Evaluating the Degradation of Natural Resources in the Mediterranean Environment Using the Water and Land Resources Degradation Index, the Case of Crete Island
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas and Data
2.2. Methodology for the Indicators Calculation in WLDI
3. Results
3.1. Results of WLDI Used Indicators
3.2. Results of the Degradation Degree on Water and Land Resources
3.3. Validation of the Degradation Degree on Water and Land Resources
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsesmelis, D.E.; Karavitis, C.A.; Oikonomou, P.D.; Alexandris, S.; Kosmas, C. Assessment of the Vulnerability to Drought and Desertification Characteristics Using the Standardized Drought Vulnerability Index (SDVI) and the Environmentally Sensitive Areas Index (ESAI). Resources 2019, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Skondras, N.A.; Karavitis, C.A.; Gkotsis, I.I.; Scott, P.J.B.; Kaly, U.L.; Alexandris, S.G. Application and Assessment of the Environmental Vulnerability Index in Greece. Ecol. Indic. 2011, 11, 1699–1706. [Google Scholar] [CrossRef]
- Briassoulis, H. Combating Land Degradation and Desertification: The Land-Use Planning Quandary. Land 2019, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Oikonomou, P.D.; Karavitis, C.A.; Tsesmelis, D.E.; Kolokytha, E.; Maia, R. Drought Characteristics Assessment in Europe over the Past 50 Years. Water Resour. Manag. 2020, 34, 4757–4772. [Google Scholar] [CrossRef]
- Tsatsaris, A.; Kalogeropoulos, K.; Stathopoulos, N.; Louka, P.; Tsanakas, K.; Tsesmelis, D.E.; Krassanakis, V.; Petropoulos, G.P.; Pappas, V.; Chalkias, C. Geoinformation Technologies in Support of Environmental Hazards Monitoring under Climate Change: An Extensive Review. ISPRS Int. J. Geo-Inf. 2021, 10, 94. [Google Scholar] [CrossRef]
- Tsanakas, K.; Gaki-Papanastassiou, K.; Kalogeropoulos, K.; Chalkias, C.; Katsafados, P.; Karymbalis, E. Investigation of Flash Flood Natural Causes of Xirolaki Torrent, Northern Greece Based on GIS Modeling and Geomorphological Analysis. Nat. Hazards 2016, 84, 1015–1033. [Google Scholar] [CrossRef]
- Kalogeropoulos, K.; Chalkias, C.; Pissias, E.; Karalis, S. Application of the SWAT Model for the Investigation of Reservoirs Creation. In Advances in the Research of Aquatic Environment: Volume 2; Lambrakis, N., Stournaras, G., Katsanou, K., Eds.; Environmental Earth Sciences; Springer: Berlin/Heidelberg, Germany, 2011; pp. 71–79. ISBN 978-3-642-24076-8. [Google Scholar]
- Kalogeropoulos, K.; Stathopoulos, N.; Psarogiannis, A.; Pissias, E.; Louka, P.; Petropoulos, G.P.; Chalkias, C. An Integrated GIS-Hydro Modeling Methodology for Surface Runoff Exploitation via Small-Scale Reservoirs. Water 2020, 12, 3182. [Google Scholar] [CrossRef]
- Lampert, A. Over-Exploitation of Natural Resources Is Followed by Inevitable Declines in Economic Growth and Discount Rate. Nat. Commun. 2019, 10, 1419. [Google Scholar] [CrossRef]
- Oikonomou, P.D.; Tsesmelis, D.E.; Waskom, R.M.; Grigg, N.S.; Karavitis, C.A. Enhancing the Standardized Drought Vulnerability Index by Integrating Spatiotemporal Information from Satellite and In Situ Data. J. Hydrol. 2019, 569, 265–277. [Google Scholar] [CrossRef]
- Dossou, J.F.; Li, X.X.; Sadek, M.; Sidi Almouctar, M.A.; Mostafa, E. Hybrid Model for Ecological Vulnerability Assessment in Benin. Sci. Rep. 2021, 11, 2449. [Google Scholar] [CrossRef]
- Skondras, N.A.; Tsesmelis, D.E.; Vasilakou, C.G.; Karavitis, C.A. Resilience–Vulnerability Analysis: A Decision-Making Framework for Systems Assessment. Sustainability 2020, 12, 9306. [Google Scholar] [CrossRef]
