG topography. Clin. Neurophysiol. 2004, 115, 1178–1188. [Google Scholar] [CrossRef]
- Le Bon, O.; Staner, L.; Hoffmann, G.; Dramaix, M.; San Sebastian, I.; Murphy, J.R.; Kentos, M.; Pelc, I.; Linkowski, P. The first-night effect may last more than one night. J. Psychiatr. Res. 2001, 35, 165–172. [Google Scholar] [CrossRef]
- Beattie, Z.T.; Hayes, T.L.; Guilleminault, C.; Hagen, C.C. Accurate scoring of the apnea–hypopnea index using a simple non-contact breathing sensor. J. Sleep Res. 2013, 22, 356–362. [Google Scholar] [CrossRef] [Green Version]
- Shen, F.; Cheng, S.; Li, Z.; Yue, K.; Li, W.; Dai, L. Detection of snore from OSAHS patients based on deep learning. J. Healthc. Eng. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Lim, S.J.; Jang, S.J.; Lim, J.Y.; Ko, J.H. Classification of snoring sound based on a recurrent neural network. Expert Syst. Appl. 2019, 123, 237–245. [Google Scholar] [CrossRef]
- Emoto, T.; Abeyratne, U.; Chen, Y.; Kawata, I.; Akutagawa, M.; Kinouchi, Y. Artificial neural networks for breathing and snoring episode detection in sleep sounds. Physiol. Meas. 2012, 33, 1675. [Google Scholar] [CrossRef]
- Karunajeewa, A.S.; Abeyratne, U.R.; Hukins, C. Silence–breathing–snore classification from snore-related sounds. Physiol. Meas. 2008, 29, 227. [Google Scholar] [CrossRef] [PubMed]
- Emoto, T.; Abeyratne, U.R.; Kawano, K.; Okada, T.; Jinnouchi, O.; Kawata, I. Detection of sleep breathing sound based on artificial neural network analysis. Biomed. Signal Process. Control 2018, 41, 81–89. [Google Scholar] [CrossRef]
- Nonaka, R.; Emoto, T.; Abeyratne, U.R.; Jinnouchi, O.; Kawata, I.; Ohnishi, H.; Akutagawa, M.; Konaka, S.; Kinouchi, Y. Automatic snore sound extraction from sleep sound recordings via auditory image modeling. Biomed. Signal Process. Control 2016, 27, 7–14. [Google Scholar] [CrossRef]
- Emoto, T.; Abeyratne, U.R.; Akutagawa, M.; Konaka, S.; Kinouchi, Y. High frequency region of the snore spectra carry important information on the disease of sleep apnoea. J. Med. Eng. Technol. 2011, 35, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Markandeya, M.N.; Abeyratne, U.R.; Hukins, C. Characterisation of upper airway obstructions using wide-band snoring sounds. Biomed. Signal Process. Control 2018, 46, 201–211. [Google Scholar] [CrossRef]
- Ng, A.K.; San Koh, T.; Baey, E.; Lee, T.H.; Abeyratne, U.R.; Puvanendran, K. Could formant frequencies of snore signals be an alternative means for the diagnosis of obstructive sleep apnea? Sleep Med. 2008, 9, 894–898. [Google Scholar] [CrossRef] [PubMed]
- Benavides, A.M.; Murillo, J.L.B.; Pozo, R.F.; Cuadros, F.E.; Toledano, D.T.; Alcázar-Ramírez, J.D.; Gómez, L.A.H. Formant frequencies and bandwidths in relation to clinical variables in an obstructive sleep apnea population. J. Voice 2016, 30, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Aarab, G.; Ravesloot, M.J.; Zhou, N.; Bosschieter, P.F.; van Selms, M.K.; Hilgevoord, A.A. Prediction of the obstruction sites in the upper airway in sleep-disordered breathing based on snoring sound parameters: A systematic review. Sleep Med. 2021, 88, 116–133. [Google Scholar] [CrossRef]
- De Silva, S.; Abeyratne, U.R.; Hukins, C. A method to screen obstructive sleep apnea using multi-variable non-intrusive measurements. Physiol. Meas. 2011, 32, 445. [Google Scholar] [CrossRef]
