Technological Aspects of a Reparation of the Leading Edge of Helicopter Main Rotor Blades in Field Conditions
Abstract
:1. Introduction
2. Causes of Damage to and Conditions of Use of Main Helicopter Blades
2.1. Mechanical Loads
2.2. Environmental Factors
3. Materials
3.1. Shield Material
3.2. Polymer Materials
- Cycle 20 °C → −90 °C → 50 °C → 20 °C—fly simulation I;
- Cycle 20 °C → −90 °C → 50 °C → 20 °C—fly simulation II;
- Cycle 20 °C → 110 °C → 20 °C—process repair simulation;
- Cycle 20 °C → −90 °C → 50 °C → 20 °C cycle—fly simulation III.
4. Repair Technology
5. Repair Qualification Study
5.1. First Stage—Preliminary Selection of Bonding
- Bonding 2216B/A—deadhesive fracture surfaces between the metal and bonding layer;
- Bonding 2216B/A + Rafil primer—decohesive fracture surfaces of the primer;
- Bonding 2216B/A + BR-127 primer—decohesive fracture surfaces of the bonding layer;
- Bonding DP490—no damage to the bonding layer, decohesive fracture surface of the rubber;
- Bonding DP490 + Rafil primer—decohesive fracture surfaces of the primer;
- Bonding DP490 + BR-127 primer—deadhesive fracture surfaces between the metal and bonding layer.
- Bonding 2216B/A + BR-127 primer;
- Bonding DP490.
5.2. Second Stage—Strength Test of the Bonding Systems
- Shear strength test;
- Comparative study of the tearing off the shield from the fragment of the rotor blade. During the test, the originally manufactured bonding system was compared to the bonding systems produced according to the proposed technology.
5.2.1. Shear Strength Test
- Bonding 2216B/A + BR-127 primer;
- Bonding DP490.
5.2.2. Comparative Tests of the Tearing Off the Shield from the Leading Edge
6. Checking the Condition of the Shield after Repair
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chiu, W.K.; Zhou, Z.; Wang, J.; Baker, A. Battle damage repair of a helicopter composite main rotor blade. Compos. Part B Eng. 2012, 43, 739–753. [Google Scholar] [CrossRef]
- Dobrzanski, P.; Oleksiak, W. Design and analysis methods for composite bonded joints. Trans. Aerosp. Res. 2021, 1, 45–63. [Google Scholar] [CrossRef]
- Keegan, M.H.; Nash, D.; Stack, M. Wind Turbine Blade Leading Edge Erosion: An Investigation of Rain Droplet and Hailstone Impact Induced Damage Mechanism. Ph.D. Thesis, University of Strathclyde, Glasgow, Scotland, 2014. Available online: https://strathprints.strath.ac.uk/58904/ (accessed on 10 January 2022).
- Verma, A.S.; Noi, S.D.; Ren, Z.; Jiang, Z.; Teuwen, J.J.E. Minimum Leading Edge Protection Application Length to Com-bat Rain-Induced Erosion of Wind Turbine Blades. Energies 2021, 14, 1629. [Google Scholar] [CrossRef]
- Herring, R.; Dyer, K.; Martin, F.; Ward, C. The increasing importance of leading edge erosion and a review of existing protection solutions. Renew. Sustain. Energy Rev. 2019, 115, 109382. [Google Scholar] [CrossRef]
- Repairing Main Rotor Blade Leading Edge Corrosion. Available online: https://enstromhelicopter.com/wp-content/uploads/2016/11/Repairing-Main-Rotor-Blade-Leading-Edge-Corrosion-V2.pdf (accessed on 10 January 2022).
- Rotor Blade Preventive Maintenance. Available online: https://helicoptermaintenancemagazine.com/article/rotor-blade-preventive-maintenance (accessed on 10 January 2022).