- Tsesmelis, D.E.; Oikonomou, P.D.; Vasilakou, C.G.; Skondras, N.A.; Fassouli, V.; Alexandris, S.G.; Grigg, N.S.; Karavitis, C.A. Assessing Structural Uncertainty Caused by Different Weighting Methods on the Standardized Drought Vulnerability Index (SDVI). Stoch. Environ. Res. Risk Assess. 2019, 33, 515–533. [Google Scholar] [CrossRef]
- Kalogeropoulos, K.; Chalkias, C. Modelling the Impacts of Climate Change on Surface Runoff in Small Mediterranean Catchments: Empirical Evidence from Greece: Modelling the Impacts of Climate Change on Surface Runoff. Water Environ. J. 2013, 27, 505–513. [Google Scholar] [CrossRef]
- Stathopoulos, N.; Kalogeropoulos, K.; Polykretis, C.; Skrimizeas, P.; Louka, P.; Karymbalis, E.; Chalkias, C. Introducing Flood Susceptibility Index Using Remote-Sensing Data and Geographic Information Systems: Empirical Analysis in Sperchios River Basin, Greece. In Remote Sensing of Hydrometeorological Hazards; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-315-15494-7. [Google Scholar]
- Dickson, B.; Miles, L.; Thornton, H.; O’Connell, E. Ecosystem Restoration for People, Nature and Climate; United Nations Environment Programme (UNEP): Nairobi, Kenya, 2021; p. 56. [Google Scholar]
- Stefanidis, S. Ability of Different Spatial Resolution Regional Climate Model to Simulate Air Temperature in a Forest Ecosystem of Central Greece. J. Environ. Prot. Ecol. 2021, 22, 1488–1495. [Google Scholar]
- Moritz, M.A.; Krawchuk, M.; Parisien, M.-A. Pyrogeography: Understanding the Ecological Niche of Fire. PAGES News 2010, 18, 83–85. [Google Scholar] [CrossRef] [Green Version]
- McKinney, M.L. Urbanization, Biodiversity, and Conservation: The Impacts of Urbanization on Native Species Are Poorly Studied, but Educating a Highly Urbanized Human Population about These Impacts Can Greatly Improve Species Conservation in All Ecosystems. BioScience 2002, 52, 883–890. [Google Scholar] [CrossRef]
- Shukla, P.R.; Skea, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.-O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; Van Diemen, R.; et al. Summary for Policymakers—Special Report on Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019; pp. 1–41. [Google Scholar]
- Stathopoulos, N.; Lykoudi, E.; Vasileiou, E.; Rozos, D.; Dimitrakopoulos, D. Erosion Vulnerability Assessment of Sperchios River Basin, in East Central Greece—A GIS Based Analysis. Open J. Geol. 2017, 7, 621–646. [Google Scholar] [CrossRef] [Green Version]
- Weigand, A.; Zimmermann, J.; Bouchez, A.; Leese, F. DNAqua-Net: Advancing Methods, Connecting Communities and Envisaging Standards. Biodivers. Inf. Sci. Stand. 2017, 1, e20310. [Google Scholar] [CrossRef] [Green Version]
- Levy, M. Preserving Our Water Resources. Civ. Eng. Mag. Arch. 2010, 80, 62–67. [Google Scholar] [CrossRef]
- Brusseau, M.L.; Walker, D.B.; Fitzsimmons, K. Chapter 3—Physical-Chemical Characteristics of Water. In Environmental and Pollution Science, 3rd ed.; Brusseau, M.L., Pepper, I.L., Gerba, C.P., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 23–45. ISBN 978-0-12-814719-1. [Google Scholar]
- Karavitis, C.A. Drought and Urban Water Supplies: The Case of Metropolitan Athens. Water Policy 1998, 1, 505–524. [Google Scholar] [CrossRef]
- Karavitis, C.A. Regional Water Transfers and Drought Management Strategies. In Transboundary Water Resources Management; Ganoulis, J., Duckstein, L., Literathy, P., Bogardi, I., Eds.; Nato ASI Series; Springer: Berlin/Heidelberg, Germany, 1996; pp. 451–457. ISBN 978-3-642-64843-4. [Google Scholar]