- Abeyratne, U.R.; De Silva, S.; Hukins, C.; Duce, B. Obstructive sleep apnea screening by integrating snore feature classes. Physiol. Meas. 2013, 34, 99. [Google Scholar] [CrossRef]
- Marcal, T.A.; dos Santos, J.M.; Rosa, A.; Cardoso, J.M. OSAS assessment with entropy analysis of high resolution snoring audio signals. Biomed. Signal Process. Control 2020, 61, 101965. [Google Scholar] [CrossRef]
- Dafna, E.; Tarasiuk, A.; Zigel, Y. Sleep-wake evaluation from whole-night non-contact audio recordings of breathing sounds. PLoS ONE 2015, 10, e0117382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathnayake, S.I.; Wood, I.A.; Abeyratne, U.; Hukins, C. Nonlinear features for single-channel diagnosis of sleep-disordered breathing diseases. IEEE Trans. Biomed. Eng. 2010, 57, 1973–1981. [Google Scholar] [CrossRef] [PubMed]
- Akhter, S.; Abeyratne, U.R.; Swarnkar, V. Characterization of REM/NREM sleep using breath sounds in OSA. Biomed. Signal Process. Control 2016, 25, 130–142. [Google Scholar] [CrossRef]
- Xue, B.; Deng, B.; Hong, H.; Wang, Z.; Zhu, X.; Feng, D.D. Non-contact sleep stage detection using canonical correlation analysis of respiratory sound. IEEE J. Biomed. Health. Inf. 2019, 24, 614–625. [Google Scholar] [CrossRef]
- Patterson, R.D.; Allerhand, M.H.; Giguère, C. Time-domain modeling of peripheral auditory processing: A modular architecture and a software platform. J. Acoust. Soc. Am. 1995, 98, 1890–1894. [Google Scholar] [CrossRef]
- Iitomi, Y.; Matsuoka, T. Experiments on perceiving the missing fundamental by using two harmonic components tone. J. Acoust. Soc. Am. 2007, 121, 3092. [Google Scholar] [CrossRef]
- Patterson, R.; Robinson, K.; Holdsworth, J.; McKeown, D.; Zhang, C.; Allerhand, M. Complex Sounds and Auditory Images. In Auditory Physiology and Perception; Pergamon Press: Oxford, UK, 1992; pp. 429–446. [Google Scholar]
- Emoto, T.; Abeyratne, U.R.; Shono, T.; Nonaka, R.; Jinnouchi, O.; Kawata, I.; Kinouchi, Y. Auditory image model for the characterisation of obstructive sleep apnoea. Screening 2016, 6, 8. [Google Scholar]
- Irino, T.; Patterson, R.D.; Kawakhara, H. Speech segregation using an event-synchronous auditory image and STRAIGHT. In Speech Separation by Humans and Machines; Springer: Boston, MA, USA, 2005; pp. 155–165. [Google Scholar]
- Irino, T.; Patterson, R.D.; Kawahara, H. Speech segregation using an auditory vocoder with event-synchronous enhancements. IEEE Trans. Audio Speech Lang. Process. 2006, 14, 2212–2221. [Google Scholar] [CrossRef] [Green Version]
- Irino, T.; Patterson, R.D.; Kawahara, H. Speech Segregation Using Event Synchronous Auditory Vocoder. In Proceedings of the 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing (Cat. No.03CH37404), Hong Kong, China, 6–10 April 2003; Volume 5, p. V-525. [Google Scholar]
- Walters, T.C. Auditory-Based Processing of Communication Sounds. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2011. [Google Scholar]
- Laflen, J.B.; Talavaoe, T.M.; Thirukkonda, P.M.; Svirsky, M.A. Physiologically Based Analysis of Cochlear Implant Representations. In Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society, Houston, TX, USA, 23–26 October 2002; Volume 3, pp. 2078–2079. [Google Scholar]
