A Review on Metal Ions Modified TiO2 for Photocatalytic Degradation of Organic Pollutants
Abstract
:1. Introduction
2. TiO2 Photocatalysis
3. Mechanisms of TiO2 Photocatalysts for Organic Pollutants
4. Modification with Metal Ions
4.1. Modification with Transition Metals
4.1.1. Modification with Vanadium (V)
4.1.2. Modification with Nickel (Ni)
4.1.3. Modification with Copper (Cu)
4.1.4. Modification with Manganese (Mn)
4.1.5. Modification with Zirconium (Zr)
4.1.6. Modification with Iron (Fe)
4.1.7. Modification with Chromium (Cr)
4.1.8. Modification with Molybdenum (Mo)
4.1.9. Modification with Cobalt (Co)
4.1.10. Modification with Niobium (Nb)
4.1.11. Modification with Tungsten (W)
4.1.12. Modification with Zinc (Zn)
4.2. Modification with Noble Metals
4.2.1. Modification with Gold (Au)
4.2.2. Modification with Silver (Ag)
4.2.3. Modification with Platinum (Pt)
4.2.4. Modification with Ruthenium (Ru)
4.2.5. Modification with Palladium (Pd)
4.3. Modification with Rare Earth Metals
4.4. Modification with Other Metal Ions
5. Conclusions and Future Outlooks
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Otitoju, T.A.; Ooi, B.S.; Ahmad, A.L. Synthesis of 3-aminopropyltriethoxysilane-silica modified polyethersulfone hollow fiber membrane for oil-in-water emulsion separation. React. Funct. Polym. 2019, 136, 107–121. [Google Scholar] [CrossRef]
- Shoparwe, N.F.; Otitoju, T.A.; Ahmad, A.L. Fouling evaluation of polyethersulfone (PES)/sulfonated cation exchange resin (SCER) membrane for BSA separation. J. Appl. Polym. Sci. 2018, 135, 45854. [Google Scholar] [CrossRef]
- Zhong, Q.; Lan, H.; Zhang, M.; Zhu, H.; Bu, M. Preparation of heterostructure g-C3N4/ZnO nanorods for high photocatalytic activity on different pollutants (MB, RhB, Cr(VI) and eosin). Ceram. Int. 2020, 46, 12192–12199. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Wang, Q. The performance of daylight photocatalytic activity towards degradation of MB by the flower-like and approximate flower-like complexes of graphene with ZnO and Cerium doped ZnO. Optik 2019, 204, 164131. [Google Scholar] [CrossRef]
- Pirgholi Givi, G.; Farjami Shayesteh, S.; Azizian, Y. Investigation of The influence of irradiation intensity and stirring rate on the photocatalytic activity of titanium dioxide nanostructures prepared by the microwave-assisted method for photodegradation of MB from water. Phys. B Condens. Matter 2019, 578, 411886. [Google Scholar] [CrossRef]
- Lalliansanga; Tiwari, D.; Tiwari, A.; Shukla, A.; Shim, M.; Lee, S.-M. Facile synthesis and characterization of Ag(NP)/TiO2 nanocomposite: Photocatalytic efficiency of catalyst for oxidative removal of Alizarin Yellow. Catal. Today. [CrossRef]
- Dong, S.; Lee, G.J.; Zhou, R.; Wu, J. Synthesis of g-C3N4/BiVO4 Heterojunction Composites for Photocatalytic Degradation of Nonylphenol Ethoxylate. Sep. Purif. Technol. 2020, 250, 117202. [Google Scholar] [CrossRef]
- Tian, J.; Zhu, Z.; Liu, B. Novel Bi2MoO6/Bi2WO6/MWCNTs photocatalyst with enhanced photocatalytic activity towards degradation of RB-19 under visible light irradiation. Colloids Surf. A Physicochem. Eng. Asp. 2019, 581, 123798. [Google Scholar] [CrossRef]
- Rodrigues, J.; Hatami, T.; Rosa, J.; Tambourgi, E.; Innocentini-Mei, L. Photocatalytic degradation using ZnO for the treatment of RB 19 and RB 21 dyes in industrial effluents and mathematical modeling of the process. Chem. Eng. Res. Des. 2020, 153, 294–305. [Google Scholar] [CrossRef]
- Natesan, K.; Sinthiya, M.; Ramamurthi, K.; Ramraj, R.; Raman, S. Visible light driven photocatalytic activity of ZnO/CuO nanocomposites coupled with rGO heterostructures synthesized by solid-state method for RhB dye degradation. Arab. J. Chem. 2019, 13, 3910–3928. [Google Scholar] [CrossRef]
- Akpan, U.G.; Hameed, B.H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. J. Hazard. Mater. 2009, 170, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.; Yu, H.; Xu, T.; Wu, S.; Wang, X.; Lu, N.; Quan, X.; Liang, H. Photocatalytic ozonation of organic pollutants in wastewater using a flowing through reactor. J. Hazard. Mater. 2020, 405, 124277. [Google Scholar] [CrossRef]
- Liao, X.; Wang, F.; Wang, Y.; Cai, Y.; Liu, H.; Wang, X.; Zhu, Y.; Chen, L.; Yao, Y.; Qinglan, H. Constructing Fe-based bi-MOFs for photo-catalytic ozonation of organic pollutants in Fischer-Tropsch waste water. Appl. Surf. Sci. 2020, 509, 145378. [Google Scholar] [CrossRef]
- Žener, B.; Matoh, L.; Carraro, G.; Miljevic, B.; Cerc Korošec, R. Sulfur-, nitrogen- and platinum-doped titania thin films with high catalytic efficiency under visible-light illumination. Beilstein J. Nanotechnol. 2018, 9, 1629–1640. [Google Scholar] [CrossRef] [Green Version]
- Hasanpour, M.; Hatami, M. Photocatalytic performance of aerogels for organic dyes removal from wastewaters: Review study. J. Mol. Liq. 2020, 309, 113094. [Google Scholar] [CrossRef]
- Otitoju, T.A.; Jiang, D.; Ouyang, Y.; Elamin, M.A.M.; Li, S. Photocatalytic degradation of Rhodamine B using CaCu3Ti4O12 embedded polyethersulfone hollow fiber membrane. J. Ind. Eng. Chem. 2020, 83. [Google Scholar] [CrossRef]
- Diao, Y.; Yan, Z.; Guo, M.; Wang, X. Magnetic multi-metal co-doped magnesium ferrite nanoparticles: An efficient visible light-assisted heterogeneous Fenton-like catalyst synthesized from saprolite laterite ore. J. Hazard. Mater. 2017, 344, 829–838. [Google Scholar] [CrossRef]
- Ensaldo-Rentería, M.K.; Ramírez-Robledo, G.; Sandoval-González, A.; Arellano, C.; Alvarez-Gallegos, A.; Zamudio-Lara, Á.; Silva Martínez, S. Photoelectrocatalytic oxidation of acid green 50 dye in aqueous solution using Ti/TiO2-NT electrode. J. Environ. Chem. Eng. 2018, 6, 1182–1188. [Google Scholar] [CrossRef]
- Alijani, M.; Kaleji, B.; Rezaee, S. Highly visible-light active with Co/Sn co-doping of TiO2 nanoparticles for degradation of methylene blue. J. Mater. Sci. Mater. Electron. 2017, 28, 15345–15353. [Google Scholar] [CrossRef]
- Wei, Z.; Liu, D.; Wei, W.; Chen, X.; Han, Q.; Yao, W.-Q.; Ma, X. Ultrathin TiO2(B) Nanosheets as the Inductive Agent for Transfering H2O2 into Superoxide Radicals. ACS Appl. Mater. Interfaces 2017, 9, 15533–15540. [Google Scholar] [CrossRef]
- Ayode Otitoju, T.; Ugochukwu Okoye, P.; Chen, G.; Li, Y.; Onyeka Okoye, M.; Li, S. Advanced ceramic components: Materials, Fabrication, and Applications. J. Ind. Eng. Chem. 2020, 85, 34–65. [Google Scholar] [CrossRef]
- Sangchay, W.; Kaewjang, S. SnO2-doped TiO2 nanostructured thin films with antibacterial properties. AIP Conf. Proc. 2016, 1775, 030023. [Google Scholar]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Negishi, N.; Iyoda, T.; Hashimoto, K.; Fujishima, A. Preparation of Transparent TiO2 Thin Film Photocatalyst and Its Photocatalytic Activity. Chem. Lett. 1995, 9, 841–842. [Google Scholar] [CrossRef]
- Patil, N.; Uphade, B.; Jana, P.; Sonawane, R.; Bhargava, S.; Choudhary, V. Epoxidation of Styrene by Anhydrous t-Butyl Hydroperoxide over Au/TiO2 Catalysts. Catal. Lett. 2004, 94, 89–93. [Google Scholar] [CrossRef]
- Baran, W.; Makowski, A.; Wardas, W. The effect of UV radiation absorption of cationic and anionic dye solutions on their photocatalytic degradation in the presence TiO2. Dye. Pigment. 2008, 76, 226–230. [Google Scholar] [CrossRef]
- Poulopoulos, S.; Philippopoulos, C. Photo-assisted Oxidation of Chlorophenols in Aqueous Solutions Using Hydrogen Peroxide and Titanium Dioxide. J. Environ. Sci. Health. A Tox. Hazard. Subst. Environ. Eng. 2004, 39, 1385–1397. [Google Scholar] [CrossRef]
- Ahmad, R.; Ahmad, Z.; Khan, A.; Mastoi, N.; Aslam, M.; Kim, J. Photocatalytic Systems as an Advanced Environmental Remediation: Recent Developments, Limitations and new Avenues for Applications. J. Environ. Chem. Eng. 2016, 4, 4143–4164. [Google Scholar] [CrossRef]
- Mohite, V.S.; Mahadik, M.; Kumbhar, S.S.; Hunge, Y.; Kim, J.-H.; Moholkar, A.; Rajpure, K.; Bhosale, C. Photoelectrocatalytic degradation of benzoic acid using Au doped TiO2 thin films. J. Photochem. Photobiol. B 2014, 142C, 204–211. [Google Scholar] [CrossRef]
- Shinde, S.S.; Shinde, P.S.; Bhosale, C.H.; Rajpure, K.Y. Zinc oxide mediated heterogeneous photocatalytic degradation of organic species under solar radiation. J. Photochem. Photobiol. B Biol. 2011, 104, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Murtaza, G.; Ahmad, R.; Rashid, M.S.; Hassan, M.; Hussnain, A.; Khan, M.A.; Ehsan ul Haq, M.; Shafique, M.A.; Riaz, S. Structural and magnetic studies on Zr doped ZnO diluted magnetic semiconductor. Curr. Appl. Phys. 2014, 14, 176–181. [Google Scholar] [CrossRef]
- Inturi, S.; Boningari, T.; Suidan, M.; Smirniotis, P. Visible-light-induced photodegradation of gas phase acetonitrile using aerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO2. Appl. Catal. B Environ. 2014, 144, 333–342. [Google Scholar] [CrossRef]
- Choina, J.; Fischer, C.; Flechsig, G.-U.; Kosslick, H.; Tuan, V.; Nguyen, T.; Tuyen, N.A.; Schulz, A. Photocatalytic properties of Zr-doped titania in the degradation of the pharmaceutical ibuprofen. J. Photochem. Photobiol. A Chem. 2014, 274, 108–116. [Google Scholar] [CrossRef]
- Kim, T.-H.; Lee, Y.; Han, S.-H.; Hwang, S.-J. The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresour. Technol. 2013, 130, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, R.; Sacari, E.; Gracia, F.; Khan, M.M.; Mosquera, E.; Gupta, V.K. Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J. Mol. Liq. 2016, 221, 1029–1033. [Google Scholar] [CrossRef]
- Saravanan, R.; Gupta, V.K.; Mosquera, E.; Gracia, F.; Narayanan, V.; Stephen, A. Visible light induced degradation of methyl orange using β-Ag0.333V2O5 nanorod catalysts by facile thermal decomposition method. J. Saudi Chem. Soc. 2015, 19, 521–527. [Google Scholar] [CrossRef] [Green Version]
- Saravanan, R.; Gracia, F.; Khan, M.M.; Poornima, V.; Gupta, V.K.; Narayanan, V.; Stephen, A. ZnO/CdO nanocomposites for textile effluent degradation and electrochemical detection. J. Mol. Liq. 2015, 209, 374–380. [Google Scholar] [CrossRef]
- Gnanasekaran, L.; Hemamalini, R.; R, S.; Ravichandran, K.; Gracia, F.; Gupta, V. Intermediate state created by dopant ions (Mn, Co and Zr) into TiO2 nanoparticles for degradation of dyes under visible light. J. Mol. Liq. 2016, 223, 652–659. [Google Scholar] [CrossRef]
- Choi, W.; Termin, A.; Hoffmann, M. The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation Between Photoreactivity and Charge Carrier Recombination Dynamics. J. Phys. Chem. 1994, 98, 13669–13679. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, G.; Bahnemann, D. Photoelectrocatalytic Materials for Environmental Applications. J. Mater. Chem. 2009, 19, 5089–5121. [Google Scholar] [CrossRef]
- Graetzel, M.; Howe, R. Electron paramagnetic resonance studies of doped titanium dioxide colloids. J. Phys. Chem. 1990, 94, 2566–2572. [Google Scholar] [CrossRef]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 919–9986. [Google Scholar] [CrossRef]
- Dvoranová, D.; Brezová, V.; Mazúr, M.; Malati, M. Investigations of Meta-Doped Titanium Dioxide Photocatalysis. Appl. Catal. B Environ. 2002, 37, 91–105. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, R.; Li, J.; Li, L.; Lin, S. First-principles study on transition metal-doped anatase TiO2. Nanoscale Res. Lett. 2014, 9, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jun, T.; Lee, K.-S. Cr-doped TiO2 thin films deposited by RF-sputtering. Mater. Lett. 2010, 64, 2287–2289. [Google Scholar] [CrossRef]
- Qin, L.Z.; Liang, H.; Liao, B.; Liu, A.D.; Wu, X.Y.; Sun, J. Photocatalytic performance of Fe-, Ni-, or Cu-ion implanted TiO2 films under UV light, visible light and sunlight irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2013, 307, 385–390. [Google Scholar] [CrossRef]
- Leyland, N.; Carroll (Podporska), J.; Browne, J.; Hinder, S.; Quilty, B.; Pillai, S. Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections. Sci. Rep. 2016, 6, 24770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathew, S.; Ganguly, P.; Rhatigan, S.; Vignesh, K.; Byrne, C.; Hinder, S.; Bartlett, J.; Nolan, M.; Pillai, S. Cu-Doped TiO2: Visible Light Assisted Photocatalytic Antimicrobial Activity. Appl. Sci. 2018, 8, 2067. [Google Scholar] [CrossRef] [Green Version]
- Ibram, G.; Polkampally, P.; Annapoorna, I.; Sumliner, J.; Ramakrishna, M.; Hebalkar, N.; Padmanabham, G.; Sundararajan, G. Preparation and characterization of Cu-doped TiO2 materials for electrochemical, photoelectrochemical, and photocatalytic applications. Appl. Surf. Sci. 2014, 293, 229–247. [Google Scholar] [CrossRef]
- Choi, J.; Park, H.; Hoffmann, M. Effects of Single Metal-Ion Doping on the Visible-Light Photoreactivity of TiO2. J. Phys. Chem. C 2009, 114, 783–792. [Google Scholar] [CrossRef] [Green Version]
- Murakami, N.; Chiyoya, T.; Tsubota, T.; Ohno, T. Switching redox site of photocatalytic reaction on titanium (IV) oxide particles modified with transition-metal ion controlled by irradiation wavelength. Appl. Catal. A Gen. 2008, 348, 148–152. [Google Scholar] [CrossRef] [Green Version]
- Rauf, M.A.; Meetani, M.A.; Hisaindee, S. An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 2011, 276, 13–27. [Google Scholar] [CrossRef]
- Nešić, J.; Manojlović, D.; Andelković, I.; Dojcinovic, B.; Vulić, P.; Krstic, J.; Roglic, G. Preparation, characterization and photocatalytic activity of lanthanum and vanadium co-doped mesoporous TiO2 for azo-dye degradation. J. Mol. Catal. A Chem. 2013, 378, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Ni, M.; Leung, M.K.H.; Leung, D.; Sumathy, K. A Review and Recent Developments in Photocatalytic Water-Splitting Using TiO2 for Hydrogen Production. Renew. Sustain. Energy Rev. 2007, 11, 401–425. [Google Scholar] [CrossRef]
- Chang, S.-M.; Liu, W. Surface doping is more beneficial than bulk doping to the photocatalytic activity of vanadium-doped TiO2. Appl. Catal. B Environ. 2011, 101, 333–342. [Google Scholar] [CrossRef]
- Marschall, R. Photocatalysis: Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity. Adv. Funct. Mater. 2014, 24, 2421–2440. [Google Scholar] [CrossRef]
- Dong, H.; Zeng, G.; Tang, L.; Fan, C.; Zhang, C.; He, X.; He, Y. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 2015, 79, 128–146. [Google Scholar] [CrossRef]
- Mutlu, E.; Cristy, T.; Graves, S.; Hooth, M.; Waidyanatha, S. Characterization of aqueous formulations of tetra- and pentavalent forms of vanadium in support of test article selection in toxicology studies. Environ. Sci. Pollut. Res. 2017, 24, 405–416. [Google Scholar] [CrossRef]
- Ntobeng, M.; Imoisili, P.; Jen, T.-C. Facile fabrication of vanadium sensitized silver titanium oxides (V–Ag/TiO2) photocatalyst nanocomposite for pollutants removal in river water. Mater. Sci. Semicond. Process. 2020, 123, 105569. [Google Scholar] [CrossRef]
- Mitoraj, D.; Kisch, H. Surface Modified Titania Visible Light Photocatalyst Powders. Solid State Phenom. 2010, 162, 49–75. [Google Scholar] [CrossRef]
- Phung, H.; Truong, N.; Lâm, N.T.; Phan Thi, K.L.; Duong, P.; Le, H. Enhancement of the visible light photocatalytic activity of vanadium and nitrogen co-doped TiO2 thin film. J. Nonlinear Opt. Phys. Mater. 2015, 25, 1550052. [Google Scholar] [CrossRef]