- Rijsberman, F.R. Water Scarcity: Fact or Fiction? Agric. Water Manag. 2006, 80, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Hamin, E.M.; Geigis, P.; Silka, L. Preserving and Enhancing Communities: A Guide for Citizens, Planners, and Policymakers; University of Massachusetts Press: Amherst, MA, USA, 2007; ISBN 978-1-61376-105-2. [Google Scholar]
- Dahl, T.E. Status and Trends of Wetlands in the Conterminous United States 1998 to 2004; United States Fish and Wildlife Service: Washington, DC, USA, 2006; p. 116. [Google Scholar]
- Kosmas, C.; Danalatos, N.G.; Gerontidis, S. The Effect of Land Parameters on Vegetation Performance and Degree of Erosion under Mediterranean Conditions. CATENA 2000, 40, 3–17. [Google Scholar] [CrossRef]
- Karlen, D.L.; Ditzler, C.A.; Andrews, S.S. Soil Quality: Why and How? Geoderma 2003, 114, 145–156. [Google Scholar] [CrossRef]
- Faniran, A.; Areola, O. Essentials of Soil Study: With Special Reference to Tropical Areas; Heinemann Educational Books Ltd.: Areas Portsmouth, NH, USA, 1978. [Google Scholar]
- Allen, P.A. Earth Surface Processes; John Wiley & Sons: Hoboken, NJ, USA, 2009; ISBN 978-1-4443-1356-7. [Google Scholar]
- Lambe, T.W.; Whitman, R.V. Soil Mechanics; John Wiley & Sons: Hoboken, NJ, USA, 1991; ISBN 978-0-471-51192-2. [Google Scholar]
- Bishop, T.F.A.; McBratney, A.B. A Comparison of Prediction Methods for the Creation of Field-Extent Soil Property Maps. Geoderma 2001, 103, 149–160. [Google Scholar] [CrossRef]
- Buol, S.W.; Southard, R.J.; Graham, R.C.; McDaniel, P.A. Soil Genesis and Classification; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 978-0-470-96059-2. [Google Scholar]
- Stockmann, U.; Minasny, B.; McBratney, A.B. How Fast Does Soil Grow? Geoderma 2014, 216, 48–61. [Google Scholar] [CrossRef]
- Blum, A. Drought Resistance, Water-Use Efficiency, and Yield Potential—Are They Compatible, Dissonant, or Mutually Exclusive? Crop Pasture Sci. 2005, 56, 1159–1168. [Google Scholar] [CrossRef]
- Blum, W.E.H. Soil and Land Resources for Agricultural Production: General Trends and Future Scenarios-A Worldwide Perspective. Int. Soil Water Conserv. Res. 2013, 1, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Panagos, P.; Standardi, G.; Borrelli, P.; Lugato, E.; Montanarella, L.; Bosello, F. Cost of Agricultural Productivity Loss Due to Soil Erosion in the European Union: From Direct Cost Evaluation Approaches to the Use of Macroeconomic Models. Land Degrad. Dev. 2018, 29, 471–484. [Google Scholar] [CrossRef]
- McKinney, M.L. Urbanization as a Major Cause of Biotic Homogenization. Biol. Conserv. 2006, 127, 247–260. [Google Scholar] [CrossRef]
- Stein, B. States of the Union: Ranking America’s Biodiversity; NatureServe: Arlington, VA, USA, 2002. [Google Scholar]
- Wilcove, D.S.; Master, L.L. How Many Endangered Species Are There in the United States? Front. Ecol. Environ. 2005, 3, 414–420. [Google Scholar] [CrossRef]
- Wilcove, D.S.; Rothstein, D.; Dubow, J.; Phillips, A.; Losos, E. Quantifying Threats to Imperiled Species in the United States: Assessing the Relative Importance of Habitat Destruction, Alien Species, Pollution, Overexploitation, and Disease. BioScience 1998, 48, 607–615. [Google Scholar] [CrossRef] [Green Version]
- Kharel, G. Impacts Of Urbanization On Environmental Resources: A Land Use Planning Perspective. Master’s Thesis, University of Texas, Arlington, TX, USA, December 2011. [Google Scholar]