- Sola-Soler, J.; Jane, R.; Fiz, J.A.; Morera, J. Formant Frequencies of Normal Breath Sounds of Snorers may Indicate the Risk of Obstructive Sleep Apnea Syndrome. In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 3500–3503. [Google Scholar]
- Yadollahi, A.; Moussavi, Z. Formant Analysis of Breath and Snore Sounds. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 2563–2566. [Google Scholar]
- Fleiss, J.L.; Levin, B.; Paik, M.C. The measurement of interrater agreement. Stat. Meth Rates Proportions 1981, 2, 22–23. [Google Scholar]
- Sim, J.; Wright, C.C. The kappa statistic in reliability studies: Use, interpretation, and sample size requirements. Phys. Ther. 2005, 85, 257–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irino, T.; Patterson, R.D.; Kawahara, H. Speech Segregation based on Fundamental Event Information Using an Auditory Vocoder. In Proceedings of the Eighth European Conference on Speech Communication and Technology, Geneva, Switzerland, 1–4 September 2003. [Google Scholar]
- Glasberg, B.R.; Moore, B.C.J. Frequency selectivity as a function of level and frequency measured with uniformly exciting notched noise. J. Acoust. Soc. Am. 2000, 108, 2318–2328. [Google Scholar] [CrossRef] [PubMed]
- Erzin, E.; Yemez, Y.; Tekalp, A.M. Multimodal speaker identification using an adaptive classifier cascade based on modality reliability. IEEE Trans. Multimed. 2005, 7, 840–852. [Google Scholar] [CrossRef] [Green Version]
- Chanwoo, K.; Stern, R.M. Power-normalized cepstral coefficients (PNCC) for robust speech recognition. IEEE ACM Trans. Audio Speech Lang. Process. 2016, 24, 1315–1329. [Google Scholar]
- Singh, D.; Singh, B. Investigating the impact of data normalization on classification performance. Appl. Soft Comput. 2000, 97, 105524. [Google Scholar] [CrossRef]
- Delavarian, M.; Towhidkhah, F.; Dibajnia, P.; Gharibzadeh, S. Designing a decision support system for distinguishing ADHD from similar children behavioral disorders. J. Med. Syst. 2010, 36, 1335–1343. [Google Scholar] [CrossRef]
- Yu, H.; Xie, T.; Paszczynski, S.; Wilamowski, B.M. Advantages of radial basis function networks for dynamic system design. IEEE Trans. Ind. Electron. 2011, 58, 5438–5450. [Google Scholar] [CrossRef]
- Fath, A.H.; Madanifar, F.; Abbasi, M. Implementation of multilayer perceptron (MLP) and radial basis function (RBF) neural networks to predict solution gas-oil ratio of crude oil systems. Petroleum 2020, 6, 80–91. [Google Scholar] [CrossRef]
- Akobeng, A.K. Understanding diagnostic tests 3: Receiver operating characteristic curves. Acta Paediatr. 2007, 96, 644–647. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, D. Analyzing Noise Robustness of MFCC and GFCC Features in Speaker Identification. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 7204–7208. [Google Scholar]
- Munich, M.E.; Lin, Q. Auditory Image Model Features for Automatic Speech Recognition. In Proceedings of the Ninth European Conference on Speech Communication and Technology, Lisboa, Portugal, 4–8 September 2005. [Google Scholar]