- Weng, K.-W.; Han, S. Photocatalytic performance of TiVOx/TiO2 thin films prepared by bipolar pulsed magnetron sputter deposition. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. 2017, 35, 41201–41207. [Google Scholar] [CrossRef]
- Shao, G.; Imran, S.; Jeon, S.J.; Kang, S.J.; Haider, M.; Kim, H.T. Sol–gel synthesis of vanadium doped titania: Effect of the synthetic routes and investigation of their photocatalytic properties in the presence of natural sunlight. Appl. Surf. Sci. 2015, 351, 1213–1223. [Google Scholar] [CrossRef]
- Zhou, J.; Takeuchi, M.; Ray, A.; Anpo, M.; Zhao, X.S. Enhancement of photocatalytic activity of P25 TiO2 by vanadium-ion implantation under visible light irradiation. J. Colloid Interface Sci. 2007, 311, 497–501. [Google Scholar] [CrossRef]
- Bettinelli, M.; Dallacasa, V.; Falcomer, D.; Fornasiero, P.; Gombac, V.; Montini, T.; Romanò, L.; Speghini, A. Photocatalytic activity of TiO2 doped with boron and vanadium. J. Hazard. Mater. 2007, 146, 529–534. [Google Scholar] [CrossRef]
- Kubacka, A.; Fuerte, A.; Martínez-Arias, A.; Fernández-García, M. Nanosized Ti–V mixed oxides: Effect of doping level in the photo-catalytic degradation of toluene using sunlight-type excitation. Appl. Catal. B Environ. 2007, 74, 26–33. [Google Scholar] [CrossRef]
- Patel, S.; Gajbhiye, N. Intrinsic room-temperature ferromagnetism of V-doped TiO2 (B) nanotubes synthesized by the hydrothermal method. Solid State Commun. 2011, 151, 1500–1503. [Google Scholar] [CrossRef]
- Khan, M.; Song, Y.; Chen, N.; Cao, W. Effect of V doping concentration on the electronic structure, optical and photocatalytic properties of nano-sized V-doped anatase TiO2. Mater. Chem. Phys. 2013, 142, 148–153. [Google Scholar] [CrossRef]
- Gu, D.-E.; Yang, B.-C.; Hu, Y.-D. A Novel Method for Preparing V-doped Titanium Dioxide Thin Film Photocatalysts with High Photocatalytic Activity Under Visible Light Irradiation. Catal. Lett. 2007, 118, 254–259. [Google Scholar] [CrossRef]
- Iketani, K.; Sun, R.-D.; Toki, M.; Hirota, K.; Yamaguchi, O. Sol–gel-derived VXTi1−XO2 films and their photocatalytic activities under visible light irradiation. Mater. Sci. Eng. B 2004, 108, 187–193. [Google Scholar] [CrossRef]
- Lu, D.; Zhao, B.; Fang, P.; Zhai, S.; Li, D.; Chen, Z.; Wu, W.; Chai, W.; Wu, Y.; Qi, N. Facile one-pot fabrication and high photocatalytic performance of vanadium doped TiO2-based nanosheets for visible-light-driven degradation of RhB or Cr(VI). Appl. Surf. Sci. 2015, 359, 435–448. [Google Scholar] [CrossRef]
- Camposeco, R.; Castillo, S.; Hinojosa Reyes, M.; Mejía-Centeno, I.; Zanella, R. Effect of incorporating vanadium oxide to TiO2, Zeolite-ZM5, SBA and P25 supports on the photocatalytic activity under visible light. J. Photochem. Photobiol. A Chem. 2018, 367, 178–187. [Google Scholar] [CrossRef]
- Vasilic, R.; Stojadinović, S.; Radic, N.; Stefanov, P.; Dohčević-Mitrović, Z.; Grbic, B. One-step preparation and photocatalytic performance of vanadium doped TiO2 coatings. Mater. Chem. Phys. 2015, 151, 337. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, G.; Sun, Z.; Zheng, S. A comparative study about the influence of metal ions (Ce, La and V) doping on the solar-light-induced photodegradation toward rhodamine B. J. Environ. Chem. Eng. 2015, 3. [Google Scholar] [CrossRef]
- Sinirtas, E.; Isleyen, M.; Pozan, G. Photocatalytic degradation of 2,4-dichlorophenol with V2O5-TiO2 catalysts: Effect of catalyst support and surfactant additives. Chinese J. Catal. 2016, 37, 607–615. [Google Scholar] [CrossRef]
- Palanivel, M.; Lokeshkumar, E.; Amruthaluru, S.; Govardhanan, B.; Mahalingam, A.; Rameshbabu, N. Visible light photocatalytic activity of metal (Mo/V/W) doped porous TiO2 coating fabricated on Cp-Ti by plasma electrolytic oxidation. J. Alloys Compd. 2020, 825, 154092. [Google Scholar] [CrossRef]
- Khan, H.; Berk, D. Characterization and mechanistic study of Mo+6 and V+5 codoped TiO2 as a photocatalyst. J. Photochem. Photobiol. A Chem. 2014, 294, 96–109. [Google Scholar] [CrossRef]
- Murakami, E.; Mizoguchi, R.; Yoshida, Y.; Kitashoji, A.; Nakashima, N.; Yatsuhashi, T. Multiple strong field ionization of metallocenes: Applicability of ADK rates to the production of multiply charged transition metal (Cr, Fe, Ni, Ru, Os) cations. J. Photochem. Photobiol. A Chem. 2018, 369, 16–24. [Google Scholar] [CrossRef]
- Elahifard, M.; Ahmadvand, S.; Mirzanejad, A. Effects of Ni-doping on the photo-catalytic activity of TiO2 anatase and rutile: Simulation and experiment. Mater. Sci. Semicond. Process. 2018, 84, 10–16. [Google Scholar] [CrossRef]
- Kwak, B.; Vignesh, K.; Park, N.-K.; Ryu, H.-J.; Baek, J.-I.; Kang, M. Methane formation from photoreduction of CO2 with water using TiO2 including Ni ingredient. Fuel 2015, 143, 570–576. [Google Scholar] [CrossRef]
- Ranjitha, A.; Muthukumarasamy, N.; Thambidurai, M.; Velauthapillai, D.; Balasundaraprabhu, R.; Agilan, S. Fabrication of Ni-doped TiO2 thin film photoelectrode for solar cells. Sol. Energy 2014, 106, 159–165. [Google Scholar] [CrossRef]
- Devi, L.; Kottam, N.; Murthy, B.; Kumar, S. Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of Aniline Blue under UV/solar light. J. Mol. Catal. A Chem. 2010, 328, 44–52. [Google Scholar] [CrossRef]
- Shaban, M.; Ahmed, A.; Shehata, N.; Betiha, M.; Rabie, A. Ni-doped and Ni/Cr co-doped TiO2 nanotubes for enhancement of photocatalytic degradation of methylene blue. J. Colloid Interface Sci. 2019, 555, 31–41. [Google Scholar] [CrossRef]
- Chaudhari, S.; Gawal, P.; Sane, P.; Sontakke, S.; Nemade, P. Solar light-assisted photocatalytic degradation of methylene blue with Mo/TiO2: A comparison with Cr- and Ni-doped TiO2. Res. Chem. Intermed. 2018, 44, 3115–3134. [Google Scholar] [CrossRef]
- Anju, K.R.; Radhik, T.; Raja, J.; Al-Lohedan, H. Hydrothermal synthesis of nanosized (Fe, Co, Ni)-TiO2 for enhanced visible light photosensitive applications. Optik 2018, 165. In Press. [Google Scholar] [CrossRef]
- Li, X.; Wu, Y.; Shen, Y.; Sun, Y.; Yang, Y.; Xie, A. A novel bifunctional Ni-doped TiO2 inverse opal with enhanced SERS performance and excellent photocatalytic activity. Appl. Surf. Sci. 2017, 427, 739–744. [Google Scholar] [CrossRef]
- Blanco-Vega, M.P.; Guzmán Mar, J.; Villanueva, M.; Maya-Treviño, L.; Garza-Tovar, L.L.; Hernandez-Ramírez, A.; Reyes, L. Photocatalytic elimination of bisphenol A under visible light using Ni-doped TiO2 synthesized by microwave assisted sol-gel method. Mater. Sci. Semicond. Process. 2017, 71, 275–282. [Google Scholar] [CrossRef]
- Bhatia, V.; Dhir, A. Transition metal doped TiO2 mediated Photocatalytic degradation of anti-inflammatory drug under solar irradiations. J. Environ. Chem. Eng. 2016, 4, 1267–1273. [Google Scholar] [CrossRef]
- Manjakuppam, M.; Rao, C.; Das, R.; Giri, A.; Golder, A. Evaluation of bimetal doped TiO2 in dye fragmentation and its comparison to mono-metal doped and bare catalysts. Appl. Surf. Sci. 2016, 368, 316–324. [Google Scholar] [CrossRef]
- Baygi, N.J.; Saghir, A.V.; Beidokhti, S.M.; Khaki, J.V. Modified auto-combustion synthesis of mixed-oxides TiO2/NiO nanoparticles: Physical properties and photocatalytic performance. Ceram. Int. 2020, 46, 15417–15437. [Google Scholar] [CrossRef]
- Mohseni-Salehi, M.; Taheri-Nassaj, E.; Zori, M. Effect of dopant (Co, Ni) concentration and hydroxyapatite compositing on photocatalytic activity of titania towards dye degradation. J. Photochem. Photobiol. A Chem. 2017, 356, 57–70. [Google Scholar] [CrossRef]
- Elmragui, A.; Zegaoui, O.; Daou, I. Synthesis, characterization and photocatalytic properties under visible light of doped and co-doped TiO2-based nanoparticles. Mater. Today Proc. 2019, 13, 857–865. [Google Scholar] [CrossRef]
- Hinojosa Reyes, M.; Solis, R.; Ruiz, F.; Glez, V.; Moctezuma, E. Promotional effect of metal doping on nanostructured TiO2 during the photocatalytic degradation of 4-chlorophenol and naproxen sodium as pollutants. Mater. Sci. Semicond. Process. 2019, 100, 130–139. [Google Scholar] [CrossRef]
- Kerkez, Ö.; Kibar, E.; Dayıoğlu, K.; Gedik, F.; Akin, A.; Özkara-Aydınoğlu, A.P.Ş. A comparative study for removal of different dyes over M/TiO2 (M=Cu, Ni, Co, Fe, Mn and Cr) photocatalysts under visible light irradiation. J. Photochem. Photobiol. A Chem. 2015, 311, 176–185. [Google Scholar] [CrossRef]
- Yang, X.-J.; Wang, S.; Sun, H.; Wang, X.-B.; Lian, J.-S. Preparation and photocatalytic performance of Cu-doped TiO2 nanoparticles. Trans. Nonferrous Met. Soc. China 2015, 25, 504–509. [Google Scholar] [CrossRef]
- Tsai, C.-Y.; Hsi, H.-C.; Kuo, T.-H.; Chang, Y.-M.; Liou, J.-H. Preparation of Cu-Doped TiO2 Photocatalyst with Thermal Plasma Torch for Low-Concentration Mercury Removal. Aerosol Air Qual. Res. 2013, 13, 639–648. [Google Scholar] [CrossRef]
- Yang, J.; Ganesan, P.; Teuscher, J.; Moehl, T.; Kim, Y.J.; Yi, C.; Comte, P.; Pei, K.; Holcombe, T.; Nazeeruddin, M.; et al. Influence of the Donor Size in D−π–A Organic Dyes for Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2014, 136, 5722–5730. [Google Scholar] [CrossRef]
- Pava-Gómez, B.; Vargas-Ramírez, X.; Díaz-Uribe, C. Physicochemical study of adsorption and photodegradation processes of methylene blue on copper-doped TiO2 films. J. Photochem. Photobiol. A Chem. 2018, 360, 13–25. [Google Scholar] [CrossRef]
- Yusoff, R.; Shamiri, A.; Aroua, M.; Ahmady, A.; Shafeeyan, M.S.; Lee, W.; Lim, S.; Burhanuddin, S.N.M. Physical properties of aqueous mixtures of N-methyldiethanolamine (MDEA) and ionic liquids. J. Ind. Eng. Chem. 2014, 20, 3349–3355. [Google Scholar] [CrossRef]
- Mohan, R.; Krishnamoorthy, K.; Kim, S.-J. Enhanced photocatalytic activity of Cu-doped ZnO nanorods. Solid State Commun. 2012, 152, 375–380. [Google Scholar] [CrossRef]
- Hanaor, D.; Sorrell, C. Review of the Anatase to Rutile Phase Transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef] [Green Version]
- López, R.; Gomez, R.; Llanos, M. Photophysical and photocatalytic properties of nanosized copper-doped titania sol–gel catalysts. Catal. Today 2009, 148, 103–108. [Google Scholar] [CrossRef]
- Xia, X.H.; Gao, Y.; Wang, Z.; Jia, Z.J. Structure and photocatalytic properties of copper-doped rutile TiO2 prepared by a low-temperature process. J. Phys. Chem. Solids 2008, 69, 2888–2893. [Google Scholar] [CrossRef]
- Li, G.; Dimitrijevic, N.; Chen, L.; Rajh, T.; Gray, K. Role of Surface/Interfacial Cu2+ Sites in the Photocatalytic Activity of Coupled CuO-TiO2 Nanocomposites. J. Phys. Chem. C 2008, 112, 19040–19044. [Google Scholar] [CrossRef]
- Morikawa, T.; Irokawa, Y.; Ohwaki, T. Enhanced photocatalytic activity of TiO2−xNx loaded with copper ions under visible light irradiation. Appl. Catal. A Gen. 2006, 314, 123–127. [Google Scholar] [CrossRef]
- Colón, G.; Maicu, M.; Hidalgo, M.C.; Navio, J.A. Cu-doped TiO2 systems with improved photocatalytic activity. Appl. Catal. B Environ. 2006, 67, 41. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, Y.; Qiang, L.; Fan, R.; Ning, H.; Li, L.; Ye, T.; Yang, B.; Cao, W. Based on Cu(II) silicotungstate modified photoanode with long electron lifetime and enhanced performance in dye sensitized solar cells. J. Power Sources 2015, 278, 527–533. [Google Scholar] [CrossRef]
- Kim, C.-S.; Shin, J.-W.; Cho, Y.-H.; Jang, H.D.; Byun, H.-S.; Kim, T. Synthesis and characterization of Cu/N-doped mesoporous TiO2 visible light photocatalysts. Appl. Catal. A Gen. 2013, 455, 211–218. [Google Scholar] [CrossRef]
- Habibi, M.; Karimi, B.; Zendehdel, M.; Habibi, M. Fabrication, characterization of two nano-composite CuO-ZnO working electrodes for dye-sensitized solar cell. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2013, 116C, 374–380. [Google Scholar] [CrossRef]
- Liu, M.; Qiu, X.; Miyauchi, M.; Hashimoto, K. Cu(II) Oxide Amorphous Nanoclusters Grafted Ti3+ Self-Doped TiO2: An Efficient Visible Light Photocatalyst. Chem. Mater. 2011, 23, 5282–5286. [Google Scholar] [CrossRef]
- Hu, Q.; Huang, J.; Li, G.; Chen, J.; Zhaojun, Z.; Deng, Z.; Jiang, Y.; Guo, W.; Cao, Y. Effective water splitting using CuOx/TiO2 composite films: Role of Cu species and content in hydrogen generation. Appl. Surf. Sci. 2016, 369, 201–206. [Google Scholar] [CrossRef]
- Ravichandra, D.; Rao, T.; Kim, H.-S.; Pammi, S.V.N.; Prabhakarrao, N.; Imandi, M.R. Hybrid copper doped titania/polythiophene nanorods as efficient visible light-driven photocatalyst for degradation of organic pollutants. J. Asian Ceram. Soc. 2017, 5, 436–443. [Google Scholar] [CrossRef]
- Khairy, M.; Zakaria, W. Effect of metal-doping of TiO2 nanoparticles on their photocatalytic activities toward removal of organic dyes. Egypt. J. Pet. 2014, 23, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Mahy, J.; Tilkin, R.; Douven, S.; Lambert, S. TiO2 nanocrystallites photocatalysts modified with metallic species: Comparison between Cu and Pt doping. Surfaces Interfaces 2019, 66, 100366. [Google Scholar] [CrossRef]
- Jaiswal, R.; Bharambe, J.; Patel, N.; Dashora, A.; Kothari, D.C.; Miotello, A. Copper and Nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity. Appl. Catal. B Environ. 2015, 168–169, 333–341. [Google Scholar] [CrossRef]
- Makki, F.; El Hajj Hassan, M.; El Jamal, M.; Tabatabai-Yazdi, F.-S.; Ebrahimian, A. Kinetic evaluation of photocatalytic degradation of food colorant E 131 VF by copper doped TiO2 nanophotocatalysts prepared at different calcination temperatures. Environ. Technol. Innov. 2020, 19, 100981. [Google Scholar] [CrossRef]
- Qian, S.; Zhang, Y.; Wang, P.; Bai, Y.; Lai, B. New insights on the enhanced non-hydroxyl radical contribution under copper promoted TiO2/GO for the photodegradation of tetracycline hydrochloride. J. Environ. Sci. 2021, 100, 99–109. [Google Scholar] [CrossRef]
- Medina Ramirez, I.; Rodil, S.; Pedroza-Herrera, G.; Lozano-Alvarez, J. Evaluation of the Photocatalytic Activity of Copper Doped TiO2 nanoparticles for the Purification and/or Disinfection of Industrial Effluents. Catal. Today 2019, 341, 37–48. [Google Scholar] [CrossRef]
- Hernández, J.; Coste, S.; García Murillo, A.; Carrillo-Romo, F.; Kassiba, A. Effects of metal doping (Cu, Ag, Eu) on the electronic and optical behavior of nanostructured TiO2. J. Alloys Compd. 2017, 710, 355–363. [Google Scholar] [CrossRef]
- Reda, S.M.; Khairy, M.; Mousa, M. Photocatalytic Activity of Nitrogen and Copper Doped TiO2 Nanoparticles Prepared by Microwave-Assisted Sol-Gel Process. Arab. J. Chem. 2017, 13, 86–95. [Google Scholar] [CrossRef]
- Hamadanian, M.; Karimzadeh, S.; Jabbari, V.; Villagran, D. Synthesis of cysteine, cobalt and copper-doped TiO2 nanophotocatalysts with excellent visible-light-induced photocatalytic activity. Mater. Sci. Semicond. Process. 2016, 41, 168–176. [Google Scholar] [CrossRef]
- Lin, J.; Sopajaree, K.; Jitjanesuwan, T.; Lu, M.-C. Application of visible light on copper-doped titanium dioxide catalyzing degradation of chlorophenols. Sep. Purif. Technol. 2017, 191, 233–243. [Google Scholar] [CrossRef]