- Dahl, A.L. Achievements and Gaps in Indicators for Sustainability. Ecol. Indic. 2012, 17, 14–19. [Google Scholar] [CrossRef]
- Segnestam, L. Indicators of Environment and Sustainable Development; World Bank: Washignton, DC, USA, 2002; p. 66. [Google Scholar]
- European Environment Agency EEA Core Set of Indicators: Guide; Publications Office: Luxembourg, 2005; ISBN 978-92-9167-757-3.
- Tsesmelis, D.E. Development, Implementation and Evaluation of Drought and Desertification Risk Indicators for the Integrated Management of Water Resources. Ph.D. Thesis, Department of Natural Resources Management & Agricultural Engineering, Agricultural University of Athens, Athens, Greece, 2017. [Google Scholar]
- Tsesmelis, D.E.; Skondras, N.A.; Khan, S.Y.A.; Kolokytha, E.; Karavitis, C.A. Water, Sanitation and Hygiene (WASH) Index: Development and Application to Measure WASH Service Levels in European Humanitarian Camps. Water Resour. Manag. 2020, 34, 2449–2470. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M.; Kienast, F. Indicators of Ecosystem Service Potential at European Scales: Mapping Marginal Changes and Trade-Offs. Ecol. Indic. 2012, 21, 39–53. [Google Scholar] [CrossRef]
- Skondras, N. Decision Making in Water Resources Management: Development of a Composite Indicator for the Assessment of the Social-Environmental Systems in Terms Resilience and Vulnerability to Water Scarcity and Water Stress. Ph.D. Thesis, Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Athens, Greece, 2015. [Google Scholar]
- OECD Handbook on Constructing Composite Indicators: Methodology and User Guide; Organization for Economic Co-Operation and Development: Paris, France, 2008.
- Karavitis, C.A.; Tsesmelis, D.E.; Oikonomou, P.D.; Kairis, O.; Kosmas, C.; Fassouli, V.; Ritsema, C.; Hessel, R.; Jetten, V.; Moustakas, N.; et al. A Desertification Risk Assessment Decision Support Tool (DRAST). CATENA 2020, 187, 104413. [Google Scholar] [CrossRef]
- Singh, S.P. Chronic Disturbance, a Principal Cause of Environmental Degradation in Developing Countries. Environ. Conserv. 1998, 25, 1–2. [Google Scholar] [CrossRef]
- Rogge, N. Undesirable Specialization in the Construction of Composite Policy Indicators: The Environmental Performance Index. Ecol. Indic. 2012, 23, 143–154. [Google Scholar] [CrossRef]
- Smeets, E.; Weterings, R. Environmental Indicators: Typology and Overview, Edith Smeets and Rob Weterings; European Environment Agency: Copenhagen, Denmark, 1999; p. 19. [Google Scholar]
- Karavitis, C.A.; Tsesmelis, D.E.; Skondras, N.A.; Stamatakos, D.; Alexandris, S.; Fassouli, V.; Vasilakou, C.G.; Oikonomou, P.D.; Gregorič, G.; Grigg, N.S.; et al. Linking Drought Characteristics to Impacts on a Spatial and Temporal Scale. Water Policy 2014, 16, 1172–1197. [Google Scholar] [CrossRef]
- Tsesmelis, D.E.; Karavitis, C.A.; Kalogeropoulos, K.; Tsatsaris, A.; Zervas, E.; Vasilakou, C.G.; Stathopoulos, N.; Skondras, N.A.; Alexandris, S.G.; Chalkias, C.; et al. Development and Application of Water and Land Resources Degradation Index (WLDI). Earth 2021, 2, 515–531. [Google Scholar] [CrossRef]
- ECMWF. ECMWF|ERA Interim, Daily. Available online: https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/ (accessed on 23 March 2021).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. In Guidelines for Computing Crop Water Requirements; FAO Irrigation and drainage paper; FAO: Rome, Italy, 1998. [Google Scholar]
- Hellenic Statistical Authority Agriculture, Livestock, Fishery—ELSTAT. Available online: https://www.statistics.gr/en/statistics/agr (accessed on 23 March 2021).