- Irino, T.; Patterson, R.D. A dynamic compressive gammachirp auditory filterbank. IEEE Trans. Audio Speech Lang. Process. 2006, 14, 2222–2232. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Peng, J.; Zhang, X. Automatic snoring sounds detection from sleep sounds based on deep learning. Phys. Eng. Sci. Med. 2020, 43, 679–689. [Google Scholar] [CrossRef] [PubMed]
Exp-1 | Exp-2 | |
---|---|---|
No. of patients | 25 | 15 |
AHI | 26.8 ± 22.9 | 24.1 ± 22.8 |
BMI | 26.2 ± 6.2 | 25.5 ± 2.2 |
Age | 56.6 ± 22.0 | 60.3 ± 12.3 |
Gender | 19 males/6 females | 9 males/6 females |
SNR [dB] | −8.34 ± 1.40~0.88 ± 3.24 | −13.84 ± 4.02~−0.05 ± 3.22 |
Class | 18 OSAS/7 non-OSAS | 8 OSAS/7 non-OSAS |
No. of SBEs | 52.7 ± 13.2 | 54.1 ± 12.4 |
No. of Segments | ||
---|---|---|
SBEs | 963.4 ± 290.2 | |
Non-SBEs | Silence | 502.7 ± 651.2 |
Music | 64.3 ± 193.2 | |
Alarm | 93.3 ± 257.9 | |
Speech | 52.9 ± 172.5 | |
Footsteps | 15.7 ± 30.0 | |
Mouth movement | 2.5 ± 4.4 | |
Duvet noise | 22.0 ± 59.9 | |
Fan | 718.9 ± 785.9 | |
Tapping | 46.0 ± 71.6 |
Annotator 2 | Annotator 3 | |
---|---|---|
Annotator 1 | 0.97 | 0.98 |
Annotator 2 | 0.98 |
Accuracy [%] | Sensitivity [%] | Specificity [%] | PPV [%] | NPV [%] | F1 Score [%] | |
---|---|---|---|---|---|---|
Proposed method | 85.83 ± 7.90 | 81.75 ± 11.98 | 91.95 ± 7.72 | 83.81 ± 18.23 | 85.45 ± 14.99 | 80.48 ± 12.25 |
Previous method | 82.59 ± 10.14 | 82.84 ± 12.91 | 87.86 ± 13.07 | 79.56 ± 22.29 | 85.45 ± 15.70 | 77.57 ± 14.48 |
Accuracy [%] | Sensitivity [%] | Specificity [%] | PPV [%] | NPV [%] | F1 Score [%] | |
---|---|---|---|---|---|---|
Proposed method | 85.99 ± 5.69 | 79.64 ± 9.50 | 91.34 ± 7.18 | 82.87 ± 15.80 | 87.31 ± 8.63 | 79.81 ± 9.14 |
Previous method | 75.64 ± 18.80 | 73.64 ± 17.34 | 81.97 ± 26.06 | 75.65 ± 15.80 | 83.81 ± 11.42 | 69.40 ± 15.85 |
Types of Classifiers Used in the Proposed Method | Accuracy [%] | Sensitivity [%] | Specificity [%] | PPV [%] | NPV [%] | F1 Score [%] |
---|---|---|---|---|---|---|
MLP-ANN | 86.14 ± 6.96 | 80.97 ± 10.58 | 91.96 ± 7.29 | 83.84 ± 16.83 | 86.18 ± 12.74 | 80.58 ± 10.72 |
RBF-ANN | 86.08 ± 7.07 | 81.28 ± 10.66 | 91.64 ± 7.24 | 83.34 ± 16.81 | 86.29 ± 12.80 | 80.53 ± 10.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamabe, K.; Emoto, T.; Jinnouchi, O.; Toda, N.; Kawata, I. Auditory Property-Based Features and Artificial Neural Network Classifiers for the Automatic Detection of Low-Intensity Snoring/Breathing Episodes. Appl. Sci. 2022, 12, 2242. https://doi.org/10.3390/app12042242
Hamabe K, Emoto T, Jinnouchi O, Toda N, Kawata I. Auditory Property-Based Features and Artificial Neural Network Classifiers for the Automatic Detection of Low-Intensity Snoring/Breathing Episodes. Applied Sciences. 2022; 12(4):2242. https://doi.org/10.3390/app12042242
Chicago/Turabian StyleHamabe, Kenji, Takahiro Emoto, Osamu Jinnouchi, Naoki Toda, and Ikuji Kawata. 2022. "Auditory Property-Based Features and Artificial Neural Network Classifiers for the Automatic Detection of Low-Intensity Snoring/Breathing Episodes" Applied Sciences 12, no. 4: 2242. https://doi.org/10.3390/app12042242
APA StyleHamabe, K., Emoto, T., Jinnouchi, O., Toda, N., & Kawata, I. (2022). Auditory Property-Based Features and Artificial Neural Network Classifiers for the Automatic Detection of Low-Intensity Snoring/Breathing Episodes. Applied Sciences, 12(4), 2242. https://doi.org/10.3390/app12042242