- Ahmad, S.; Yasin, A. Photocatalytic degradation of deltamethrin by using Cu/TiO2/bentonite composite. Arab. J. Chem. 2020, 13, 8481–8488. [Google Scholar] [CrossRef]
- Dorraj, M.; Alizadeh, M.; Sairi, A.; Basirun, W.; Goh, B.T.; Woi, P.; Alias, Y. Enhanced Visible Light Photocatalytic Activity of Copper-doped Titanium Oxide–Zinc Oxide Heterojunction for Methyl Orange Degradation. Appl. Surf. Sci. 2017, 414, 251–261. [Google Scholar] [CrossRef]
- Bensouici, F.; Bououdina, M.; Tala-Ighil, R.; Tounane, M.; Iratni, A.; Souier, M.; Shengwen, L.; Cai, W. Optical, Structural and Photocatalysis Properties of Cu-Doped TiO2 Thin Films. Appl. Surf. Sci. 2016, 395, 110–116. [Google Scholar] [CrossRef]
- Reddam, H.; Elmail, R.; Lloria, S.; Monros, G.; Reddam, Z.; Coloma-Pascual, F. Synthesis of Fe, Mn and Cu modified TiO2 photocatalysts for photodegradation of Orange II. Boletín la Soc. Española Cerámica y Vidr. 2019, 59, 138–148. [Google Scholar] [CrossRef]
- Mahy, J.; Lambert, S.; Leonard, G.; Zubiaur, A.; Olu, P.-Y.; Mahmoud, A.; Boschini, F.; Heinrichs, B. Towards a large scale aqueous sol-gel synthesis of doped TiO2: Study of various metallic dopings for the photocatalytic degradation of p-nitrophenol. J. Photochem. Photobiol. A Chem. 2016, 329, 189–202. [Google Scholar] [CrossRef]
- Periyakaruppan, K.; Nisha, N.; Pugazhendhi, A.; Kandasamy, S.; Pitchaimuthu, S. An investigation of transition metal doped TiO2 photocatalysts for the enhanced photocatalytic decoloration of methylene blue dye under visible light irradiation. J. Environ. Chem. Eng. 2021, 9, 105254. [Google Scholar] [CrossRef]
- Paul, S.; Chetri, P.; Choudhury, A. Effect of manganese doping on the optical property and photocatalytic activity of nanocrystalline titania: Experimental and theoretical investigation. J. Alloys Compd. 2014, 583, 578–586. [Google Scholar] [CrossRef]
- Duan, J.; Wang, H.; Wang, H.; Zhang, J.; Wu, S.; Wang, Y. Mn-doped ZnO nanotubes: From facile solution synthesis to room temperature ferromagnetism. CrystEngComm 2012, 14, 1330–1336. [Google Scholar] [CrossRef]
- Deng, Q.; Xia, X.; Guo, M.; Gao, Y. Mn-doped TiO2 nanopowders with remarkable visible light photocatalytic activity. Mater. Lett. 2011, 65, 2051–2054. [Google Scholar] [CrossRef]
- Liu, M.; Du, Y.; Ma, L.; Jing, D.; Guo, L. Manganese doped cadmium sulfide nanocrystal for hydrogen production from water under visible light. Int. J. Hydrogen Energy 2012, 37, 730. [Google Scholar] [CrossRef]
- Pérez Larios, A.; Lartundo, L.; Mantilla, A.; Mendoza, G.; Gomez, R.; Hernández-Gordillo, L. Enhancing the H2 evolution from water-methanol solution using Mn2+–Mn+3–Mn4+ redox species of Mn-doped TiO2 sol-gel photocatalysts. Catal. Today 2016. [Google Scholar] [CrossRef]
- Shu, Y.; Xu, Y.; Huang, H.; Ji, J.; Liang, S.; Wu, M.; Leung, D. Catalytic oxidation of VOCs over Mn/TiO2/activated carbon under 185 nm VUV irradiation. Chemosphere 2018, 208, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Devi, L.; Kumar, S.; Murthy, B.; Kottam, N. Influence of Mn2+ and Mo6+ dopants on the phase transformations of TiO2 lattice and its photo catalytic activity under solar illumination. Catal. Commun. 2009, 10, 794–798. [Google Scholar] [CrossRef]
- Faouzi, A.; Corbel, S.; Balan, L.; Mozet, K.; Girot, E.; Medjahdi, G.; Ben Said, M.; Ghrabi, A.; Schneider, R. Porous Mn-doped ZnO nanoparticles for enhanced solar and visible light photocatalysis. Mater. Des. 2016, 101, 309–316. [Google Scholar] [CrossRef]
- Reddy, C.; Reddy, I.; Akkinepally, B.; Harish, V.; Reddy, R.; Jaesool, S. Mn-doped ZrO2 nanoparticles prepared by a template-free method for electrochemical energy storage and abatement of dye degradation. Ceram. Int. 2019, 45, 15298–15306. [Google Scholar] [CrossRef]
- Bharati, B.; Mishra, N.C.; Sinha, A.S.K.; Rath, C. Unusual Structural Transformation and Photocatalytic Activity of Mn Doped TiO2 Nanoparticles under Sunlight. Mater. Res. Bull. 2019, 123, 110710. [Google Scholar] [CrossRef]
- Xu, Z.; Li, C.; Fu, N.; Li, W.; Zhang, G. Facile synthesis of Mn-doped TiO2 nanotubes with enhanced visible light photocatalytic activity. J. Appl. Electrochem. 2018, 48, 1197–1203. [Google Scholar] [CrossRef]
- Choudhury, B.; Paul, S.; Ahmed, G.; Choudhury, A. Adverse effect of Mn doping on the magnetic ordering in Mn doped TiO2 nanoparticles. Mater. Res. Express 2015, 2, 96104. [Google Scholar] [CrossRef]
- Shu, Y.; Ji, J.; Xu, Y.; Deng, J.; Huang, H.; He, M.; Leung, D.; Wu, M.; Liu, S.; Liu, S.; et al. Promotional role of Mn doping on catalytic oxidation of VOCs over mesoporous TiO2 under Vacuum Ultraviolet (VUV) irradiation. Appl. Catal. B Environ. 2017, 220, 78–87. [Google Scholar] [CrossRef]
- Islam, M.; Bredow, T. Rutile Band-Gap States Induced by Doping with Manganese in Various Oxidation States. J. Phys. Chem. C 2015, 119, 5534–5541. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Y.; Ma, Z. Effect of manganese on photocatalysis. China Acad. J. 2011, 4–6, 15. [Google Scholar]
- Binas, V.; Sambani, K.; Maggos, T.; Katsanaki, A.; Kiriakidis, G. Synthesis and photocatalytic activity of Mn-doped TiO2 nanostructured powders under UV and visible light. Appl. Catal. B Environ. 2012, 113–114, 79–86. [Google Scholar] [CrossRef]
- Esparza, P.; Hernández, T.; Borges, M.E.; Alvarez-Galvan, M.; Ruiz-Morales, J.C.; Fierro, J.L.G. TiO2 modifications by hydrothermal treatment and doping to improve its photocatalytic behaviour under visible light. Catal. Today 2013, 210, 135–141. [Google Scholar] [CrossRef]
- Feng, H.; Yu, L.; Zhang, M.-H. Ultrasonic synthesis and photocatalytic performance of metal-ions doped TiO2 catalysts under solar light irradiation. Mater. Res. Bull. 2013, 48, 672–681. [Google Scholar] [CrossRef]
- Park, J.; Anh Le, H.; Kim, Y.-S.; Chin, S.-M.; Bae, G.-N.; Jurng, J. Synthesis and enhanced photocatalytic activity of Mn/TiO2 mesoporous materials using the impregnation method through CVC process. J. Porous Mater. 2012, 19, 877–881. [Google Scholar] [CrossRef]
- Khraisheh, M.; Wu, L.; Al-Muhtaseb, A.; Albadarin, A.; Walker, G. Phenol degradation by powdered metal ion modified titanium dioxide photocatalysts. Chem. Eng. J. 2012, 213, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.; Li, G.-D.; Guo, M.; Li, X.-H.; Liu, D.-P.; Su, J.; Chen, J. Heterometal Alkoxides as Precursors for the Preparation of Porous Fe- and Mn-TiO2 Photocatalysts with High Efficiencies. Chemistry 2008, 14, 11123–11131. [Google Scholar] [CrossRef] [PubMed]
- Kamble, R.; Sabale, S.; Chikode, P.; Puri, V.; Mahajan, S. Corrigendum: Structural and photocatalytic studies of hydrothermally synthesized Mn2+–TiO2 nanoparticles under UV and visible light irradiation (2016 Mater. Res. Express 3 115005). Mater. Res. Express 2018, 5, 129502. [Google Scholar] [CrossRef] [Green Version]
- Tbessi, I.; Benito, M.; Molins, E.; LIorca, J.; Touati, A.; Sayadi, S.; Najjar, W. Effect of Ce and Mn co-doping on photocatalytic performance of sol-gel TiO2. Solid State Sci. 2018, 88, 20–28. [Google Scholar] [CrossRef]
- Binas, V.; Stefanopoulos, V.; Kiriakidis, G.; Papagiannakopoulos, P. Photocatalytic oxidation of gaseous benzene, toluene and xylene under UV and visible irradiation over Mn-doped TiO2 nanoparticles. J. Mater. 2018, 5, 56–65. [Google Scholar] [CrossRef]
- Sudrajat, H.; Babel, S.; Ta, A.; Nguyen, T.K. Mn-doped TiO2 photocatalysts: Role, chemical identity, and local structure of dopant. J. Phys. Chem. Solids 2020, 144, 109517. [Google Scholar] [CrossRef]
- Wu, M.; Leung, D.; Zhang, Y.; Huang, H.; Xie, R.; Szeto, W.; Li, F. Toluene degradation over Mn-TiO2/CeO2 composite catalyst under vacuum ultraviolet (VUV) irradiation. Chem. Eng. Sci. 2018, 195, 985–994. [Google Scholar] [CrossRef]
- Pirzada, B.; Mir, N.; Qutub, N.; Mehraj, O.; Sabir, S.; Muneer, M. Synthesis, characterization and optimization of photocatalytic activity of TiO2/ZrO2 nanocomposite heterostructures. Mater. Sci. Eng. B 2014, 193, 137–145. [Google Scholar] [CrossRef]
- Ranjbar, S.; Saberyan, K.; Parsayan, F. A new process for preparation of Zr doped TiO2 nanopowders using APCVS method. Mater. Chem. Phys. 2018, 214, 337–344. [Google Scholar] [CrossRef]
- Kambur, A.; Pozan, G.; Boz, I. Preparation, characterization and photocatalytic activity of TiO2–ZrO2 binary oxide nanoparticles. Appl. Catal. B Environ. 2012, 115–116, 149–158. [Google Scholar] [CrossRef]
- Mohammadi, M.R.; Fray, D. Synthesis and characterization of nanosized TiO2-ZrO2 binary system prepared by an aqueous sol-gel process: Physical and sensing properties. Sensors Actuators B Chem. 2011, 155, 568–576. [Google Scholar] [CrossRef]
- T V L, T.; Deivasigamani, P.; Maheswari, M.A. Synthesis of mesoporous worm-like ZrO2–TiO2 monoliths and their photocatalytic applications towards organic dye degradation. J. Photochem. Photobiol. A Chem. 2017, 344, 212–222. [Google Scholar] [CrossRef]
- Goswami, P.; Ganguli, J. Tuning the band gap of mesoporous Zr-doped TiO2 for effective degradation of pesticide quinalphos. Dalton Trans. 2013, 42, 14480–14490. [Google Scholar] [CrossRef] [PubMed]
- Loganathan, K.; Azhagapillai, P.; Palanichamy, M.; Arumugam, E.; Murugesan, V. Synthesis and characterization of Zr4+, La3+ and Ce3+ doped mesoporous TiO2: Evaluation of their photocatalytic activity. J. Hazard Mater. 2011, 186, 1183–1192. [Google Scholar] [CrossRef]
- Babaei, M.; Dehghanian, C.; Taheri, P.; Babaei, M. Effect of duty cycle and electrolyte additive on photocatalytic performance of TiO2-ZrO2 composite layers prepared on CP Ti by micro arc oxidation method. Surf. Coatings Technol. 2016, 307, 554–564. [Google Scholar] [CrossRef] [Green Version]
- Pantelides, S. The electronic structure of impurities and other point defects in semiconductors. Rev. Mod. Phys. 1978, 50, 797–858. [Google Scholar] [CrossRef]
- Hamukwaya, S.L.; Zhao, Z.; Wang, N.; Liu, H.; Umar, A.; Zhang, J.; Wu, T.; Guo, Z. Enhanced Photocatalytic Activity of B, N-Codoped TiO2 by a New Molten Nitrate Process. J. Nanosci. Nanotechnol. 2019, 19, 839–849. [Google Scholar] [CrossRef]
- Li, M.; Li, X.; JIANG, G.; He, G. Hierarchically macro-mesoporous ZrO2-TiO2 composites with Enhanced photocatalytic activity. Ceram. Int. 2015, 41, 5749–5757. [Google Scholar] [CrossRef]
- Huang, Q.; Ma, W.; Yan, X.; Chen, Y.; Zhu, S.; Shen, S. Photocatalytic decomposition of gaseous HCHO by ZrxTi1−xO2 catalysts under UV–vis light irradiation with an energy-saving lamp. J. Mol. Catal. A Chem. 2013, 366, 261–265. [Google Scholar] [CrossRef]
- Mbiri, A.; Taffa, D.; Gatebe, E.; Wark, M. Zirconium doped mesoporous TiO2 multilayer thin films: Influence of the zirconium content on the photodegradation of organic pollutants. Catal. Today 2019, 328, 71–78. [Google Scholar] [CrossRef]
- Huang, C.; Ding, Y.; Chen, Y.; Li, P.; Zhu, S.; Shen, S. Highly efficient Zr doped-TiO2/glass fiber photocatalyst and its performance in formaldehyde removal under visible light. J. Environ. Sci. 2017, 60, 61–69. [Google Scholar] [CrossRef]
- Mahy, J.; Lambert, S.; Tilkin, R.; Wolfs, C.; Poelman, D.; Devred, F.; Gaigneaux, E.; Douven, S. Ambient temperature ZrO2-doped TiO2 crystalline photocatalysts: Highly efficient powders and films for water depollution. Mater. Today Energy 2019, 13, 312–322. [Google Scholar] [CrossRef]
- Belver, C.; Bedia, J.; Rodriguez, J.J. Zr-doped TiO2 supported on delaminated clay materials for solar photocatalytic treatment of emerging pollutants. J. Hazard Mater. 2016, 322, 233–242. [Google Scholar] [CrossRef]
- Zhao, J.; Ge, S.; Pan, D.; Shao, Q.; Lin, J.; Wang, Z.; Hu, Z.; Wu, T.; Guo, Z. Solvothermal Synthesis, Characterization and Photocatalytic Property of Zirconium Dioxide Doped Titanium Dioxide Spinous Hollow Microspheres with Sunflower Pollen as Bio-templates. J. Colloid Interface Sci. 2018, 529, 111–121. [Google Scholar] [CrossRef]
- Prabhakarrao, N.; Ravichandra, D.; Rao, T. Synthesis of Zr doped TiO2/reduced Graphene Oxide (rGO) nanocomposite material for efficient photocatalytic degradation of dyes under visible light irradiation. J. Alloys Compd. 2016, 694, 596–606. [Google Scholar] [CrossRef]
- Yasin, S.A.; Obaid, M.; El-Newehy, M.; Al-Deyab, S.; Barakat, N. Influence of TixZr(1−x)O2 nanofibers composition on the photocatalytic activity toward organic pollutants degradation and water splitting. Ceram. Int. 2015, 41, 11876–11885. [Google Scholar] [CrossRef]
- Ali, T.; Tripathi, P.; Azam, A.; Raza, W.; Shareef Ahmed, A.; Ahmed, A.; Muneer, M. Photocatalytic performance of Fe-doped TiO2 nanoparticles under visible-light irradiation. Mater. Res. Express 2017, 4, 15022. [Google Scholar] [CrossRef]
- Khan, H.; Swati, I. Fe3+-doped Anatase TiO2 with d-d Transition, Oxygen Vacancies and Ti3+ Centers: Synthesis, Characterization, UV-vis Photocatalytic and Mechanistic Studies. Ind. Eng. Chem. Res. 2016, 55, 6619–6633. [Google Scholar] [CrossRef]
- Sayyar, Z.; Babaluo, A.; Rahbar Shahrouzi, J. Kinetic Study of Formic Acid Degradation by Fe3+ doped TiO2 Self-Cleaning Nanostructure Surfaces Prepared by Cold Spray. Appl. Surf. Sci. 2015, 335, 1–10. [Google Scholar] [CrossRef]
- Naghibi, S.; Gharagozlou, M. Solvothermal Synthesis of M-doped TiO2 Nanoparticles for Sonocatalysis of Methylene Blue and Methyl Orange (M = Cd, Ag, Fe, Ce, and Cu): Sonocatalytic Performance of M-doped TiO2 NPs. J. Chin. Chem. Soc. 2017, 64, 640–650. [Google Scholar] [CrossRef]
- Li, J.; Ren, D.; Wu, Z.; Xu, J.; Bao, Y.; He, S.; Chen, Y. Flame retardant and visible light-activated Fe-doped TiO2 thin films anchored to wood surfaces for the photocatalytic degradation of gaseous formaldehyde. J. Colloid Interface Sci. 2018, 530, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Craciun, E.; Predoana, L.; Atkinson, I.; Jitaru, I.; Anghel, E.M.; Bratan, V.; Gifu, C.; Anastasescu, C.; Rusu, A.; Raditoiu, V.; et al. Fe3+-doped TiO2 nanopowders for photocatalytic mineralization of oxalic acid under solar light irradiation. J. Photochem. Photobiol. A Chem. 2018, 356, 18–28. [Google Scholar] [CrossRef]
- Liu, M.; Qiu, X.; Miyauchi, M.; Hashimoto, K. Energy-Level Matching of Fe(III) Ions Grafted at Surface and Doped in Bulk for Efficient Visible-Light Photocatalysts. J. Am. Chem. Soc. 2013, 135, 10064–10072. [Google Scholar] [CrossRef]
- Han, F.; Kambala, V.; Srinivasan, M.; Dharmarajan, R.; Naidu, R. Tailored Titanium Dioxide Photocatalysts for the Degradation of Organic Dyes in Wastewater Treatment: A Review. Appl. Catal. A General 2009, 359, 25–40. [Google Scholar] [CrossRef]
- Jaihindh, D.; Verma, A.; Chen, C.-C.; Huang, Y.-c.; Dong, C.; Fu, Y. Study of oxidation states of Fe- and Co-doped TiO2 photocatalytic energy materials and their visible-light-driven photocatalytic behavior. Int. J. Hydrog. Energy 2018, 44, 15892–15906. [Google Scholar] [CrossRef]
- Ismael, M. Enhanced photocatalytic hydrogen production and degradation of organic pollutants from Fe (III) doped TiO2 nanoparticles. J. Environ. Chem. Eng. 2020, 8, 103676. [Google Scholar] [CrossRef]
- Mancuso, A.; Sacco, O.; Sannino, D.; Pragliola, S.; Vaiano, V. Enhanced visible-light-driven photodegradation of Acid Orange 7 azo dye in aqueous solution using Fe-N co-doped TiO2. Arab. J. Chem. 2020, 13, 8347–8360. [Google Scholar] [CrossRef]