- Hellenic Statistical Authority 2011 Population-Housing Census. Available online: http://www.statistics.gr/en/2011-census-pop-hous (accessed on 21 August 2018).
- Zervakis, N. Water Management Methods for Domestic Consumption. Ph.D. Thesis, Technical Education Institute of Crete, Crete, Greece, 2012. [Google Scholar]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Google Earth Engine Landsat 7 Collection 1 Tier 1 Annual EVI Composite. Available online: https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C01_T1_ANNUAL_EVI (accessed on 23 March 2021).
- Yassoglou, Ν. Soil Mapping and Soil Databases. In Soil Databases to Support Sustainable Development; Le Bas, C., Jamagne, M., Eds.; European Soil Bureau Research Report No. 2; EUR 16371 EN; Office for Official Publications of the European Communities: Luxembourg, 1996; pp. 57–60. [Google Scholar]
- Copernicus CORINE Land CoverCLC 2012—Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012 (accessed on 23 March 2021).
- Vlachos, E.C. Drought Management Interfaces; ASCE: Las Vegas, NV, USA, 1982; p. 15. [Google Scholar]
- Tsesmelis, D.E.; Vasilakou, C.G.; Kalogeropoulos, K.; Stathopoulos, N.; Alexandris, S.G.; Zervas, E.; Oikonomou, P.D.; Karavitis, C.A. Chapter 46—Drought Assessment Using the Standardized Precipitation Index (SPI) in GIS Environment in Greece. In Computers in Earth and Environmental Sciences; Pourghasemi, H.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 619–633. ISBN 978-0-323-89861-4. [Google Scholar]
- Kosmas, C.; Kirkby, M.; Geeson, N. Manual on Key Indicators of Desertification and Mapping Environmentally Sensitive Areas to Desertification; European Commission: Brussels, Belgium, 1999. [Google Scholar]
- Alexandris, S.; Kerkides, P.; Liakatas, A. Daily Reference Evapotranspiration Estimates by the “Copais” Approach. Agric. Water Manag. 2006, 82, 371–386. [Google Scholar] [CrossRef]
- Alexandris, S.; Tsesmelis, D.; Proutsos, N.; Chatzithomas, C.; Skondras, N.; Stamatakos, D.; Vasilakou, C.; Gkotsis, I.; Fassouli, V.; Vitoratos, E.; et al. The Contribution of Empirical Methods to Use Satellite Data on Estimating Daily ΕΤο. Hydrotechnika 2016, 24, 72–84. [Google Scholar]
- Paredes, P.; Martins, D.S.; Pereira, L.S.; Cadima, J.; Pires, C. Accuracy of Daily Estimation of Grass Reference Evapotranspiration Using ERA-Interim Reanalysis Products with Assessment of Alternative Bias Correction Schemes. Agric. Water Manag. 2018, 210, 340–353. [Google Scholar] [CrossRef]
- Depraetere, C.; Soulis, K.X.; Tsesmelis, D.E.; Avgoustidis, G.; Spilanis, I. Impacts of Climate Change on the Evolution of Water Resources in the Context of the Mediterranean Islands Using as an Example Two Aegean Sea Islands: Consequences for Touristic Activities in the Future. In The Anthropocene And Islands: Vulnerability, Adaptation And Resilience To Natural Hazards And Climate Change; Il Sileno Edizioni: Lago, Italy, 2020; p. 143. ISBN 9791280064028. [Google Scholar]
- Soulis, K.X.; Tsesmelis, D.E. Calculation of the Irrigation Water Needs Spatial and Temporal Distribution in Greece. Eur. Water 2017, 59, 247–254. [Google Scholar]
- Jarvis, A.; Reuter, H.; Nelson, A.; Guevara, E. Hole-Filled Seamless SRTM Data V4; International Centre for Tropical Agriculture CIAT: Cali, Colombia, 2008. [Google Scholar]
- FAO Global Soil Organic Carbon Map (GSOCmap) Version 1.5: Technical Report; FAO: Rome, Italy, 2020; ISBN 978-92-5-132144-7.