- Sałaciński, M. Metallic helicopter blades composite repairs study case. In Continuing Airworthiness of Aging Systems (AVT-275); STO/NATO: Neuilly-sur-Seine Cedex, France, 2020; pp. 247–260. ISBN 978-92-837-2255-7. [Google Scholar]
- Sałacinski, M.; Broda, P.; Samoraj, P. The Repair Design and Technology of Metal Rotor Blades for Mi Family Helicopters—The Approach with the Usage of Reverse Engineering; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2017. [Google Scholar] [CrossRef]
- Stanislawski, J. Influence of Rotor Parameter Changes on Helicopter Performance and the Main Rotor Load Level. Trans. Inst. Aviat. 2015, 1, 54–69. [Google Scholar] [CrossRef]
- Stanislawski, J. Pattern of Helicopter Rotor Loads and Blade Deformations in some states of flight envelope. Trans. Inst. Aviat. 2015, 1, 70–90. [Google Scholar] [CrossRef]
- MON. Remont Wirników Nośnych Śmigłowców (Lot. 1421/71); Ministerstwo Obrony Narodowej—Dowództwo Wojsk Lotniczych: Poznań, Polska, 1972. (In Polish)
- Banea, M.D.; da Silva, L.F. The effect of temperature on the mechanical properties of adhesives for the automotive in-dustry. Proc. Inst. Mech. Eng. Part L 2010, 224, 51–62. [Google Scholar] [CrossRef]
- Gladkov, A.; Bar-Cohen, A. Parametric dependence of fatigue of electronic adhesives. In IEEE Transactions on Components and Packaging Technologies; IEEE: New York, NY, USA, 1999; Volume 22, pp. 200–208. [Google Scholar] [CrossRef]
- Ashcroft, I.A.; Hughes, D.J.; Shaw, S.J.; Abdel Wahab, M.; Crocombe, A. Effect of temperature on the quasi-static strength and fatigue resistance of bonded composite double lap joints. J. Adhes. 2001, 75, 61–88. [Google Scholar] [CrossRef]
- Raveh, A.; Zukerman, I.; Shneck, R. Thermal stability of nanostructured superhard coatings. A review. Surf. Coat. Technol. 2007, 201, 6136–6142. [Google Scholar] [CrossRef]
- Cassidy, P.E.; Johnson, J.M.; Locke, C.E. The relationship of glass transition temperature to adhesive strength. J. Adhes. 1970, 3, 183–191. [Google Scholar] [CrossRef]
- Annex to ED Decision 2008/010/R; CS-29 Certification Specifications for Large Rotorcraft CS-29; European Aviation Safety Agency: Cologne, Germany, 2008.
- Oliver, J.E. Standard atmosphere. In Climatology. Encyclopedia of Earth Science; Springer: Boston, MA, USA, 1987. [Google Scholar] [CrossRef]
- Gębura, A.; Poradowski, M. Termovision and electricity capacitance measurements as an evaluation of a helicopter rotor blades delamination. J. Konbin 2015, 4, 187–200. [Google Scholar] [CrossRef]
- Sałaciński, M.; Zabłocka, M.; Synaszko, P. Using sandblasting and sol gel techniques for the preparation of a metal sur-face and their effects on the durability of epoxy-bonded joints. Fatigue Aircr. Struct. 2012, 1, 94–99. [Google Scholar] [CrossRef]
- Panas, A.J.; Białecki, M.; Dudziński, A.; Figur, K.; Krupińska, A.; Nowakowski, M.; Omen, Ł. Badania właściwości cieplnofizycznych i cieplnomechanicznych lotniczego kompozytu epoksydowo-szklanego. In Mechanika w Lotnictwie; Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej: Warszawa, Polska, 2018; Volume II, pp. 163–172. (In Polish) [Google Scholar]
- Panas, A.J. Wysokorozdzielcze termodynamiczne badania rozszerzalności liniowej dylatometryczna analiza termiczna. In Rozprawa Habilitacyjna; Wojskowa Akademia Techniczna: Warszawa, Polska, 1998. (In Polish) [Google Scholar]
- Kinloch, A.J. Durability of Structural Adhesives; Springer: Amsterdam, The Netherlands, 1983; ISBN 978-0-85334-214-4. [Google Scholar]
- Molitor, P.; Barron, V.; Young, T. Surface treatment of titanium for adhesive bonding to polymer composites: A review. Int. J. Adhes. Adhes. 2001, 2, 129–136. [Google Scholar] [CrossRef]
- Ramani, K.; Weidner, W.G.; Kumar, G. Silicon sputtering as a surface treatment to titanium alloy for bonding with PEKEKK. Int. J. Adhes. Adhes. 1998, 6, 401–412. [Google Scholar] [CrossRef]
- Blohowiak, K.Y.; Grob, J.W.; Seebergh, J.E. AVTIP—Air Vehicle Technology Integration Program; AFRL-ML-WP-TR-2006-4042 Final Report; The Boeing Company: Chicago, IL, USA, 2005. [Google Scholar]
- Filbey, J.A.; Wightman, J.P. Factors Affecting the Durability of Titanium/Epoxy Bonds. In Adhesion 12; Allen, K.W., Ed.; Springer: Dordrecht, The Netherlands, 1988. [Google Scholar] [CrossRef]
- Kohli, R. Methods for Monitoring and Measuring Cleanliness of Surfaces. In Developments in Surface Contamination and Cleaning; Elsevier: Waltham, MA, USA, 2012; pp. 107–178. [Google Scholar] [CrossRef]
- Ellis, B. The water break test. Circuit World 2005, 31, 47. [Google Scholar] [CrossRef]
- ASTM F22-02; Standard Test Method for Hydrophobic Surface Films by the Water-Break Test. ASTM International: West Conshohocken, PA, USA, 2007.