- Moradi, V.; Ahmed, F.; Jun, M.; Blackburn, A.; Herring, R. Acid-treated Fe-doped TiO2 as a high performance photocatalyst used for degradation of phenol under visible light irradiation. J. Environ. Sci. 2019, 83, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, P.; Pecchi, G.; Casuscelli, S.; Elías, V.; Eimer, G. A simple synthesis way to obtain iron-doped TiO2 Nanoparticles as photocatalytic surfaces. Chem. Phys. Lett. 2019, 732, 136643. [Google Scholar] [CrossRef]
- Sood, S.; Umar, A.; Mehta, S.; Kansal, S. Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds. J. Colloid Interface Sci. 2015, 450, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Komaraiah, D.; Radha, E.; Sivakumar, J.; Reddy, M.V.R.; Sayanna, R. Influence of Fe3+ ion doping on the luminescence emission behavior and photocatalytic activity of Fe3+, Eu3+-codoped TiO2 thin films. J. Alloys Compd. 2021, 868, 159109. [Google Scholar] [CrossRef]
- Kanakaraju, D.; Ya, M.; Jasni, M.; Endra, M.; Lim, Y.C. Fe Doped Titania Photocatalyst for Degradation of Methyl Orange. Mater. Today Proc. 2019, 19, 1657–1662. [Google Scholar] [CrossRef]
- Crişan, M.; Mardare, D.; Ianculescu, A.; Drăgan, N.; Niţoi, I.; Crişan, D.; Voicescu, M.; Todan, L.; Oancea, P.; Adomniţei, C.; et al. Iron doped TiO2 films and their photoactivity in nitrobenzene removal from water. Appl. Surf. Sci. 2018, 455, 201–215. [Google Scholar] [CrossRef]
- Ahadi, S.; Moalej, N.; Sheibani, S. Characteristics and photocatalytic behavior of Fe and Cu doped TiO2 prepared by combined sol-gel and mechanical alloying. Solid State Sci. 2019, 96, 105975. [Google Scholar] [CrossRef]
- Li, G.; Yi, L.; Wang, J.; Song, Y. Hydrodynamic cavitation degradation of Rhodamine B assisted by Fe3+-doped TiO2: Mechanisms, geometric and operation parameters. Ultrason. Sonochem. 2019, 60, 104806. [Google Scholar] [CrossRef] [PubMed]
- Velázquez-Martínez, S.; Silva Martínez, S.; Arellano, C.; González, A.; Salgado, I.; Morales-Pérez, A.A.; Peña-Cruz, M. Modified sol-gel/hydrothermal method for the synthesis of microsized TiO2 and iron-doped TiO2, its characterization and solar photocatalytic activity for an azo dye degradation. J. Photochem. Photobiol. A Chem. 2018, 359, 93–101. [Google Scholar] [CrossRef]
- Indah Anwar, D.; Mulyadi, D. Synthesis of Fe-TiO2 Composite as a Photocatalyst for Degradation of Methylene Blue. Procedia Chem. 2015, 17, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Ambati, R.; Gogate, P. Photocatalytic degradation of Acid Blue 80 using iron doped TiO2 catalyst: Understanding the effect of operating parameters and combinations for synergism. J. Water Process Eng. 2017, 20, 217–225. [Google Scholar] [CrossRef]
- Tabasideh, S.; Maleki, A.; Shahmoradi, B.; Ghahremani, E.; Mckay, G. Sonophotocatalytic degradation of diazinon in aqueous solution using iron-doped TiO2 nanoparticles. Sep. Purif. Technol. 2017, 189, 186–192. [Google Scholar] [CrossRef]
- Khan, M.; Siwach, R.; Kumar, S.; Alhazaa, A. Role of Fe doping in tuning photocatalytic and photoelectrochemical properties of TiO2 for photodegradation of methylene blue. Opt. Laser Technol. 2019, 118, 170–178. [Google Scholar] [CrossRef]
- Han, F.; Kambala, V.; Dharmarajan, R.; Liu, Y.; Naidu, R. Photocatalytic degradation of azo dye acid orange 7 using different light sources over Fe3+ -doped TiO2 nanocatalysts. Environ. Technol. Innov. 2018, 12, 27–42. [Google Scholar] [CrossRef]
- Zafar, Z.; Kim, J.-O. Optimization of hydrothermal synthesis of Fe-TiO2 nanotube arrays for enhancement in visible light using an experimental design methodology. Environ. Res. 2020, 189, 109908. [Google Scholar] [CrossRef]
- Bensouici, F.; Mostafa, B.; Tala-Ighil, R.; Bououdina, M.; Tounane, M. Surface, structural and optical properties dependence of Fe-doped TiO2 films deposited onto soda–lime–glass. Surf. Interfaces 2020, 21, 100682. [Google Scholar] [CrossRef]
- Komaraiah, D.; Radha, E.; Sivakumar, J.; Reddy, M.V.; Sayanna, R. Structural, optical properties and photocatalytic activity of Fe3+ doped TiO2 thin films deposited by sol-gel spin coating. Surf. Interfaces 2019, 17, 100368. [Google Scholar] [CrossRef]
- Moradi, V.; Jun, M.; Blackburn, A.; Herring, R. Significant improvement in visible light photocatalytic activity of Fe doped TiO2 using an acid treatment process. Appl. Surf. Sci. 2017, 427, 791–799. [Google Scholar] [CrossRef]
- Kakavandi, B.; Jorfi, S.; Fattahi, M.; Isari, A. Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): Characterization and feasibility, mechanism and pathway studies. Appl. Surf. Sci. 2018, 462, 549–564. [Google Scholar]
- Crisan, M.; Răileanu, M.; Drăgan, N.; Crisan, D.; Ianculescu, A.; Nitoi, I.; Oancea, P.; Somacescu, S.; Stanica, N.; Vasile, B.; et al. Sol-gel iron-doped TiO2 nanopowders with Photocatalytic Activity. Appl. Catal. A Gen. 2014, 504, 130–142. [Google Scholar] [CrossRef]
- Adyani, S.M.; Ghorbani, M. A comparative study of physicochemical and photocatalytic properties of visible light responsive Fe, Gd and P single and tri-doped TiO2 nanomaterials. J. Rare Earths 2017, 36, 72–85. [Google Scholar] [CrossRef]
- Kaur, T.; Sraw, A.; Toor, A.; Wanchoo, R. Utilization of solar energy for the degradation of carbendazim and propiconazole by Fe doped TiO2. Sol. Energy 2016, 125, 65–76. [Google Scholar] [CrossRef]
- Wang, Q.; Jin, R.; Zhang, M.; Gao, S. Solvothermal preparation of Fe-doped TiO2 nanotube arrays for enhancement in visible light induced photoelectrochemical performance. J. Alloys Compd. 2017, 690, 139–144. [Google Scholar] [CrossRef]
- Lian, J.-Z.; Tsai, C.-T.; Chang, S.-H.; Lin, N.-H.; Hsieh, Y.-H. Iron waste as an effective depend on TiO2 for photocatalytic degradation of dye waste water. Opt. Int. J. Light Electron Opt. 2017, 140, 197–204. [Google Scholar] [CrossRef]
- Lin, H.-J.; Yang, T.-S.; Hsi, C.-S.; Wang, M.-C.; Lee, K.-C. Optical and photocatalytic properties of Fe3+-doped TiO2 thin films prepared by a sol–gel spin coating. Ceram. Int. 2014, 40, 10633–10640. [Google Scholar] [CrossRef]
- May-Lozano, M.; Mendoza-Escamilla, V.; Rojas Garcia, E.; López-Medina, R.; Rivadeneyra-Romero, G.; Delgadillo, S. Sonophotocatalytic degradation of Orange II dye using low cost photocatalyst. J. Clean. Prod. 2017, 148, 836–844. [Google Scholar] [CrossRef]
- Chen, C.-C.; Hu, S.-H.; Fu, Y.-P. Effects of surface hydroxyl group density on the photocatalytic activity of Fe3+-doped TiO2. J. Alloys Compd. 2015, 632, 326–334. [Google Scholar] [CrossRef]
- Lin, H.-J.; Yang, T.-S.; Moo-Chin, W.; Hsi, C.-S. Structural and photodegradation behaviors of Fe3+-doping TiO2 thin films prepared by a sol–gel spin coating. J. Alloys Compd. 2014, 610, 478–485. [Google Scholar] [CrossRef]
- Nitoi, I.; Oancea, P.; Raileanu, M.; Crisan, M.; Constantin, L.A.; Cristea, I. UV–VIS photocatalytic degradation of nitrobenzene from water using heavy metal doped titania. J. Ind. Eng. Chem. 2015, 21, 677–682. [Google Scholar] [CrossRef]
- Xiang, G.; Yu, Z.; Hou, Y.; Chen, Y.; Peng, Z.; Sun, L.; Sun, L. Simulated solar-light induced photoelectrocatalytic degradation of bisphenol-A using Fe3+-doped TiO2 nanotube arrays as a photoanode with simultaneous aeration. Sep. Purif. Technol. 2016, 161, 144–151. [Google Scholar] [CrossRef]
- Soo, C.W.; Juan, J.C.; Wei Lai, C.; Abd Hamid, S.B.; Yusop, R. Fe-doped mesoporous anatase-brookite titania in the solar-light-induced photodegradation of Reactive Black 5 dye. J. Taiwan Inst. Chem. Eng. 2016, 68, 153–161. [Google Scholar] [CrossRef]
- Maki, L.; Maleki, A.; Rezaee, R.; Daraei, H. LED-activated immobilized Fe-Ce-N tri-doped TiO2 nanocatalyst on glass bed for photocatalytic degradation organic dye from aqueous solutions. Environ. Technol. Innov. 2019, 15, 100411. [Google Scholar] [CrossRef]
- Hosseini, M.; Ebratkhahan, M.; Shayegan, Z.; Niaei, A.; Salari, D.; Rostami, A.; Raeisipour, J. Investigation of the effective operational parameters of self-cleaning glass surface coating to improve methylene blue removal efficiency; application in solar cells. Sol. Energy 2020, 207, 398–408. [Google Scholar] [CrossRef]
- Choudhury, B.; Choudhury, A. Dopant induced changes in structural and optical properties of Cr3+ doped TiO2 nanoparticles. Mater. Chem. Phys. 2012, 132, 1112–1118. [Google Scholar] [CrossRef]
- Wang, Z.-M.; Yang, G.; Biswas, P.; Bresser, W.; Boolchand, P. Processing of Iron-Doped Titania Powders in Flame Aerosol Reactors. Powder Technol. 2001, 114, 197–204. [Google Scholar] [CrossRef]
- Peng, Y.-H.; Huang, G.; Huang, W.-Q. Visible-light absorption and photocatalytic activity of Cr-doped TiO2 nanocrystal films. Adv. Powder Technol. 2012, 23, 8–12. [Google Scholar] [CrossRef]
- Mardare, D.; Iacomi, F.; Cornei, N.; Girtan, M.; Luca, D. Undoped and Cr-doped TiO2 thin films obtained by spray pyrolysis. Thin Solid Films 2010, 518, 4586–4589. [Google Scholar] [CrossRef] [Green Version]
- Pei wen, K.; Mohd Hatta, M.H.; Ong, S.; Yuliati, L.; Lee, S. Photocatalytic degradation of photosensitizing and non-photosensitizing dyes over chromium doped titania photocatalysts under visible light. J. Photochem. Photobiol. A Chem. 2017, 332, 215–223. [Google Scholar] [CrossRef]
- Yamazaki, S.; Fujiwara, Y.; Yabuno, S.; Adachi, K.; Honda, K. Preparation of porous metal-ion-doped titanium dioxide and the photocatalytic degradation of 4-chlorophenol under visible light irradiation. Appl. Catal. B Environ. 2012, 121–122, 148–153. [Google Scholar] [CrossRef]
- Inturi, S.; Suidan, M.; Smirniotis, P. Influence of synthesis method on leaching of the Cr-TiO2 catalyst for visible light liquid phase photocatalysis and their stability. Appl. Catal. B Environ. 2016, 180, 351–361. [Google Scholar] [CrossRef]
- Park, S.; Joo, H.; Kang, J.-W. Effect of impurities in TiO2 thin films on trichloroethylene conversion. Sol. Energy Mater. Sol. Cells 2004, 83, 39–53. [Google Scholar] [CrossRef]
- Khan, H.; Jiang, Z.; Berk, D. Molybdenum doped graphene/TiO2 hybrid photocatalyst for UV/visible photocatalytic applications. Sol. Energy 2018, 162, 420–430. [Google Scholar] [CrossRef]
- Du, Y.; Gan, Y.; Yang, P.; Zhao, F.; Hua, N.; Jiang, L. Improvement in the Heat-Induced Hydrophilicity of TiO2 Thin Films by Doping Mo(VI) Ions. Thin Solid Films 2005, 491, 133–136. [Google Scholar] [CrossRef]
- Stengl, V.; Bakardjieva, S. Molybdenum-Doped Anatase and Its Extraordinary Photocatalytic Activity in the Degradation of Orange II in the UV and Vis Regions. J. Phys. Chem. C 2010, 114, 19308–19317. [Google Scholar] [CrossRef]
- Shahmoradi, B.; Ibrahim, I.; Sakamoto, N.; Ananda, S.; Row, T.; Soga, K.; Byrappa, K.; Parsons, S.; Shimizu, Y. In situ surface modification of molybdenum-doped organic-inorganic hybrid TiO2 nanoparticles under hydrothermal conditions and treatment of pharmaceutical effluent. Environ. Technol. 2010, 31, 1213–1220. [Google Scholar] [CrossRef]
- Cui, M.; Pan, S.; Tang, Z.; Chen, X.; Qiao, X.; Xu, Q. Physiochemical properties of n-n heterostructured TiO2/Mo-TiO2 composites and their photocatalytic degradation of gaseous toluene. Chem. Speciat. Bioavailab. 2017, 29, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Zhan, C.; Chen, F.; Dai, H.; Yang, J.; Zhong, M. Photocatalytic activity of sulfated Mo-doped TiO2@fumed SiO2 composite: A mesoporous structure for methyl orange degradation. Chem. Eng. J. 2013, 225, 695–703. [Google Scholar] [CrossRef]
- Moghadam, R.; Vankova, S.; Monteverde Videla, A.; Specchia, S. Innovative carbon-free low content Pt catalyst supported on Mo-doped titanium suboxide (Ti3O5-Mo) for stable and durable oxygen reduction reaction. Appl. Catal. B Environ. 2016, 201, 419. [Google Scholar] [CrossRef]
- Avilés, O.; Espino-Valencia, J.; Romero, R.; Rico-Cerda, J.; Arroyo-Albiter, M.; Natividad, R. W and Mo doped TiO2: Synthesis, characterization and photocatalytic activity. Fuel 2017, 198, 31–41. [Google Scholar] [CrossRef]
- Sun, P.; Lu, Q.; Zhang, J.; Xiao, T.; Liu, W.; Ma, J.; Yin, S.; Cao, W. Mo-ion doping evoked visible light response in TiO2 nanocrystals for highly-efficient removal of benzene. Chem. Eng. J. 2020, 397, 125444. [Google Scholar] [CrossRef]
- Yang, H.; Li, X.; Wang, A.; Wang, Y.; Chen, Y. Photocatalytic degradation of methylene blue by MoO3 modified TiO2 under visible light. Chinese J. Catal. 2014, 35, 140–147. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, X.; Wang, Y.; Shao, H.; Qiao, M.; Wang, Y.; Zhao, S. Peroxymonosulfate enhanced photoelectrocatalytic degradation of phenol activated by Co3O4 loaded carbon fiber cathode. J. Catal. 2017, 355, 167–175. [Google Scholar] [CrossRef]
- Yue, X.; Jiang, S.; Ni, L.; Wang, R.; Qiu, S.; Zhang, Z. The highly efficient photocatalysts of Co/TiO2: Photogenerated charge-transfer properties and their applications in photocatalysis. Chem. Phys. Lett. 2014, 615, 111–116. [Google Scholar] [CrossRef]
- Cao, C.; Hu, C.; Shen, W.; Wang, S.; Wang, J.; Tian, Y. Fabrication of a novel heterostructure of Co3O4-modified TiO2 nanorod arrays and its enhanced photoelectrochemical property. J. Alloys Compd. 2013, 550, 137–143. [Google Scholar] [CrossRef]
- Naseem, S.; Pinchuk, I.; Luo, Y.K.; Kawakami, R.; Khan, S.; Husain, S.; Khan, W. Epitaxial growth of cobalt doped TiO2 thin films on LaAlO3(100) substrate by Molecular Beam Epitaxy and their opto-magnetic based applications. Appl. Surf. Sci. 2019, 493, 691–702. [Google Scholar] [CrossRef]
- Elmragui, A.; Logvina, Y.; Pinto da Silva, L.; Zegaoui, O.; Silva, J. Synthesis of Fe- and Co-Doped TiO2 with Improved Photocatalytic Activity Under Visible Irradiation Toward Carbamazepine Degradation. Materials 2019, 12, 3874. [Google Scholar] [CrossRef] [Green Version]
- Mi, C.; Han, E.; Sun, L.; Zhu, L. Effect of Ti4+ doping on LiNi0.35Co0.27Mn0.35Fe0.03O2. Solid State Ionics 2019, 340, 114976. [Google Scholar] [CrossRef]
- Ebrahimian, A.; Monazzam, P.; Fakhari Kisomi, B. Co/TiO2 nanoparticles: Preparation, characterization and its application for photocatalytic degradation of methylene blue. Desalin. Wtare Treat. 2017, 63, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Iwasaki, M.; Hara, M.; Kawada, H.; Tada, H.; Ito, S. Cobalt Ion-Doped TiO2 Photocatalyst Response to Visible Light. J. Colloid Interface Sci. 2000, 224, 202–204. [Google Scholar] [CrossRef]
- Hamadanian, M.; Reisi-Vanani, A.; Majedi, A. Sol-gel preparation and characterization of Co/TiO2 nanoparticles: Application to the degradation of methyl orange. Chem. Soc 2010, 7, 52–58. [Google Scholar] [CrossRef]
- Shifu, C.; Wei, L.; Sujuan, Z.; Yinghao, C. Preparation and activity evaluation of relative p-n junction photocatalyst Co-TiO2/TiO2. J. Sol-Gel Sci. Technol. 2010, 54, 258–267. [Google Scholar] [CrossRef]
- Amadelli, R.; Samiolo, L.; Andrea, M.; Molinari, A.; Mario, V.; Gazzoli, D. Preparation, Characterisation, and Photocatalytic Behaviour of Co-TiO2 with Visible Light Response. Int. J. Photoenergy 2008, 2008, 853753. [Google Scholar] [CrossRef] [Green Version]