- Gao, B. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Allan, N.J.R. Accessibility and Altitudinal Zonation Models of Mountains. Mt. Res. Dev. 1986, 6, 185–194. [Google Scholar] [CrossRef]
- Hamilton, A.C. A Quantitative Analysis of Altitudinal Zonation in Uganda Forests. Vegetatio 1975, 30, 99–106. [Google Scholar] [CrossRef]
- Hemp, A. Continuum or Zonation? Altitudinal Gradients in the Forest Vegetation of Mt. Kilimanjaro. Plant Ecol. 2006, 184, 27–42. [Google Scholar] [CrossRef]
- Troll, C. High Mountain Belts between the Polar Caps and the Equator: Their Definition and Lower Limit. Arct. Alp. Res. 1973, 5, A19–A27. [Google Scholar]
- Morianou, G.G.; Kourgialas, N.N.; Psarras, G.; Koubouris, G.C. Mapping Sensitivity to Desertification in Crete (Greece), the Risk for Agricultural Areas. J. Water Clim. Change 2018, 9, 691–702. [Google Scholar] [CrossRef]
- Tapoglou, E.; Vozinaki, A.E.; Tsanis, I. Climate Change Impact on the Frequency of Hydrometeorological Extremes in the Island of Crete. Water 2019, 11, 587. [Google Scholar] [CrossRef] [Green Version]
- Grillakis, M.G.; Vrochidou, A.-E.K.; Tsanis, I.K. Drought Assessment Based on Multi-Model Precipitation Projections for the Island of Crete. J. Earth Sci. Clim. Change 2013, 4, 1000158. [Google Scholar] [CrossRef]
- Kairis, O.; Kosmas, C.; Karavitis, C.; Ritsema, C.; Salvati, L.; Acikalin, S.; Alcalá, M.; Alfama, P.; Atlhopheng, J.; Barrera, J.; et al. Evaluation and Selection of Indicators for Land Degradation and Desertification Monitoring: Types of Degradation, Causes, and Implications for Management. Environ. Manag. 2014, 54, 971–982. [Google Scholar] [CrossRef]
- Kairis, O.; Karavitis, C.; Kounalaki, A.; Salvati, L.; Kosmas, C. The Effect of Land Management Practices on Soil Erosion and Land Desertification in an Olive Grove. Soil Use Manag. 2013, 29, 597–606. [Google Scholar] [CrossRef]
ID | Tmin (°C) | Tmax (°C) | Tavg (°C) | Rs (W/m2) | RHmin (%) | RHmax (%) | RHavg (%) | WSavg (m/s) |
---|---|---|---|---|---|---|---|---|
1 | 16.0 | 19.4 | 17.5 | 217.5 | 66.8 | 82.2 | 74.8 | 5.3 |
2 | 14.3 | 19.6 | 16.8 | 214.5 | 65.8 | 82.0 | 74.2 | 4.4 |
3 | 14.1 | 18.0 | 15.8 | 217.1 | 66.8 | 82.5 | 75.0 | 4.5 |
4 | 11.4 | 18.6 | 14.8 | 214.5 | 65.9 | 82.1 | 74.3 | 3.4 |
5 | 13.8 | 20.1 | 16.7 | 217.2 | 66.4 | 82.5 | 74.8 | 3.4 |
6 | 15.8 | 19.4 | 17.5 | 214.9 | 66.1 | 81.9 | 74.4 | 4.1 |
7 | 13.1 | 20.0 | 16.2 | 218.2 | 66.4 | 82.5 | 74.8 | 3.5 |