- Rafil—Data Sheet, Radomska Fabryka Farb i Lakierów Polska. 2021. Available online: https://www.rafil.pl/wp-content/uploads/2018/05/KTW_09_04-2.pdf (accessed on 11 January 2022). (In Polish).
- Cytec. BR® 127 Corrosion Inhibiting Primer Cytec Engirering Materials. 2010. Available online: https://www.cytec.com (accessed on 14 January 2022).
- Scotch-Weld EPX Adhesive DP490—Data Sheet, 3M Company. 1996. Available online: https://www.van-asperen.nl/userdata/file/3M_DP490_Datasheet.pdf (accessed on 11 January 2022).
- Scotch-Weld Epoxy Adhesive 2216 B/A—Data Sheet, 3M Company. 2018. Available online: https://multimedia.3m.com/mws/media/153955O/3mtm-scotch-weldtm-epoxy-adhesive-2216-b-a.pdf (accessed on 11 January 2022).
- Kaczorowska, E. Dobór procesu kondycjonowania próbek zgodnie z wymaganiami kwalifikacji kompozytów polimerowych do zastosowań w konstrukcjach lotniczych. Pr. Inst. Lotnictwa 2016, 3, 83–89. (In Polish) [Google Scholar] [CrossRef]
- Niu, M.; Niu, C.Y. Composite Airframe Structures; Hong Kong Conmilit Press Ltd.: Hong Kong, China, 1998; ISBN 9627128066. [Google Scholar]
- Peters, S.T. Handbook of Composites; Chapman & Hall: London, UK, 1998; ISBN 978-0-412-54020-2. [Google Scholar]
- Szumiak, J.; Smoczyński, Z.; Szcześniak, K. Armament and military equipment polymer composite ageing. Sci. J. Mil. Univ. Land Forces 2011, 1, 273–285. Available online: https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BATA-0010-0024 (accessed on 11 January 2022).
- European Aviation Safety Agency. Type Certificate Data Sheet No. EASA.R.509 for AW169 Type Certificate Holder Leonardo, S.p.A, 2022. Available online: https://www.easa.europa.eu/downloads/18869/en (accessed on 11 January 2022).
- European Aviation Safety Agency. Type Certificate Data Sheet No. EASA.A.004 for AIRBUS A330 Type Certificate Holder AIRBUS. 2020. Available online: https://www.easa.europa.eu/sites/default/files/dfu/A330%20EASA%20TCDS%20A.004%20-%20Issue%2056.pdf (accessed on 23 June 2021).
- European Aviation Safety Agency. Type Certificate Data Sheet No. EASA.R.150 for EC 175 Type Certificate Holder Airbus Helicopters. 2022. Available online: https://www.easa.europa.eu/downloads/16512/en (accessed on 11 January 2022).
- European Aviation Safety Agency. Type Certificate Data Sheet No. EASA.R.105 for SA 365/AS 365/EC 155 Type Certificate Holder Airbus Helicopters, 2021. Available online: https://www.easa.europa.eu/downloads/16527/en (accessed on 11 January 2022).
- European Aviation Safety Agency. Type Certificate Data Sheet No. EASA.R.508 for EC 120 Type Certificate Holder Airbus Helicopters. 2019. Available online: https://www.easa.europa.eu/downloads/7911/en (accessed on 23 June 2021).
- European Aviation Safety Agency. Type Certificate Data Sheet No. EASA.A.444 for PZL-106 BT Turbo Kruk Series Type Certificate Holder Airbus Poland, S.A. 2019. Available online: https://www.easa.europa.eu/sites/default/files/dfu/TCDS_EASA.A.444_PZL-106BT_Turbo_Kruk_iss-02.pdf (accessed on 23 June 2021).
- NO-06-A103 2005; Uzbrojenie i Sprzęt Wojskowy—Ogólne Wymagania Techniczne, Metody Kontroli i Badań—Wymagania Środowiskowe. Ministerstwo Obronny Narodowej: Warszawa, Polska, 2005. (In Polish)
- The United Stated Department of Defense. Composite Materials Handbook Vol. 1—Polymer Matrix Composites Guidelines for Characterization of Structural Materials; MIL-HNDB-17-1F; 2002. Available online: http://everyspec.com/MIL-HDBK/MIL-HDBK-0001-0099/MIL_HDBK_17_1F_237/ (accessed on 15 May 2021).