- Nesfchi, M.; Ebrahimian, A.; Saraei, F.; Rojaee, F.; Mahdavi, F.; Rastegar, S. Fabrication of plasmonic nanoparticles/cobalt doped TiO2 nanosheets for degradation of tetracycline and modeling the process by artificial intelligence techniques. Mater. Sci. Semicond. Process. 2021, 122, 105465. [Google Scholar] [CrossRef]
- Elmragui, A.; Zegaoui, O.; Silva, J. Elucidation of the photocatalytic degradation mechanism of an azo dye under visible light in the presence of cobalt doped TiO2 nanomaterials. Chemosphere 2020, 266, 128931. [Google Scholar] [CrossRef] [PubMed]
- Pirbazari, A. Sensitization of TiO2 Nanoparticles With Cobalt Phthalocyanine: An Active Photocatalyst for Degradation of 4-Chlorophenol under Visible Light. Procedia Mater. Sci. 2015, 11, 622–627. [Google Scholar] [CrossRef] [Green Version]
- Alyani, S.; Ebrahimian, A.; Khalilsaraei, F.; Asasian, N.; Gilani, N. Growing Co-doped TiO2 nanosheets on reduced graphene oxide for efficient photocatalytic removal of tetracycline antibiotic from aqueous solution and modeling the process by artificial neural network. J. Alloys Compd. 2019, 799, 169–182. [Google Scholar] [CrossRef]
- Miao, Y.; Zhai, Z.; Jiang, L.; Shi, Y.; Yan, Z.; Duan, D.; Zhen, K.; Wang, J. Facile and new synthesis of cobalt doped mesoporous TiO2 with high visible-light performance. Powder Technol. 2014, 266, 365–371. [Google Scholar] [CrossRef]
- Hosaini, N.; Kamran-Pirzaman, A.; Aroon, M.; Ebrahimian, A. Photocatalytic degradation of 2,4-dichlorophenol by Co-doped TiO2(Co/TiO2) nanoparticles and Co/TiO2 containing mixed matrix membranes. J. Water Process Eng. 2017, 2017, 124–134. [Google Scholar] [CrossRef]
- Crisan, M.; Drăgan, N.; Crisan, D.; Ianculescu, A.; Nitoi, I.; Oancea, P.; Todan, L.; Stan, C.; Stanica, N. The effects of Fe, Co and Ni dopants on TiO2 structure of sol-gel nanopowders used as photocatalysts for environmental protection: A comparative study. Ceram. Int. 2015, 42, 3088–3095. [Google Scholar] [CrossRef]
- Preethi, T.; Abarna, B.; Vidhya, K.N.; Rajarajeswari, G.R. Sol-gel derived cobalt doped nano-titania photocatalytic system for solar light induced degradation of crystal violet. Ceram. Int. 2014, 40, 13159. [Google Scholar] [CrossRef]
- Lee, B.-K. Rapid photo-degradation of 2-chlorophenol under visible light irradiation using cobalt oxide-loaded TiO2/reduced graphene oxide nanocomposite from aqueous media. J. Environ. Manag. 2016, 165, 1–10. [Google Scholar] [CrossRef]
- Drăgan, N.; Crisan, M.; Răileanu, M.; Crisan, D.; Ianculescu, A.; Oancea, P.; Somacescu, S.; Todan, L.; Stanica, N.; Vasile, B. The effect of Co dopant on TiO2 structure of sol–gel nanopowders used as photocatalysts. Ceram. Int. 2014, 40, 12273–12284. [Google Scholar] [CrossRef]
- Sevim, A. Synthesis and characterization of Zn and Co monocarboxy-phthalocyanines and investigation of their photocatalytic efficiency as TiO2 composites. J. Organomet. Chem. 2017, 832, 18–26. [Google Scholar] [CrossRef]
- Dong, F.; Guo, S.; Wang, H.; Li, X.; Wu, Z. Enhancement of the Visible Light Photocatalytic Activity of C-Doped TiO2 Nanomaterials Prepared by a Green Synthetic Approach. J. Phys. Chem. C 2011, 115, 13285–13292. [Google Scholar] [CrossRef]
- Ravishankar, T.N.; Vaz, M.d.O.; Ramakrishnappa, T.; Teixeira, S.R.; Dupont, J. Ionic liquid–assisted hydrothermal synthesis of Nb/TiO2 nanocomposites for efficient photocatalytic hydrogen production and photodecolorization of Rhodamine B under UVvisible and visible light illuminations. Mater. Today Chem. 2019, 12, 373–385. [Google Scholar] [CrossRef]
- Furubayashi, Y.; Hitosugi, T.; Yamamoto, Y.; Inaba, K.; Kinoda, G.; Hirose, Y.; Shimada, T.; Hasegawa, T. A transparent metal: Nb-doped anatase TiO2. Appl. Phys. Lett. 2005, 86, 252101. [Google Scholar] [CrossRef]
- De Trizio, L.; Buonsanti, R.; Schimpf, A.; Llordés, A.; Gamelin, D.; Simonutti, R.; Milliron, D. Nb-Doped Colloidal TiO2 Nanocrystals with Tunable Infrared Absorption. Chem. Mater. 2013, 25, 3383–3390. [Google Scholar] [CrossRef]
- Su, H.; Huang, Y.-T.; Chang, Y.-H.; Zhai, P.; Hau, N.; Cheung, P.; Yeh, W.-T.; Wei, T.; Feng, S.-P. The Synthesis of Nb-doped TiO2 Nanoparticles for Improved-Performance Dye Sensitized Solar Cells. Electrochim. Acta 2015, 182, 230–237. [Google Scholar] [CrossRef]
- Khan, S.; Cho, H.; Han, S.S.; Lee, K.; Cho, S.-H.; Song, T.; Choi, H. Defect engineering toward strong photocatalysis of Nb-doped anatase TiO2: Computational predictions and experimental verifications. Appl. Catal. B Environ. 2017, 206, 520–530. [Google Scholar] [CrossRef]
- Lim, J.; Murugan, P.; Lakshminarasimhan, N.; Kim, J.; Lee, J.S.; Lee, S.-H.; Choi, W. Synergic photocatalytic effects of nitrogen and niobium co-doping in TiO2 for the redox conversion of aquatic pollutants under visible light. J. Catal. 2014, 310, 91–99. [Google Scholar] [CrossRef]
- Lim, J.; Monllor-Satoca, D.; Jang, J.; Lee, S.; Choi, W. Visible light photocatalysis of fullerol-complexed TiO2 enhanced by Nb doping. Appl. Catal. B Environ. 2014, 152–153, 233–240. [Google Scholar] [CrossRef]
- Ferraz, N.; Marcos, F.; Nogueira, A.; Martins, A.; Lanza, M.; Assaf, E.; Asencios, Y. Hexagonal-Nb2O5/Anatase-TiO2 mixtures and their applications in the removal of Methylene Blue Dye under various conditions. Mater. Chem. Phys. 2017, 198, 331–340. [Google Scholar] [CrossRef]
- Kou, Y.; Yang, J.; Li, B.; Fu, S. Solar photocatalytic activities of porous Nb-doped TiO2 microspheres by coupling with tungsten oxide. Mater. Res. Bull. 2015, 63, 105–111. [Google Scholar] [CrossRef]
- Silva, A.; Muche, D.; Dey, S.; Hotza, D.; Castro, R. Photocatalytic Nb2O5-doped TiO2 nanoparticles for glazed ceramic tiles. Ceram. Int. 2015, 42, 5113–5122. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Park, J.-H.; Kim, Y.-H.; Lee, M.-H.; Cho, N.-I. Effect of Nb doping on morphology, crystal structure, optical band gap energy of TiO2 thin films. Curr. Appl. Phys. 2014, 14, 421–427. [Google Scholar] [CrossRef]
- Ullah, I.; Haider, A.; Khalid, N.; Ali, S.; Ahmed, S.; Khan, Y.; Ahmed, N.; Zubair, M. Tuning the band gap of TiO2 by tungsten doping for efficient UV and visible photodegradation of Congo red dye. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 204, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Yadav, A.; Fernandes, R.; Popat, Y.; Orlandi, M.; Dashora, A.; Kothari, D.C.; Miotello, A.; Ahuja, B.; Patel, N. Tungsten-doped TiO2/reduced Graphene Oxide nano-composite photocatalyst for degradation of phenol: A system to reduce surface and bulk electron-hole recombination. J. Environ. Manag. 2017, 203, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Grabowska, E.; Nadolna, J.; Zaleska-Medynska, A. Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: A review. Water Res. 2012, 46, 5453–5471. [Google Scholar] [CrossRef]
- Thomas, M.; Natarajan, T. TiO2-High Surface Area Materials Based Composite Photocatalytic Nanomaterials for Degradation of Pollutants: A Review. In Photocatalytic Nanomaterials for Environmental Applications; MRF: Millersville, PA, USA, 2018; ISBN 978-1-945291-58-6. [Google Scholar]
- Palmisano, L.; Sclafani, A.; Venezia, A.M.; Campostrini, R.; Carturan, G.; Martin, C.; Rives, V.; Solana, G. Influence of tungsten oxide on structural and surface properties of sol-gel prepared TiO2 employed for 4-nitrophenol photodegradation. J. Chem. Soc. Faraday Trans. 1996, 92, 819–829. [Google Scholar] [CrossRef]
- Keller, V.; Bernhardt, P.; Garin, F. Photocatalytic oxidation of butyl acetate in vapor phase on TiO2, Pt/TiO2 and WO3/TiO2 catalysts. J. Catal. 2003, 15, 129–138. [Google Scholar] [CrossRef]
- Y, T.; Song, K.; Lee, W.; Choi, G.; Y, R. Photocatalytic Behavior of WO3-Loaded TiO2 in an Oxidation Reaction. J. Catal. 2000, 191, 192–199. [Google Scholar] [CrossRef]
- Du, S.; Liao, Z.; Qin, Z.; Zuo, F.; Li, X. Polydopamine microparticles as redox mediators for catalytic reduction of methylene blue and rhodamine B. Catal. Commun. 2015, 72, 86–90. [Google Scholar] [CrossRef]
- Li, J.; Luo, D.; Yang, C.; He, S.; Chen, S.; Lin, J.; Zhu, L.; Li, X. Copper(II) imidazolate frameworks as highly efficient photocatalysts for reduction of CO2 into methanol under visible light irradiation. J. Solid State Chem. 2013, 203, 154–159. [Google Scholar] [CrossRef]
- Cai, H.; Chen, X.; Li, Q.; He, B.; Tang, Q. Enhanced photocatalytic activity from Gd, La codoped TiO2 nanotube array photocatalysts under visible-light irradiation. Appl. Surf. Sci. 2013, 284, 837–842. [Google Scholar] [CrossRef]
- Ki, S.J.; Park, Y.-K.; Kim, J.-S.; Lee, W.-J.; Lee, H.; Jung, S.-C. Facile Preparation of Tungsten Oxide Doped TiO2 Photocatalysts using Liquid Phase Plasma Process for Enhanced Degradation of Diethyl Phthalate. Chem. Eng. J. 2018, 377, 120087. [Google Scholar] [CrossRef]
- Azadi, S.; Karimi-Jashni, A.; Javadpour, S. Modeling and Optimization of Photocatalytic Treatment of Landfill Leachate using Tungsten-doped TiO2 Nano-photocatalysts: Application of Artificial Neural Network and Genetic Algorithm. Process Saf. Environ. Prot. 2018, 117, 267–277. [Google Scholar] [CrossRef]
- Kondamareddy, K.; D, N.; Lu, D.; Peng, T.; Macias, M.; Wang, C.; Yu, Z.; Cheng, N.; Fu, D.; Zhao, X.-Z. Ultra-trace (parts per million-ppm) W6+ dopant ions induced anatase to rutile transition (ART) of phase pure anatase TiO2 nanoparticles for highly efficient visible light-active photocatalytic degradation of organic pollutants. Appl. Surf. Sci. 2018, 456, 676–693. [Google Scholar] [CrossRef]
- Mayoufi, A.; Nsib, M.; Houas, A. Doping level effect on visible-light irradiation W-doped TiO2–anatase photocatalysts for Congo red photodegradation. Comptes Rendus Chim. 2014, 17, 818–823. [Google Scholar] [CrossRef]
- Wang, X.; Sun, M.; Murugananthan, M.; Zhang, Y.; Zhang, L. Electrochemically Self-Doped WO3/TiO2 Nanotubes for Photocatalytic Degradation of Volatile Organic Compounds. Appl. Catal. B Environ. 2019, 260, 118205. [Google Scholar] [CrossRef]
- Xu, H.; Liao, J.; Yuan, S.; Zhao, Y.; Zhang, M.; Wang, Z.; Shi, L. Tuning the morphology, stability and photocatalytic activity of TiO2 nanocrystal colloids by tungsten doping. Mater. Res. Bull. 2014, 51, 326–331. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, W.; Hu, X.; Xu, L.; Chen, G.; Li, X. Hollow spherical WO3/TiO2 heterojunction for enhancing photocatalytic performance in visible-light. J. Water Process Eng. 2021, 40, 101943. [Google Scholar] [CrossRef]
- Fouad, K.; Gar Alalm, M.; Bassyouni, M.; Saleh, M. A novel photocatalytic reactor for the extended reuse of W–TiO2 in the degradation of sulfamethazine. Chemosphere 2020, 257, 127270. [Google Scholar] [CrossRef] [PubMed]
- Abraham, C.; Devi, L.G. One-pot facile sol-gel synthesis of W, N, C and S doped TiO2 and its application in the photocatalytic degradation of thymol under the solar light irradiation: Reaction kinetics and degradation mechanism. J. Phys. Chem. Solids 2020, 141, 109350. [Google Scholar] [CrossRef]
- Hunge, Y.; Mahadik, M.; Moholkar, A.; Bhosale, C. Photoelectrocatalytic degradation of oxalic acid using WO3 and stratified WO3/TiO2 photocatalysts under sunlight illumination. Ultrason. Sonochem. 2016, 35, 233–242. [Google Scholar] [CrossRef]
- Wattanawikkam, C.; Pecharapa, W. Structural studies and photocatalytic properties of Mn and Zn co-doping on TiO2 prepared by single step sonochemical method. Radiat. Phys. Chem. 2020, 171, 108714. [Google Scholar] [CrossRef]
- El-Mehasseb, I.; Kandil, S.; Elgindy, K. Advanced visible-light applications utilizing modified Zn-doped TiO2 nanoparticles via non-metal in situ dual doping for wastewater detoxification. Optik 2020, 213, 164654. [Google Scholar] [CrossRef]
- Sanchez-Dominguez, M.; Morales-Mendoza, G.; Rodriguez-Vargas, M.; Ibarra-Malo, C.; Rodríguez, A.; Vela-Gonzalez, A.; Perez, A.; Gomez, R. Synthesis of Zn-doped TiO2 nanoparticles by the novel oil-in-water (O/W) microemulsion method and their use for the photocatalytic degradation of phenol. J. Environ. Chem. Eng. 2015, 3, 3037–3047. [Google Scholar] [CrossRef]
- Michaelson, H.B. The work function of the elements and its periodicity. J. AppI. Phys. 2021, 48, 4729–4733. [Google Scholar] [CrossRef] [Green Version]
- Linic, S.; Christopher, P.; Ingram, D. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921. [Google Scholar] [CrossRef]
- Kochuveedu, S.; Jang, Y.H.; Kim, D.H. A Study on the Mechanism for the Interaction of Light with Noble Metal-Metal Oxide Semiconductor Nanostructures for Various Photophysical Applications. Chem. Soc. Rev. 2013, 42, 8467–8493. [Google Scholar] [CrossRef]
- Ali, F.; Khan, S.; Kamal, T.; Alamry, K.; Asiri, A.M. Chitosan-titanium oxide fibers supported zero-valent nanoparticles: Highly efficient and easily retrievable catalyst for the removal of organic pollutants. Sci. Rep. 2018, 8, 6260. [Google Scholar] [CrossRef] [Green Version]
- Naya, S.-I.; Niwa, T.; Kume, T.; Tada, H. Visible-Light-Induced Electron Transport from Small to Large Nanoparticles in Bimodal Gold Nanoparticle-Loaded Titanium (IV) Oxide. Angew. Chem. Int. Ed. Engl. 2014, 53, 7305–7309. [Google Scholar] [CrossRef] [PubMed]
- Ahmad Rather, R.; Sharma, P.; Kumar, P.; Singh, S.; Pal, B. Plasmonic Stimulated Photocatalytic/Electrochemical Hydrogen Evolution from Water by (001) Faceted and bimetallic Loaded Titania Nanosheets under Sunlight Irradiation. J. Clean. Prod. 2017, 175, 394–401. [Google Scholar] [CrossRef]
- Ghosh, S.; Mallik, A.; Basu, R. Enhanced photocatalytic activity and photoresponse of poly(3,4-ethylenedioxythiophene) nanofibers decorated with gold nanoparticle under visible light. Sol. Energy 2017, 159, 548–560. [Google Scholar] [CrossRef]
- Wang, M.; Ye, M.; Iocozzia, J.; Lin, C.; Lin, Z. Plasmon-Mediated Solar Energy Conversion via Photocatalysis in Noble Metal/Semiconductor Composites. Adv. Sci. 2016, 3, 1600024. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Li, J.; Li, G.; Jiang, G. N and Ti3+ co-doped 3D anatase TiO2 superstructures composed of ultrathin nanosheets with enhanced visible light photocatalytic activity. J. Mater. Chem. A 2015, 3, 22073–22080. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, D.; Liao, Y.; Li, F.; Zhang, H.; Xiang, Q. Constructing functionalized plasmonic Au/TiO2 nanosheets with small Au nanoparticles for efficient photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2019, 555, 94–103. [Google Scholar] [CrossRef]
- Naya, S.; Tada, H. Dependence of the plasmonic activity of Au/TiO2 for the decomposition of 2-naphthol on the crystal form of TiO2 and Au particle size. J. Catal. 2018, 364, 328–333. [Google Scholar] [CrossRef]
- Shoueir, K.; Kandil, S.; El-Hosainy, H. Tailoring the surface reactivity of plasmonic Au@TiO2 photocatalyst bio-based chitosan fiber towards cleaner of harmful water pollutants under visible-light irradiation. J. Clean. Prod. 2019, 230, 383–393. [Google Scholar] [CrossRef]
- Cojocaru, B.; Andrei, V.; Tudorache, M.; Lin, F.; Cadigan, C.; Richards, R.; Parvulescu, V. Enhanced photo-degradation of bisphenol pollutants onto gold-modified photocatalysts. Catal. Today 2016, 284, 153–159. [Google Scholar] [CrossRef]