8 | 17.6 | 19.7 | 18.6 | 215.4 | 66.4 | 82.0 | 74.6 | 5.0 |
9 | 17.3 | 20.0 | 18.5 | 221.1 | 66.8 | 81.5 | 74.5 | 5.0 |
10 | 12.1 | 18.3 | 14.9 | 218.4 | 66.3 | 82.3 | 74.7 | 3.3 |
11 | 16.2 | 18.7 | 17.4 | 216.6 | 66.5 | 81.9 | 74.6 | 4.5 |
12 | 17.2 | 20.1 | 18.5 | 221.0 | 66.6 | 81.2 | 74.2 | 5.2 |
13 | 12.3 | 19.0 | 15.3 | 218.5 | 66.2 | 81.9 | 74.5 | 3.5 |
14 | 17.0 | 20.0 | 18.3 | 221.1 | 66.5 | 81.0 | 74.1 | 5.5 |
15 | 12.3 | 19.4 | 15.5 | 218.5 | 66.2 | 81.8 | 74.4 | 3.6 |
16 | 16.8 | 19.6 | 18.0 | 221.4 | 66.5 | 80.9 | 74.1 | 5.1 |
17 | 12.0 | 19.0 | 15.1 | 218.7 | 66.2 | 81.6 | 74.3 | 3.6 |
18 | 17.3 | 19.8 | 18.5 | 221.5 | 66.3 | 80.5 | 73.7 | 5.3 |
19 | 16.7 | 19.3 | 17.9 | 219.8 | 66.4 | 80.9 | 74.0 | 5.5 |
20 | 17.5 | 20.2 | 18.7 | 222.0 | 66.2 | 80.4 | 73.7 | 5.5 |
21 | 16.4 | 20.0 | 18.0 | 220.7 | 66.3 | 80.8 | 73.9 | 5.4 |
22 | 16.8 | 20.4 | 18.4 | 221.5 | 65.9 | 80.4 | 73.5 | 5.8 |
EVI Classes | Vegetation Drought Impacts | Description |
---|---|---|
−1.00–0.14 | 3.0 | >50% Losses |
0.14–0.27 | 2.0 | 16–50% Losses |
0.27–0.62 | 1.0 | 15% Losses |
0.62–1.00 | 0.0 | None |
Aridity Index (BGI Range) | Water Demand | Vegetation Drought Impacts | Vegetation Drought Resilience | Water Resources Infrastructure | Land Use Intensity | Soil Parent Material | Plant Cover | Rainfall | Slope | Soil Texture | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<50 | 1.0 | No Deficits | 0.0 | None | 0.0 | Very high | 1.0 | No Deficits | 0.0 | Low | 1.0 | Good | 1.0 | High | 1.0 | >650 | 1.0 | <6 | 1.0 | Good | 1.0 |
50–75 | 1.1 | 15% Deficits | 1.0 | 15% Losses | 1.0 | High | 1.2 | 15% Deficits | 1.0 | Medium | 1.5 | Moderate | 1.7 | Low | 1.8 | 280–650 | 2.0 | 6–18 | 1.2 | Moderate | 1.2 |
75–100 | 1.2 | 16–50% Deficits | 2.0 | 16–50% Losses | 2.0 | Medium | 1.3 | 16–50% Deficits | 2.0 | High | 2.0 | Poor | 2.0 | Very Low | 2.0 | <280 | 4.0 | 18–35 | 1.5 | Poor | 1.6 |
100–125 | 1.4 | >50% Deficits | 3.0 | >50% Losses | 3.0 | Moderate | 1.4 | >50% Deficits | 3.0 | - | - | - | - | - | - | - | - | >35 | 2.0 | Very Poor | 2.0 |
125–150 | 1.8 | - | - | - | - | Low | 1.7 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
>150 | 2.0 | - | - | - | Very Low | 2.0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Classes | Values | Description |
---|---|---|
1 | <94 | No degradation |
2 | 94–118 | Very Low Degradation |
3 | 118–142 | Low Degradation |
4 | 142–167 | Mild Degradation |