- Standard Temperature Variation at Different Altitudes. Available online: https://www.ambrsoft.com/CalcPhysics/Altitude/altitude.htm (accessed on 6 June 2020).
- Samroff, A.M.; Frost, P.D. The Hot Extrusion of Titanium and Titaniom Alloys; Report No. 53; Titanum Metallurgical Laboratory, Battle Memorial Institute: Columbus, OH, USA, 1956. [Google Scholar]
- ASTM D1002-10; Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading (Metal-to-Metal). ASTM International: West Conshohocken, PA, USA, 2019.
- Bamford, C.H.; Tipper, C.F.H. Degradationof Polymers. In Comprehensive Chemical Kinetics; Elsevier: Amsterdam, The Netherlands, 1975; Volume 14. [Google Scholar]
- Kockott, D. Factors Influencing the Reliability of Results in Accelerated Weathering Tests; ASTM Special Technical Publication STP: West Conshohocken, PA, USA, 1996; Volume 1294. [Google Scholar]
- Wypych, G. Handbook of Material Weathering; Chemtec Publishing: Netanya, Israel, 2007. [Google Scholar]
- Rojek, M. Metodologia Badań Diagnostycznych Warstwowych Materiałów Kompozytowych o Osnowie Polimerowej; Open Access Library: Gliwice, Polska, 2011; Volume 2, pp. 1–148. (In Polish) [Google Scholar]
- Mohd Aris, K.D.; Shariff, M.F.; Abd Latif, B.R.; Mohd Haris, M.Y.; Baidzawi, I.J. A comparison of damage profiling of automated tap testers on aircraft CFRP panel. AIP Conf. Proc. 2017, 1901, 130009. [Google Scholar] [CrossRef]
- Hsu, D.K. Nondestructive inspection of composite structures: Methods and practice. In Proceedings of the 17th World Conference on Nonde-structive Testing, Shanghai, China, 25–28 June 2008; Available online: https://www.ndt.net/article/wcndt2008/papers/612.pdf (accessed on 11 February 2021).
Test 1 | Test 2 | Test 3 | Average | Standard Deviation |
---|---|---|---|---|
Ti | Ti | Ti | Ti | Ti |
96.60% | 97.74% | 97.55% | 97.96% | 0.60% |
Mn | Mn | Mn | Mn | Mn |
1.29% | 1.06% | 1.15% | 1.16% | 0.11% |
Al | Al | Al | Al | Al |
- | 1.12% | 1.18% | 0.76% | 0.04% |
Fe | Fe | Fe | Fe | Fe |
- | 0.07% | 0.07% | 0.05% | 0% |
Si | Si | Si | Si | Si |
0.11% | - | 0.05% | 0.13% | 0.05% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sałaciński, M.; Puchała, K.; Leski, A.; Szymczyk, E.; Hutsaylyuk, V.; Bednarz, A.; Synaszko, P.; Kozera, R.; Olkowicz, K.; Głowacki, D. Technological Aspects of a Reparation of the Leading Edge of Helicopter Main Rotor Blades in Field Conditions. Appl. Sci. 2022, 12, 4249. https://doi.org/10.3390/app12094249
Sałaciński M, Puchała K, Leski A, Szymczyk E, Hutsaylyuk V, Bednarz A, Synaszko P, Kozera R, Olkowicz K, Głowacki D. Technological Aspects of a Reparation of the Leading Edge of Helicopter Main Rotor Blades in Field Conditions. Applied Sciences. 2022; 12(9):4249. https://doi.org/10.3390/app12094249
Chicago/Turabian StyleSałaciński, Michał, Krzysztof Puchała, Andrzej Leski, Elżbieta Szymczyk, Volodymyr Hutsaylyuk, Arkadiusz Bednarz, Piotr Synaszko, Rafał Kozera, Klaudia Olkowicz, and Dominik Głowacki. 2022. "Technological Aspects of a Reparation of the Leading Edge of Helicopter Main Rotor Blades in Field Conditions" Applied Sciences 12, no. 9: 4249. https://doi.org/10.3390/app12094249
APA StyleSałaciński, M., Puchała, K., Leski, A., Szymczyk, E., Hutsaylyuk, V., Bednarz, A., Synaszko, P., Kozera, R., Olkowicz, K., & Głowacki, D. (2022). Technological Aspects of a Reparation of the Leading Edge of Helicopter Main Rotor Blades in Field Conditions. Applied Sciences, 12(9), 4249. https://doi.org/10.3390/app12094249