- Hazra Chowdhury, I.; Roy, M.; Kundu, S.; Naskar, M. TiO2 hollow microspheres impregnated with biogenic gold nanoparticles for the efficient visible light-induced photodegradation of phenol. J. Phys. Chem. Solids 2019, 129, 329–339. [Google Scholar] [CrossRef]
- Celebi, N.; Aydın, M.Y.; Soysal, F.; Ciftci, Y.; Salimi, K. Ligand-free fabrication of Au/TiO2 nanostructures for plasmonic hot-electron-driven photocatalysis: Photoelectrochemical water splitting and organic-dye degredation. J. Alloys Compd. 2021, 860, 157908. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, C.; Chen, A.; Pu, W.; Gong, J. Influence of yolk-shell Au@TiO2 structure induced photocatalytic activity towards gaseous pollutant degradation under visible light. Appl. Catal. B Environ. 2019, 251, 57–65. [Google Scholar] [CrossRef]
- Nasirian, M.; Mehrvar, M. Modification of TiO2 to Enhance Photocatalytic Degradation of Organics in Aqueous Solutions. J. Environ. Chem. Eng. 2016, 4, 4072–4082. [Google Scholar] [CrossRef]
- Al-Hajji, L.; Ismail, A.; Bumajdad, A.; al Saidi, M.; Ahmed, S.A.; Almutawa, F.; Alhazza, A. Construction of Au/TiO2 Heterojunction with high photocatalytic performances under UVA illumination. Ceram. Int. 2020, 46, 20155–20162. [Google Scholar] [CrossRef]
- Tiwari, A.; Shukla, A.; Lalliansanga; Tiwari, D.; Lee, S. Au-nanoparticle/Nanopillars TiO2 meso-porous thin films in the degradation of tetracycline using UV-A light. J. Ind. Eng. Chem. 2018, 69, 141–152. [Google Scholar] [CrossRef]
- Singh, J.; Sahu, K.; Satpati, B.; Shah, J.; Kotnala, R.K.; Mohapatra, S. Facile synthesis, structural and optical properties of Au-TiO2 plasmonic nanohybrids for photocatalytic applications. J. Phys. Chem. Solids 2019, 135, 109100. [Google Scholar] [CrossRef]
- Nalenthiran, P.; Murugesan, S.; Sathishkumar, P.; Sambandam, A. Photocatalytic degradation of ceftiofur sodium in the presence of gold nanoparticles loaded TiO2 under UV–visible light. Chem. Eng. J. 2014, 241, 401–409. [Google Scholar] [CrossRef]
- Hernandez, R.; Olvera-Rodríguez, I.; Guzmán, C.; Medel, A.; Escobar-Alarcón, L.; Brillas, E.; Sirés, I.; Escalante, K. Microwave-assisted sol-gel synthesis of an Au-TiO2 photoanode for the advanced oxidation of paracetamol as model pharmaceutical pollutant. Electrochem. Commun. 2018, 96, 42–46. [Google Scholar] [CrossRef]
- Khaywah, M.; Jradi, S.; Louarn, G.; Lacroute, Y.; Toufaily, J.; Hamieh, T.; Adam, P.-M. Ultrastable, Uniform, Reproducible, and Highly Sensitive Bimetallic Nanoparticles as Reliable Large Scale SERS Substrates. J. Phys. Chem. 2015, 119, 26091–26100. [Google Scholar] [CrossRef]
- Kallel, W.; Chaabene, S.; Bouattour, S. Novel (Ag,Y) doped TiO2 plasmonic photocatalyst with enhanced photocatalytic activity under visible light. Physicochem. Probl. Miner. Process. 2019, 55, 745–759. [Google Scholar] [CrossRef]
- Katchala, N.; Reddy, S.K.; Rao, T.; Anandan, S. Energy level matching for efficient charge transfer in Ag doped–Ag modified TiO2 for enhanced visible light photocatalytic activity. J. Alloys Compd. 2019, 794. [Google Scholar] [CrossRef]
- Ali, T.; Ahmed, A.; Alam, U.; Uddin, I.; Tripathi, P.; Muneer, M. Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light. Mater. Chem. Phys. 2018, 212, 325–335. [Google Scholar] [CrossRef]
- Peng, C.; Wang, W.; Zhang, W.; Liang, Y.; Zhuo, L. Surface plasmon-driven photoelectrochemical water splitting of TiO2 nanowires decorated with Ag nanoparticles under visible light illumination. Appl. Surf. Sci. 2017, 420, 286–295. [Google Scholar] [CrossRef]
- Bhavani, K.; Naresh, G.; Srinivas, B.; Venugopal, A. Plasmonic resonance nature of Ag-Cu/TiO2 photocatalyst under solar and artificial light: Synthesis, characterization and evaluation of H2O splitting activity. Appl. Catal. B Environ. 2016, 199, 282–291. [Google Scholar] [CrossRef]
- Ryu, S.-Y.; Chung, J.W.; Kwak, S.-Y. Dependence of photocatalytic and antimicrobial activity of electrospun polymeric nanofiber composites on the positioning of Ag-TiO2 nanoparticles. Compos. Sci. Technol. 2015, 117, 9–17. [Google Scholar] [CrossRef]
- Du, M.; Xiong, S.; Wu, T.; Zhao, D.; Zhang, Q.; Fan, Z.; Zeng, Y.; Ji, F.; He, Q.; Xu, X. Preparation of a Microspherical Silver-Reduced Graphene Oxide-Bismuth Vanadate Composite and Evaluation of Its Photocatalytic Activity. Materials 2016, 9, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahul, T.K.; Sandhyarani, N. Plasmonic and Photonic Effects on Hydrogen Evolution over Chemically Modified Titania Inverse Opals. ChemNanoMat 2018, 4, 642–648. [Google Scholar] [CrossRef]
- Low, J.; Qiu, S.; Xu, D.; Jiang, C.; Cheng, B. Direct evidence and enhancement of surface plasmon resonance effect on Ag-loaded TiO2 nanotube arrays for photocatalytic CO2 reduction. Appl. Surf. Sci. 2017, 434, 423–432. [Google Scholar] [CrossRef]
- Perumal, S.; MonikandaPrabu, K.; Sambandam, C.G.; Mohamed, A.P. Synthesis and characterization studies of solvothermally synthesized undoped and Ag-doped TiO2 nanoparticles using toluene as a solvent. J. Eng. Res. Appl. 2014, 4, 184–187. [Google Scholar]
- Zhang, L.; Ni, C.; Jiu, H.; Xie, C.; Yan, J.; Qi, G. One-pot synthesis of Ag-TiO2/reduced graphene oxide nanocomposite for high performance of adsorption and photocatalysis. Ceram. Int. 2017, 43, 5450–5456. [Google Scholar] [CrossRef]
- Chen, P. A novel synthesis of Ti3+ self-doped Ag2O/TiO2 (p–n) nanoheterojunctions for enhanced visible photocatalytic activity. Mater. Lett. 2016, 163, 130–133. [Google Scholar] [CrossRef]
- Wang, T.; Tang, T.; Gao, Y.; Chen, Q.; Zhang, Z.; Bian, H. Hydrothermal preparation of Ag-TiO2-reduced graphene oxide ternary microspheres structure composite for enhancing photocatalytic activity. Phys. E Low-Dimens. Syst. Nanostruct. 2018, 112, 128–136. [Google Scholar] [CrossRef]
- Devi, L.; Kavitha, R. A review on plasmonic metal-TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a Photocatalytic system. Appl. Surf. Sci. 2015, 360, 601–622. [Google Scholar] [CrossRef]
- Khalid, N.R.; Ahmed, E.; Ahmad, M.; Niaz, N.A.; Ramzan, M.; Shakil, M.; Iqbal, T.; Majid, A. Microwave-assisted synthesis of Ag-TiO2/graphene composite for hydrogen production under visible light irradiation. Ceram. Int. 2016, 42, 18257–18263. [Google Scholar] [CrossRef]
- Rong, X.; Qiu, F.; Zhang, C.; Fu, L.; Wang, Y.; Yang, D. Preparation of Ag–AgBr/TiO2–graphene and its visible light photocatalytic activity enhancement for the degradation of polyacrylamide. J. Alloys Compd. 2015, 639, 153–161. [Google Scholar] [CrossRef]
- Quan, X.; Tan, H.; Zhao, Q.; Sang, X. Preparation of lanthanum-doped TiO2 photocatalysts by coprecipitation. J. Mater. Sci. 2007, 42, 6287–6296. [Google Scholar] [CrossRef]
- Ashraf, M.; Liu, Z.; Peng, W.-X.; Jermsittiparsert, K.; Hosseinzadeh, G.; Hosseinzadeh, R. Combination of sonochemical and freeze-drying methods for synthesis of graphene/Ag-doped TiO2 nanocomposite: A strategy to boost the photocatalytic performance via well distribution of nanoparticles between graphene sheets. Ceram. Int. 2019, 46, 7446–7452. [Google Scholar] [CrossRef]
- Demirci, S.; Dikici, T.; Yurddaskal, M.; Gültekin, S.; Toparli, M.; Çelik, E. Synthesis and characterization of Ag doped TiO2 heterojunction films and their photocatalytic performances. Appl. Surf. Sci. 2016, 390, 591–601. [Google Scholar] [CrossRef]
- Malfatti, L.; Carboni, D.; Pinna, A.; Lasio, B.; Marmiroli, B.; Innocenzi, P. In situ growth of Ag nanoparticles in graphene–TiO2 mesoporous films induced by hard X-ray. J. Sol-Gel Sci. Technol. 2016, 79, 295–302. [Google Scholar] [CrossRef]
- Zhou, G.; Meng, H.; Cao, Y.; Kou, X.; Duan, S.; Fan, L.; Xiao, M.; Zhou, F.; Li, Z.; Xing, Z. Surface Plasmon Resonance-Enhanced Solar-Driven Photocatalytic Performance from Ag Nanoparticles-Decorated Ti3+ Self-Doped Porous Black TiO2 Pillars. J. Ind. Eng. Chem. 2018, 64, 188–193. [Google Scholar] [CrossRef]
- Liu, R.; Wang, P.; Wang, X.; Yu, H.; Yu, J. UV- and Visible-Light Photocatalytic Activity of Simultaneously Deposited and Doped Ag/Ag(I)-TiO2 Photocatalyst. J. Phys. Chem. C 2012, 116, 17721–17728. [Google Scholar] [CrossRef]
- Hou, X.; Liu, A.-D.; Huang, M.-D.; Liao, B.; Wu, X.-L. First-Principles Band Calculations on Electronic Structures of Ag-Doped Rutile and Anatase TiO2. Chin. Phys. Lett. 2009, 26, 077106. [Google Scholar] [CrossRef]
- Xiong, Z.; Ma, J.; Ng, J.; Waite, T.; Zhao, X.S. Silver-Modified Mesoporous TiO2 Photocatalyst for Water Purification. Water Res. 2011, 45, 2095–2103. [Google Scholar] [CrossRef]
- Onkani, S.P.; Diagboya, P.; Mtunzi, F.; Klink, M.J.; Olu-Owolabi, B.; Pakade, V. Comparative study of the photocatalytic degradation of 2–chlorophenol under UV irradiation using pristine and Ag-doped species of TiO2, ZnO and ZnS photocatalysts. J. Environ. Manag. 2020, 260, 110145. [Google Scholar] [CrossRef] [PubMed]
- Komaraiah, D.; Radha, E.; Sivakumar, J.; Reddy, M.V.; Sayanna, R. Photoluminescence and photocatalytic activity of spin coated Ag+ doped anatase TiO2 thin films. Opt. Mater. 2020, 108, 110401. [Google Scholar] [CrossRef]
- Kiran, T.; Ahmed, H.M.; Begum, N.; Manjunatha, K.G. Sun light driven photocatalytic performance of Ag decorated TiO2 nanocomposite thin films by sol gel method. Mater. Today Proc. 2021, 46, 5948–5952. [Google Scholar] [CrossRef]
- Abbad, S.; Guergouri, K.; Gazaout, S.; Djebabra, S.; Zertal, A.; Barille, R.; Zaabat, M. Effect of silver doping on the photocatalytic activity of TiO2 nanopowders synthesized by the sol-gel route. J. Environ. Chem. Eng. 2020, 8, 103718. [Google Scholar] [CrossRef]
- Ribao, P.; Corredor, J.; Rivero, M.; Ortiz, I. Role of reactive oxygen species on the activity of noble metal-doped TiO2 photocatalysts. J. Hazard. Mater. 2018, 372, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Ling, L.; Yawei, F.; Li, H.; Chen, Y.; Wen, J.; Zhu, J.; Bian, Z. Microwave induced surface enhanced pollutant adsorption and photocatalytic degradation on Ag/TiO2. Appl. Surf. Sci. 2019, 483, 772–778. [Google Scholar] [CrossRef]
- Sui, M.; Dong, Y.; Wang, Z.; Wang, F.; You, H. A biocathode-driven photocatalytic fuel cell using an Ag-doped TiO2/Ti mesh photoanode for electricity generation and pollutant degradation. J. Photochem. Photobiol. A Chem. 2017, 348, 238–245. [Google Scholar] [CrossRef]
- Pazoki, M.; Parsa, M.; Farhadpour, R. Removal of the hormones dexamethasone (DXM) by Ag doped on TiO2 photocatalysis. J. Environ. Chem. Eng. 2016, 4, 4426–4434. [Google Scholar] [CrossRef]
- Scarisoreanu, M.; Ilie, G.; Goncearenco, E.; Banici, A.; Morjan, I.; Dutu, E.; Tanasă, E.; Fort, I.; Stan, M.; Mihailescu, C.; et al. Ag, Au and Pt decorated TiO2 biocompatible nanospheres for UV & Vis photocatalytic water treatment. Appl. Surf. Sci. 2019, 509, 145217. [Google Scholar] [CrossRef]
- Suwarnkar, M.; Dhabbe, R.; Kadam, A.; Garadkar, K. Enhanced photocatalytic activity of Ag doped TiO2 nanoparticles synthesized by a microwave assisted method. Ceram. Int. 2014, 40, 5489–5496. [Google Scholar] [CrossRef]
- Zhang, P.; Li, X.; Wu, X.; Zhao, T.; Wen, L. Influence of In3+-doping and Ag0-depositing on the visible-light-induced photocatalytic activity of TiO2. J. Alloys Compd. 2016, 673, 405–410. [Google Scholar] [CrossRef]
- R, S.; Manoj, D.; Qin, J.; Highly Cited Researcher, M.; Gracia, F.; Lee, A.; Khan, M.M.; Pinilla, M.Á. Mechanothermal synthesis of Ag/TiO2 for photocatalytic Methyl Orange degradation and hydrogen production. Process Saf. Environ. Prot. 2018, 120, 339–347. [Google Scholar] [CrossRef]
- Vaiano, V.; Iervolino, G.; Sannino, D.; Murcia, J.; Hidalgo, M.; Ciambelli, P.; Navio, J.A. Photocatalytic removal of Patent Blue V dye on Au-TiO2 and Pt-TiO2 catalysts. Appl. Catal. B Environ. 2016, 188, 134–146. [Google Scholar] [CrossRef]
- Masakazu, A.; Masato, T. The Design and Development of Highly Reactive Titanium Oxide Photocatalysts Operating under Visible Light Irradiation. J. Catal. 2003, 216, 505–516. [Google Scholar]
- Alamelu, K.; Ali, J. TiO2-Pt composite photocatalyst for photodegradation and chemical reduction of recalcitrant organic pollutants. J. Environ. Chem. Eng. 2018, 6, 5720–5731. [Google Scholar] [CrossRef]
- Xu, T.; Zhao, H.; Zheng, H.; Zhang, P. Atomically Pt implanted nanoporous TiO2 film for photocatalytic degradation of trace organic pollutants in water. Chem. Eng. J. 2019, 385, 123832. [Google Scholar] [CrossRef]
- Kitsiou, V.; Zachariadis, G.; Lambropoulou, D.; Tsiplakides, D.; Poulios, I. Mineralization of the antineoplastic drug carboplatin by heterogeneous photocatalysis with simultaneous synthesis of platinum-modified TiO2 catalysts. J. Environ. Chem. Eng. 2018, 6, 2409–2416. [Google Scholar] [CrossRef]
- Alahmadi, N.; Amin, M.S.; Mohamed, R.M. Facile synthesis of mesoporous Pt-doped, titania-silica nanocomposites as highly photoactive under visible light. J. Mater. Res. Technol. 2020, 9, 14093–14102. [Google Scholar] [CrossRef]
- Khan, H.; Rigamonti, M.; Boffito, D. Enhanced Photocatalytic Activity of Pt-TiO2/WO3 Hybrid Material with Energy Storage Ability. Appl. Catal. B Environ. 2019, 252, 77–85. [Google Scholar] [CrossRef]
- Pol, R.; Guerrero, M.; García-Lecina, E.; Altube, A.; Rossinyol, E.; Garroni, S.; Baró, M.D.; Pons, J.; Sort, J.; Pellicer, E. Ni-, Pt- and (Ni/Pt)-doped TiO2 nanophotocatalysts: A smart approach for sustainable degradation of Rhodamine B dye. Appl. Catal. B Environ. 2016, 181, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Nguyen-Phan, T.-D.; Luo, S.; Vovchok, D.; Llorca, J.; Sallis, S.; Kattel, S.; Xu, W.; Piper, L.; Polyansky, D.; Senanayake, S.; et al. Three-Dimensional Ruthenium-Doped TiO2 Sea Urchins for Enhanced Visible-Light-Responsive H2 Production. Phys. Chem. Chem. Phys. 2016, 18, 15972–15979. [Google Scholar] [CrossRef]
- Ismael, M. High effective ruthenium-doped TiO2 nanoparticles photocatalyst for visible-light-driven photocatalytic hydrogen production. New J. Chem. 2019, 43, 9596–9605. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, B.; Xie, Z.; Li, Y.-M.; Shen, Z.-Y. Preparation and Photocatalytic Properties of RuO2/TiO2 Composite Nanotube Arrays. Ceram. Int. 2016, 42, 13664–13669. [Google Scholar] [CrossRef]
- González, A.; Solis-Cortazar, J.; Arellano, C.; Ramirez Morales, E.; Espinosa de los Monteros, A.; Silva Martínez, S. Synthesis of Ruthenium-Doped TiO2 Nanotube Arrays for the Photocatalytic Degradation of Terasil Blue Dye. J. Nanosci. Nanotechnol. 2019, 19, 5211–5219. [Google Scholar] [CrossRef]
- García-Ramírez, P.; Ramirez Morales, E.; Cortazar, J.; Sirés, I.; Silva Martínez, S. Influence of ruthenium doping on UV- and visible-light photoelectrocatalytic color removal from dye solutions using a TiO2 nanotube array photoanode. Chemosphere 2020, 267, 128925. [Google Scholar] [CrossRef]
- Fatimah, I.; Nurillahi, R.; Sahroni, I.; Muraza, O. TiO2-pillared saponite and photosensitization using a ruthenium complex for photocatalytic enhancement of the photodegradation of bromophenol blue. Appl. Clay Sci. 2019, 183, 105302. [Google Scholar] [CrossRef]
- Elsalamony, R.; Mahmoud, S. Preparation of nanostructured ruthenium doped titania for the photocatalytic degradation of 2-chlorophenol under visible light. Arab. J. Chem. 2017, 10, 194–205. [Google Scholar] [CrossRef] [Green Version]