5 | 167–191 | Moderate Degradation |
6 | 191–215 | High Degradation |
7 | >215 | Extreme Degradation |
Name | Prefecture | Volume (106 m3) | Purpose | Construction Year |
---|---|---|---|---|
Mpramianon | Lasithi | 16.00 | Irrigation | 1986 |
Partiron | Heraklion | 1.50 | Irrigation | 2000 |
Iniou | Heraklion | 1.75 | Irrigation | 2002 |
Damanion | Heraklion | 1.50 | Irrigation | 2003 |
Amourgeles | Heraklion | 1.56 | Irrigation | 2004 |
Armanogeion | Heraklion | 1.50 | Irrigation | 2004 |
Faneromeni | Heraklion | 19.67 | Irrigation | 2005 |
Potamon | Rethymno | 22.50 | Domestic-Irrigation | 2008 |
Aposelemi | Heraklion | 27.30 | Irrigation | 2012 |
Valsamioti | Chania | 5.50 | Irrigation | 2014 |
Elevation | Zones | Min | Max | Mean | Standard Deviation |
---|---|---|---|---|---|
0–350 | Thermo-Mediterranean | 70.70 | 159.10 | 94.33 | 9.36 |
350–600 | Mesomediterranean | 70.70 | 127.19 | 96.71 | 7.67 |
600–1200 | Super-Mediterranean | 75.40 | 127.19 | 98.07 | 6.00 |
1200–1700 | Montane | 88.79 | 157.19 | 100.08 | 6.21 |
1700–2600 | Alti-Mediterranean | 97.49 | 168.10 | 101.34 | 5.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsesmelis, D.E.; Karavitis, C.A.; Kalogeropoulos, K.; Zervas, E.; Vasilakou, C.G.; Skondras, N.A.; Oikonomou, P.D.; Stathopoulos, N.; Alexandris, S.G.; Tsatsaris, A.; et al. Evaluating the Degradation of Natural Resources in the Mediterranean Environment Using the Water and Land Resources Degradation Index, the Case of Crete Island. Atmosphere 2022, 13, 135. https://doi.org/10.3390/atmos13010135
Tsesmelis DE, Karavitis CA, Kalogeropoulos K, Zervas E, Vasilakou CG, Skondras NA, Oikonomou PD, Stathopoulos N, Alexandris SG, Tsatsaris A, et al. Evaluating the Degradation of Natural Resources in the Mediterranean Environment Using the Water and Land Resources Degradation Index, the Case of Crete Island. Atmosphere. 2022; 13(1):135. https://doi.org/10.3390/atmos13010135
Chicago/Turabian StyleTsesmelis, Demetrios E., Christos A. Karavitis, Kleomenis Kalogeropoulos, Efthimios Zervas, Constantina G. Vasilakou, Nikolaos A. Skondras, Panagiotis D. Oikonomou, Nikolaos Stathopoulos, Stavros G. Alexandris, Andreas Tsatsaris, and et al. 2022. "Evaluating the Degradation of Natural Resources in the Mediterranean Environment Using the Water and Land Resources Degradation Index, the Case of Crete Island" Atmosphere 13, no. 1: 135. https://doi.org/10.3390/atmos13010135