- Długokęcka, M.; Łuczak, J.; Polkowska, Ż.; Zaleska-Medynska, A. The effect of microemulsion composition on the morphology of Pd nanoparticles deposited at the surface of TiO2 and photoactivity of Pd-TiO2. Appl. Surf. Sci. 2017, 405, 220–230. [Google Scholar] [CrossRef]
- Nguyen, C.H.; Fu, C.-C.; Juang, R.-S. Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways. J. Clean. Prod. 2018, 202, 413–427. [Google Scholar] [CrossRef]
- Bai, X.; Lv, L.; Zhang, X.; Hua, Z. Synthesis and Photocatalytic Properties of Palladium-loaded Three Dimensional Flower-like Anatase TiO2 with Dominant {001} Facets. J. Colloid Interface Sci. 2015, 467, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Dadsetan, S.; Baghshahi, S.; Farshidfar, F.; Hadavi, M. Photodeposition of Pd nanoparticles on TiO2 Utilizing a Channel Type Quartz Reactor. Ceram. Int. 2017, 43, 9322–9326. [Google Scholar] [CrossRef]
- Fodor, S.; Kovács, G.; Hernadi, K.; Danciu, V.; Baia, L.; Pap, Z. Shape tailored Pd nanoparticles’ effect on the photocatalytic activity of commercial TiO2. Catal. Today 2017, 284, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Niu, X.; Li, S.; Chu, H.; Zhou, J. Preparation, characterization of Y3+-doped TiO2 nanoparticles and their photocatalytic activities for methyl orange degradation. J. Rare Earths 2011, 29, 225–229. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Otitoju, T.A.; Ooi, B.S. Optimization of a high performance 3-aminopropyltriethoxysilane-silica impregnated polyethersulfone membrane using response surface methodology for ultrafiltration of synthetic oil-water emulsion. J. Taiwan Inst. Chem. Eng. 2018, 93, 461–476. [Google Scholar] [CrossRef]
- Mazierski, P.; Lisowski, W.; Grzyb, T.; Winiarski, M.; Klimczuk, T.; Mikolajczyk, A.; Flisikowski, J.; Hirsch, A.; Kołakowska, A.; Puzyn, T.; et al. Enhanced photocatalytic properties of lanthanide-TiO2 nanotubes: An experimental and theoretical study. Appl. Catal. B Environ. 2017, 205, 376–385. [Google Scholar] [CrossRef]
- Nadolna, J.; Grzyb, T.; Wei, Z.; Klein, M.; Kowalska, E.; Ohtani, B.; Zaleska-Medynska, A. Photocatalytic activity and luminescence properties of RE3+–TiO2 nanocrystals prepared by sol–gel and hydrothermal methods. Appl. Catal. B Environ. 2016, 181, 825–837. [Google Scholar] [CrossRef]
- Li, F.; Li, X.; Hou, M. Photocatalytic Degradation of 2-Mercaptobenzothiazole in Aqueous La3+–TiO2 Suspension for Odor Control. Appl. Catal. B Environ. 2004, 48, 185–194. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Xu, Y.; Wang, Y. Significant effect of lanthanide doping on the texture and properties of nanocrystalline mesoporous TiO2. J. Solid State Chem. 2004, 177, 3490–3498. [Google Scholar] [CrossRef]
- Ganesan, M.; Viswanathan, B.; Viswanath, R.P.; Varadarajan, T.K. Photocatalytic behavior of CeO2-TiO2 system for the degradation of methylene blue. Indian J. Chem. Sect. A Inorg. Phys. Theor. Anal. Chem. 2009, 48, 480–488. [Google Scholar]
- Jo, W.; Kim, J.-T. Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds. J. Hazard Mater. 2008, 164, 360–366. [Google Scholar] [CrossRef]
- Li, F.; Li, X.; Hou, M.; Cheah, K.W.; Choy, W.C.H. Enhanced photocatalytic activity of Ce3+–TiO2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control. Appl. Catal. A Gen. 2005, 285, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Chen, F.; Shen, X.; Chen, L.; Zhang, J. Enhanced catalytic degradation of AO7 in the CeO2–H2O2 system with Fe3+ doping. Appl. Catal. B Environ. 2010, 101, 160–168. [Google Scholar] [CrossRef]
- Vieira, G.; José, H.; Peterson, M.; Baldissarelli, V.; Alvarez, P.; Moreira, R. CeO2/TiO2 nanostructures enhance adsorption and photocatalytic degradation of organic compounds in aqueous suspension. J. Photochem. Photobiol. A Chem. 2017, 353, 325–336. [Google Scholar] [CrossRef]
- Zhang, L.; Xie, J.; Li, G.; Zhang, H. Effect of Ce4+-doping on structural and photocatalytic properties of sol-gel prepared titanium dioxide thin-films. Bandaoti Guangdian/Semicond. Optoelectron. 2013, 34, 98–102. [Google Scholar]
- Tong, T.; Zhang, J.; Tian, B.; Chen, F.; He, D.; Anpo, M. Preparation of Ce-TiO2 catalysts by controlled hydrolysis of titanium alkoxide based on esterification reaction and study on its photocatalytic activity. J. Colloid Interface Sci. 2007, 315, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Peng, T.; Li, R.; Peng, Z.; Yan, C. Preparation, Phase Transformation and Photocatalytic Activities of Cerium-Doped Mesoporous Titania Nanoparticles. J. Solid State Chem. 2006, 179, 1161–1170. [Google Scholar] [CrossRef]
- Guangqin, L.; Liu, C.; Liu, Y. Different effects of cerium ions doping on properties of anatase and rutile TiO2. Appl. Surf. Sci. 2006, 253, 2481–2486. [Google Scholar] [CrossRef]
- Xie, J.; Jiang, D.; Chen, M.; Li, D.; Zhu, J.; Yan, C. Preparation and characterization of monodisperse Ce-doped TiO2 microspheres with visible light photocatalytic activity. Colloids Surfaces A Physicochem. Eng. Asp. 2010, 372, 107–114. [Google Scholar] [CrossRef]
- Aman, N.; Satapathy, P.; Mishra, T.; Mahato, M.; Das, N. Synthesis and photocatalytic activity of mesoporous cerium doped TiO2 as visible light sensitive photocatalyst. Mater. Res. Bull. 2011, 47, 179–183. [Google Scholar] [CrossRef]
- Singh, K.; Harish, S.; Kristy, P.; Vemulapalli, S.; Archana, J.; M, N.; Shimomura, M.; Hayakawa, Y. Erbium doped TiO2 interconnected mesoporous spheres as an efficient visible light catalyst for photocatalytic applications. Appl. Surf. Sci. 2018, 449, 755–763. [Google Scholar] [CrossRef]
- Manasa, M.; Chandewar, P.; Mahalingam, H. Photocatalytic degradation of ciprofloxacin & norfloxacin and disinfection studies under solar light using boron & cerium doped TiO2 catalysts synthesized by green EDTA-citrate method. Catal. Today 2021, 375, 522–536. [Google Scholar] [CrossRef]
- Shayegan, Z.; Haghighat, F.; Lee, C.-S. Surface Fluorinated Ce-doped TiO2 Nanostructure Photocatalyst: A Trap and Remove Strategy to Enhance the VOC Removal from Indoor Air Environment. Chem. Eng. J. 2020, 401, 125932. [Google Scholar] [CrossRef]
- Mureseanu, M.; Chivu, V.; Osiac, M.; Madalina, C.; Bucur, C.; Parvulescu, V.; Cioatera, N. New photoactive mesoporous Ce-modified TiO2 for simultaneous wastewater treatment and electric power generation. Catal. Today 2021, 366, 164–176. [Google Scholar] [CrossRef]
- Rapsomanikis, A.; Apostolopoulou, A.; Stathatos, E.; Lianos, P. Cerium-modified TiO2 nanocrystalline films for Visible light photocatalytic activity. J. Photochem. Photobiol. A Chem. 2014, 280, 46–53. [Google Scholar] [CrossRef]
- Chen, F.; Ho, P.-L.; Ran, R.; Chen, W.; Si, Z.; Wu, X.; Weng, D.; Huang, Z.; Lee, C. Synergistic effect of CeO2 modified TiO2 photocatalyst on the enhancement of visible light photocatalytic performance. J. Alloys Compd. 2017, 714, 560–566. [Google Scholar] [CrossRef]
- Alvarez-Láinez, M.; Cano Franco, J.C. Effect of CeO2 content in morphology and optoelectronic properties of TiO2-CeO2 nanoparticles in visible light organic degradation. Mater. Sci. Semicond. Process. 2019, 90, 190–197. [Google Scholar] [CrossRef]
- Liang, J.; Wang, J.; Yu, K.; Kexian, S.; Wang, X.; Liu, W.; Hou, J.; Liang, C. Enhanced Photocatalytic Performance of Nd3+-Doped TiO2 Nanosphere under Visible Light. Chem. Phys. 2019, 528, 110538. [Google Scholar] [CrossRef]
- Nithya, N.; Bhoopathi, G.; Magesh, G.; Kumar, C. Neodymium doped TiO2 nanoparticles by sol-gel method for antibacterial and photocatalytic activity. Mater. Sci. Semicond. Process. 2018, 83, 70–82. [Google Scholar] [CrossRef]
- Nadolna, J.; Grzyb, T.; Sobczak, J.; Lisowski, W.; Gazda, M.; Ohtani, B.; Zaleska-Medynska, A. Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+) titania photocatalysts. Appl. Catal. B Environ. 2015, 163, 40–49. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, W. Electrospun nanofibers of Er3+-doped TiO2 with photocatalytic activity beyond the absorption edge. J. Solid State Chem. 2014, 210, 206–212. [Google Scholar] [CrossRef]
- Bhethanabotla, V.C.; Russell, D.R.; Kuhn, J.N. Assessment of mechanisms for enhanced performance of Yb/Er/titania photocatalysts for organic degradation: Role of rare earth elements in the titania phase. Appl. Catal. B Environ. 2017, 202, 156–164. [Google Scholar] [CrossRef]
- Farbod, M.; Kajbafvala, M. Surface modification of TiO2 nanoparticles by magnetic ions: Synthesis and application in enhancement of photocatalytic performance. Appl. Catal. B Environ. 2017, 219, 344–352. [Google Scholar] [CrossRef]
- Parnicka, P.; Mazierski, P.; Lisowski, W.; Klimczuk, T.; Nadolna, J.; Zaleska-Medynska, A. A new simple approach to prepare rare-earth metals-modified TiO2 nanotube arrays photoactive under visible light: Surface properties and mechanism investigation. Results Phys. 2019, 12, 412–423. [Google Scholar] [CrossRef]
- Toloman, D.; Popa, A.; Stefan, M.; Pana, O.; Silipas, D.; Sergiu, M.; Barbu-Tudoran, L. Impact of Gd ions from the lattice of TiO2 nanoparticles on the formation of reactive oxygen species during the degradation of RhB under visible light irradiation. Mater. Sci. Semicond. Process. 2017, 71, 61–68. [Google Scholar] [CrossRef]
- Dal’Toé, A.; Lopes Colpani, G.; Padoin, N.; Fiori, M.; Soares, C. Lanthanum doped titania decorated with silver plasmonic nanoparticles with enhanced photocatalytic activity under UV-visible light. Appl. Surf. Sci. 2018, 441, 1057–1071. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, W.; Yan, S.; Chu, G.; Zhao, S.; Wang, X.; Li, C. Enhanced photocatalytic activity for the degradation of rhodamine B by TiO2 modified with Gd2O3 calcined at high temperature. Appl. Surf. Sci. 2015, 344, 249–256. [Google Scholar] [CrossRef]
- Nair, R.R.; Arulraj, J.; Devi, K.S. Ceria doped titania nano particles: Synthesis and photocatalytic activity. Mater. Today Proc. 2016, 3, 1643–1649. [Google Scholar] [CrossRef]
- Jung, S.-C.; Bang, H.-J.; Lee, H.; Ha, H.-H.; Yu, Y.H.; Kim, S.-J.; Park, Y.-K. Assessing the photocatalytic activity of europium doped TiO2 using liquid phase plasma process on acetylsalicylic acid. Catal. Today 2020. In Press. [Google Scholar] [CrossRef]
- Hu, Z.; Xu, T.; Liu, P.; Oeser, M. Microstructures and optical performances of nitrogen-vanadium co-doped TiO2 with enhanced purification efficiency to vehicle exhaust. Environ. Res. 2021, 193, 110560. [Google Scholar] [CrossRef] [PubMed]
- Teh, C.; Mohamed, A. Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: A review. J. Alloy. Compd. 2011, 509, 1648–1660. [Google Scholar] [CrossRef]
- Skorb, E.; Antonouskaya, L.I.; Belyasova, N.; Shchukin, D.; Moehwald, H.; Sviridov, D. Antibacterial Activity of Thin-film Photocatalysts Based on Metal-modified TiO2 and TiO2:In2O3 Nanocomposite. Appl. Catal. B Environ. 2008, 84, 94–99. [Google Scholar] [CrossRef]
- Li, C.; Ming, T.; Wang, J.; Wang, J.; Yu, J.; Yu, S. Ultrasonic aerosol spray-assisted preparation of TiO2/In2O3 composite for visible-light-driven photocatalysis. J. Catal. 2014, 310, 84–90. [Google Scholar] [CrossRef]
- Tahir, M.; Saidina Amin, N.A. Photocatalytic CO2 reduction and kinetic study over In/TiO2 nanoparticles supported microchannel monolith photoreactor. Appl. Catal. A Gen. 2013, 467, 483–496. [Google Scholar] [CrossRef]
- Glez, V.; Moreno-Rodríguez, A.; May, M.; Tzompantzi, F.J.; Gomez, R. Slurry photodegradation of 2,4-dichlorophenoxyacetic acid: A comparative study of impregnated and sol–gel In2O3–TiO2 mixed oxide catalysts. J. Photochem. Photobiol. A Chem. 2008, 193, 266–270. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, E.; Yuan, J.; Cao, Y. Enhanced photocatalytic activity of titania with unique surface indium and boron species. Appl. Surf. Sci. 2013, 273, 638–644. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Y.; Zhao, X.S.; Ray, A. Photodegradation of Benzoic Acid over Metal-Doped TiO2. Ind. Eng. Chem. Res. 2006, 45, 3503–3511. [Google Scholar] [CrossRef]
- Okajima, T.; Yamamoto, T.; Kunisu, M.; Yoshioka, S.; Tanaka, I.; Umesaki, N. Dilute Ga Dopant in TiO2 by X-ray Absorption Near-Edge Structure. Jpn. J. Appl. Phys. 2006, 45, 7028. [Google Scholar] [CrossRef]
- Umare, S.; Charanpahari, A.; Sasikala, R. Enhanced visible light photocatalytic activity of Ga, N and S codoped TiO2 for degradation of azo dye. Mater. Chem. Phys. 2013, 140, 529–534. [Google Scholar] [CrossRef]
- Mohamed, H.; Qarni, F.; Al-Omair, N. Design of porous Ga doped TiO2 nanostructure for enhanced solar light photocatalytic applications. Mater. Res. Bull. 2021, 133, 111057. [Google Scholar] [CrossRef]
- Liu, X.; Khan, M.; Liu, W.; Xiang, W.; Guan, M.; Jiang, P.; Cao, W. Synthesis of nanocrystalline Ga–TiO2 powders by mild hydrothermal method and their visible light photoactivity. Ceram. Int. 2015, 41, 3075–3080. [Google Scholar] [CrossRef]
- Deng, Q.; Han, X.; Gao, Y. Remarkable optical red shift and extremely high optical absorption coefficient of V-Ga co-doped TiO2. J. Appl. Phys. 2012, 112. [Google Scholar] [CrossRef]
- Lee, D.-K.; Yoo, H.-I. Electrical conductivity and oxygen nonstoichiometry of acceptor (Ga)-doped titania. Phys. Chem. Chem. Phys. 2008, 10, 6890–6898. [Google Scholar] [CrossRef]
- Ahmad, A.; Senapati, S.; Khan, M.; Kumar, R.; Sastry, M. Extracellular Biosynthesis of Monodisperse Gold Nanoparticles by a Novel Extremophilic Actinomycete, Thermomonospora sp. Langmuir 2003, 19, 3550–3553. [Google Scholar] [CrossRef]
- Hopper, M.; Sauvage, F.; Chandiran, A.K.; Graetzel, M.; Poeppelmeier, K.; Mason, T. Electrical Properties of Nb-, Ga-, and Y-Substituted Nanocrystalline Anatase TiO2 Prepared by Hydrothermal Synthesis. J. Am. Ceram. Soc. 2012, 95, 3192–3196. [Google Scholar] [CrossRef]
- Song, S.; Wang, C.; Hong, F.; He, Z.; Cai, Q.; Chen, J. Gallium and iodine-co-doped titanium dioxide for photocatalytic degradation of 2-chlorophenol in aqueous solution: Role of gallium. Appl. Surf. Sci. 2011, 257, 3427–3432. [Google Scholar] [CrossRef]
- Chae, J.; Kim, D.; Kim, S.; Kang, M. Photovoltaic efficiency on dye-sensitized solar cells (DSSC) assembled using Ga-incorporated TiO2 materials. J. Ind. Eng. Chem. 2010, 16, 906–911. [Google Scholar] [CrossRef]
- Niyomkarn, S.; Puangpetch, T.; Chavadej, S. Mesoporous-assembled In2O3–TiO2 mixed oxide photocatalysts for efficient degradation of azo dye contaminant in aqueous solution. Mater. Sci. Semicond. Process. 2014, 25, 112–122. [Google Scholar] [CrossRef]
- An, G.; Mahadik, M.; Piao, G.; Chae, W.-S.; Park, H.; Cho, M.; Chung, H.-S.; Jang, J. Hierarchical TiO2 @In2O3 heteroarchitecture photoanodes: Mechanistic study on interfacial charge carrier dynamics through water splitting and organic decomposition. Appl. Surf. Sci. 2019, 480, 1–12. [Google Scholar] [CrossRef]
- Sangjan, S.; Wisasa, K.; Deddeaw, N. Enhanced photodegradation of reactive blue dye using Ga and Gd as catalyst in reduced graphene oxide-based TiO2 composites. Mater. Today Proc. 2019, 6, 19–23. [Google Scholar] [CrossRef]
- Ismail, A.; Abdelfattah, I.; Faisal, M.; Helal, A. Efficient Photodecomposition of Herbicide Imazapyr over Mesoporous Ga2O3-TiO2 Nanocomposites. J. Hazard Mater. 2017, 342, In. [Google Scholar] [CrossRef] [PubMed]
- Areerachakul, N.; Sakulkhaemaruethai, S.; Johir, M.A.H.; Kandasamy, J.; Vigneswaran, S. Photocatalytic degradation of organic pollutants from wastewater using aluminium doped titanium dioxide. J. Water Process Eng. 2019, 27, 177–184. [Google Scholar] [CrossRef]
- Sengele, A.; Robert, D.; Keller, N.; Colbeau-Justin, C.; Keller, V. Sn-doped and porogen-modified TiO2 photocatalyst for solar light elimination of sulfure diethyle as a model for chemical warfare agent. Appl. Catal. B Environ. 2018, 245, 279–289. [Google Scholar] [CrossRef]
- Li, J.; Shi, J.; Li, Y.; Ding, Z.; Huang, J. A biotemplate synthesized hierarchical Sn-doped TiO2 with superior photocatalytic capacity under simulated solar light. Ceram. Int. 2021, 47, 8218–8227. [Google Scholar] [CrossRef]
- Zhu, X.; Han, S.; Feng, W.; Kong, Q.; Dong, Z.; Wang, C.; Lei, J.; Yi, Q. The effect of heat treatment on the anatase–rutile phase transformation and photocatalytic activity of Sn-doped TiO2 nanomaterials. RSC Adv. 2018, 8, 14249–14257. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Ren, H.; Chen, W.-F.; Koshy, P.; Sorrell, C. Fabrication and Photocatalytic Performance of Sn-Doped Titania Hollow Spheres Using Polystyrene as Template. Ceram. Int. 2017, 44, 4981–4989. [Google Scholar] [CrossRef]
- Mohammad, A.; Khan, M.; Cho, M.H.; Yoon, T. Fabrication of binary SnO2/TiO2 nanocomposites under a sonication-assisted approach: Tuning of band-gap and water depollution applications under visible light irradiation. Ceram. Int. 2021, 47, 15073–15081. [Google Scholar] [CrossRef]
- Albornoz, L.; Wohlmuth da Silva, S.; Bortolozzi, J.; Banús, E.; Brussino, P.; Ulla, M.; Bernardes, A. Degradation and mineralization of erythromycin by heterogeneous photocatalysis using SnO2-doped TiO2 structured catalysts: Activity and stability. Chemosphere 2021, 268, 128858. [Google Scholar] [CrossRef] [PubMed]
- Mugunthan, E.; Saidutta, M.B.; PonnanEttiyappan, J. Photocatalytic Degradation of Diclofenac using TiO2-SnO2 Mixed Oxide Catalysts. Environ. Technol. 2017, 40, 929–941. [Google Scholar] [CrossRef]
- Rangel-Vázquez, I.; Del Angel, G.; Bertin, V.; González, F.; Vázquez-Zavala, A.; Arrieta, A.; Padilla, J.M.; Barrera, A.; Ramírez, E. Synthesis and characterization of Sn doped TiO2 photocatalysts: Effect of Sn concentration on the textural properties and on the photocatalytic degradation of 2,4-dichlorophenoxyacetic acid. J. Alloys Compd. 2014, 643, S144–S149. [Google Scholar] [CrossRef]
Approach | Limitations |
---|---|
Biological treatment | Chlorinated phenols are resistant to biodegradation and can accumulate in sediments. They transfer the contaminants from one medium to another and require disposal or further treatment The biodegradation of organic pollutants such as 4-CP is slow and incomplete, and its byproducts are more toxic compared to other pollutants. Biological processes usually require considerable processing time to decompose 4-CP. By use of the biological treatment, it cannot be degraded due to a large number of aromatic structures in the dye molecules and the stability of modern dyes. Azo bond is reduced to form a colorless but toxic and potentially carcinogenic aromatic amine. |
Adsorption technology and activated carbon adsorption method | The post-treatment of wastewater and regeneration of adsorbent materials requires an expensive operation. Activated carbon adsorption requires the safe disposal of carbon. During the adsorption process, the system cannot tolerate the suspended solids in the influent water as a result of blockage. The operating cost is high due to the requirements of the carbon system. The treatment may be problematic if the polluted carbon is not regenerated. |
Chemical precipitation | Requirements for a large amount of chemicals and a large amount of sludge produced. Requires further treatment or disposal. Due to the large amount of sludge needing to be treated, the method is not feasible economically. |
Air stripping | It is susceptible to pollution. Aesthetic limitations due to tower height. Challenges involving mechanical reliability. |
Membrane adsorption | The purchasing cost of membranes and residues (very concentrated filtrate) is high and must be collected or may require further processing. The physical method is not destructive, but only transfers pollutants to other media, causing secondary pollution. |
Classes of Metals | Features/Properties | Principal Applications |
---|---|---|
Transition metals | They have incompletely filled d orbitals. The transition metals are more electronegative than the other metals and form stable compounds with neutral molecules (such as water or ammonia). The main advantages of these metals are malleability and ductility. Examples of transition metals used to modify TiO2 photocatalysts include vanadium (V), nickel (Ni), copper (Cu), manganese (Mn), zirconium (Zr), iron (Fe), chromium (Cr), molybdenum (Mo), cobalt (Co), niobium (Nb), tungsten (W), and zinc (Zn). The density of V, Ni, Cu, Mn, Zr, Fe, Cr, Mo, Co, Nb, W, and Zn are 6.0, 8.90, 8.96, 7.3, 6.52, 7.87, 7.15, 10.2, 8.86, 8.57, 19.3, and 7.134 g cm−3, respectively. | Luminescence, electronic device, and water pipes applications. |
Noble metals | These metals are known as iron lovers due to their ability to dissolve in iron either as solid solutions or in the molten state. They have outstanding resistance to chemical attacks even at high temperatures. Furthermore, they are well known for their catalytic properties and associated capacity to facilitate or control the rates of chemical reactions. Examples of noble metals used to modify TiO2 photocatalysts include ruthenium (Ru), palladium (Pd), platinum (Pt), gold (Au), and silver (Ag). The density of Ru, Pd, Pt, Au, and Ag are 12.1, 12.0, 21.5, 19.3, and 10.5 g cm−3, respectively. | Hydrogenation, total oxidation and, more recently, partial oxidation heterogeneous catalysts. |
Rare-earth metals | Rare earth metals possess good magnetic and luminescent properties. The common rare earth metals used to modify TiO2 photocatalysts include cerium (Ce), erbium (Er), holmium (Ho), gadolinium (Gd), terbium (Tb), neodymium (Nd), ytterbium (Yb), samarium (Sm), lanthanum (La), europium (Eu), and yttrium (Y). The density of Ce, Er, Ho, Gd, Tb, Nd, Yb, Sm, La, Eu, and Y is 6.77, 9.07, 8.80, 7.90, 8.23, 7.01, 6.90, 7.52, 6.15, 5.24 and 4.47 g cm−3, respectively. | Cellphones, electrical and electronic components, lasers, glass, magnetic materials, fluorescent lights, defense, clean energy. |
Metals | Metals are malleable, ductile, good conductors of heat and electricity. Metals have a luster with high tensile strength. Typical metals used to modify TiO2 photocatalysts include gallium (Ga), indium (In), aluminum (Al), and tin (Sn). The density of Ga, In, Al, and Sn is 5.91, 7.31, 2.70, and 7.287 g cm−3, respectively. | Automobiles, electronic devices. |
Material (TiO2 Phase Transition) | Optimum | Catalyst Dosage | Synthetic Methods | Pollutant (Volume) | Light Source | Unmodified | Modified | Ref. |
---|---|---|---|---|---|---|---|---|
V-TNT nanosheet (mixed crystal of anatase and rutile phases) | 1.0% V-TNT | 0.1 g | Hydrothermal method | 20 mg/L RhB (100 mL) | UV/Visible light | 70% within 70 min for TNT | The reaction rate was 3.26-fold and 9.27-fold as compared to unmodified TNT under visible light and UV–vis irradiation, respectively. | [71] |
V2O5/TiO2 nanoparticles (anatase phase) | 3 wt% V2O5/TiO2 | 0.05 g | Incipient wet impregnation method | 0.2 mg/L Eosin Y (200 mL) | Visible light | 8% within 180 min for V2O5 | 93% within 180 min, the stability only decreased by 20% for the first run | [72] |
V2O5/P25 nanoparticles (anatase phase) | 3 wt% V2O5/P25 | 0.05 g | Incipient wet impregnation method | 0.2 mg/L Eosin Y (200 mL) | Visible light | 8% within 180 min for V2O5 | 81% within 180 min | [72] |
V2O5/TiO2 nanoparticles (anatase phase) | 3 wt% V2O5/TiO2 | 0.05 g | Incipient wet impregnation method | 0.2 mg/L Eosin Y (200 mL) | Visible light | 100% within 180 min for TiO2 and P25, 33% within 180 min for V2O5 | 40% within 180 min | [72] |
V2O5/TiO2 coatings (anatase phase) | 2.0 wt% V2O5/TiO2 | 15 mm × 10 mm | Sol–gel method | 8 mg/L MO (10 mL) | Sunlight | 35% within 8 h | 53% within 8 h | [73] |
V-TiO2 nanoparticles (rutile to stable anatase phase) | 1.0% V-TiO2 | 0.05 g | Sol–gel method | 10 mg/L RhB (100 mL) | Xenon Lamp | 21.56% within 300 min | 53.74% within 300 min | [74] |
V-TiO2 nanopowders (anatase phase) | 50 wt% V2O5/TiO2 | 0.1 g | Solid-state dispersion method | 25 mg/L 2,4-CP (50 mL) | UV-B | 72% within 30 min for pure V2O5, 66% within 30 min for pure TiO2 | 85% within 30 min | [75] |
V-TiO2 coupons (rutile to stable anatase phase) | 6.0 wt% V-TiO2 | 15 mm × 10 mm | PEOx | 10 mg/L MB (100 mL) | Tungsten-halogen | 55% within 180 min for pure TiO2 | 85% within 180 min | [76] |
V-TiO2 nanoparticles (anatase to brookite and rutile phases) | 0.125 mol%-V-TiO2 | 0.1 g/L | MWASG | 85 mg/L MB and SMX (100 mL) | UV | 0.031 min−1 for MB within 60 min | 0.035 and 0.0262 min−1 for MB and SMX, respectively within 60 min | [77] |
Material (TiO2 Phase Transition) | Optimum | Catalyst Dosage | Synthetic Methods | Pollutant (Volume) | Light Source | Unmodified | Modified | Ref. |
---|---|---|---|---|---|---|---|---|
Ni-TiO2 nanotubes (mixed crystal of anatase and rutile phases) | 10% Ni-TNT | 0.1 g | Hydrothermal method | 5 mg/L MB (50 mL) | Sunlight | 71.4% within 90 min for pure TiO2 | ~65% within 90 min | [83] |
Ni-TiO2 nanoparticles (mixed crystal of anatase and rutile phases) | 0.9 wt% Ni- TiO2 | 1.5 g/L | Sol–gel method | 10 mg/L MB (100 mL) | Hg vapor lamp | 62% within 120 min for pure TiO2 | 50% within 120 min | [84] |
Ni-TiO2 nanoparticles (anatase phases) | 0.01% Ni-TiO2 | 0.1 g | Hydrothermal method | 10 mg/L MB (100 mL) | Tungsten-halogen lamp | - | 75% within 300 min | [85] |
Ni-TiO2 inverse opal photonic microarray (IOPM) (anatase phases) | 3.0 wt% Ni-TiO2 | - | Sol–gel method | 10 mg/L MB (100 mL) | Sunlight | 60% within 90 min for TiO2 IOPM | 95% within 90 min (1.58 times larger compared to that over TiO2 IOPM) | [86] |
Ni-TiO2 nanoparticles (anatase phases) | 1.0 wt% Ni-TiO2 | 1 g/L | MWASG | 10 mg/L BPA (200 mL) | Phillip lamp | 60.1% (0.0098 min−1) within 120 min | 93% (0.0255 min−1) within 120 min | [87] |
Ni-TiO2 nanoparticles (anatase phases) | 0.50 wt% Ni-TiO2 | 2 g/L | Sol–gel method | 25 mg/L IBP (50 mL) | Solar light | 76% within 6 h for pure TiO2 | 78% (0.0046 min−1) within 6 h | [88] |
Ni-TiO2 nanoparticles (anatase to rutile phase) | 10 wt% Ni-TiO2 | 2 g/L | Coprecipitation method | 100 mg/L ECR (200 mL) | Visible light | 20.9% within 120 min for pure TiO2 | 37.4% within 120 min | [89] |
NiO/TiO2 nanopowders (mixed phase of rutile and anatase) | 0.5 wt% NiO/TiO2 | 0.05 g | Modified combustion-based method | 15 mg/L MB (50 mL) | Daylight emission | 85% within 210 min | 90% within 210 min | [90] |
Ni-TiO2 nanopowders (anatase phase) | 0.05 mol% Ni | 1 g L−1 | Sol–gel method (non-aqueous) | 10 mg L−1 MB (500 mL) | Xenon Lamp | 88.0% within 180 min for pure TiO2 | 98.9% within 180 min | [91] |
Ni-TiO2 nanoparticles (anatase phase) | 1.0% Ni-TiO2 | 0.025 g | Sol–gel method | 10−5 mol/L MO (50 mL) | Visible light | 0.00075 and 0.002631 min−1 for visible and UV irradiation, respectively. 16.3 and 95.6% for visible and 95.6 for visible and UV light, irradiation within 120 min | 13.8% for visible light irradiation within 120 min. 0.00063 min−1 and 0.00390 min−1 for visible and UV light irradiation, respectively | [92] |
Ni-TiO2 nanoparticles (anatase phase) | 1.0% Ni- TiO2 | 0.05 g/0.5 g | Sol–gel method | 10 mg/L 4-CP, NPX (250 mL) | UV | 68.9 and 84.9% for 4-CP and NPX, respectively within 6 h | 89.5 and 84% for 4-CP and NPX, respectively within 6 h | [93] |
Ni-TiO2 nanoparticles (anatase phase) | 1 wt% Ni-TiO2 | 0.1 g | Sol–gel method | 5 mg/L MO, MB (100 mL) | Visible light | 44.18 and 26.80% degradation rates for MB and MO, respectively for unmodified TiO2 within 5 h. 45% of MB for Degussa P25 within 5 h. | 71.18 and 39.57% for MB and MO, respectively within 5 h | [94] |
Materials (TiO2 Phase Transition) | Optimum | Catalyst Dosage | Synthetic Methods | Pollutants (Volume) | Light Source | Unmodified | Modified | Ref. |
---|---|---|---|---|---|---|---|---|
Cu-TiO2 nanoparticles (anatase phase) | 1.0% Cu-TiO2 | 0.5 g/0.05 g | Sol–gel method | 10 mg/L 4-CP (250 mL) | UV | 79% (0.1210 L g−1 min−1) within 6 h. | 90% (0.1827 L/g−1 min−1) within 6 h | [93] |
Hybrid Cu-TiO2/polythiophene nanorods (rutile phase) | - | 0.1 g | Sol–gel method | 5 mg/L RhB (150 mL) | Visible light | 6.9% within 75 min | 70.5% within 75 min. Furthermore, there was no significant decrease in photocatalytic activity after three continuous cycles. | [112] |
Cu-TiO2 nanoparticles (anatase phase) | 1.0% Cu-TiO2 | 0.05 g/0.5 g | Sol–gel method | 10 mg/L NPX (250 mL) | UV | 84.9% (0.0124 L g−1 min−1) within 6 h. | 87.4% (0.0259 L g−1 min−1) within 6 h. | [93] |
Hybrid Cu-TiO2/polythiophene nanorods (rutile phase) | - | 0.1 g | Sol–gel method | 5 mg/L OG (150 mL) | Visible light | 6.9% within 75 min | 98% within 75 min. Furthermore, there was no significant decrease in photocatalytic activity after three continuous cycles. | [112] |
Cu-TiO2 nanoparticles (anatase phase) | 0.2 wt% Cu-TiO2 | - | Sol–gel method | 50 mg/L MO (50 mL) | UV | 27% (0.45 min−1) within 30 min | 73% (2.83 min−1) within 30 min | [113] |
Cu-TiO2 nanocrystals (mixed anatase and brookite phases) | 0.1% Cu-TiO2 | 1 g/L | Sol–gel method | 10 mg/L PNP (10 mL) | Visible irradiation (halogen lamp) | 12% for P25 within 24 h | 65% (5 times more efficient than P25) within 8 h | [114] |
Cu-TiO2 nanoparticles (stable anatase phase) | 2% Cu-TiO2 | 0.002 g | Sol–gel method | 10 mg/L MB (50 mL) | 150 W Xenon lamp | 0.0046 min−1 within 2 h | 0.0082 min−1 within 2 h | [115] |
Cu-TiO2 nanoparticles (stable anatase phase) | 2% Cu-TiO2 | 0.002 g | Sol–gel method | 10 mg/L PNP (50 mL) | 150 W Xenon lamp | 18% (0.0016 min−1) within 2 h | 29% (0.0027 min−1) within 2 h | [115] |
Cu-TiO2 nanoparticles (anatase to rutile phase) | 1.2% Cu-TiO2 | 0.08 g | Sol–gel method | 35 mg/L E131 VF (100 mL) | UV | 0.083 min−1 within 30 min | 0.0044 min−1 within 100 min | [116] |
Cu-TiO2/GO nanoparticles (anatase phase) | 1 wt% Cu -TiO2/GO | 0.05 g | Impregnation method | 20 mg/L TC (50 mL) | 300 W mercury lamp | 23.1% within 90 min for pure TiO2 | 98% within 90 min (reaction rate constant was about 1.4 times than that of TiO2/GO), the removal ratio of Cu-TiO2/GO exceeded 98% after five cycles. | [117] |
Cu-TiO2 nanopowders (anatase to rutile phase) | Cu: TiO2 both in powder (42.35%) | 0.3 g | Sol–gel method | 10 mg/L MB (50 mL) | Visible light | 2.6% (0.00008 min−1) within 6 h | 42.4% (0.00140 min−1) within 6 h | [98] |
Cu-TiO2 film (anatase to rutile phase) | Cu: TiO2 both in film (25.10%) | 0.3 g | Sol–gel method | 10 mg/L MB (50 mL) | Visible light | 2.6% (0.00008 min−1) within 6 h | 25.1% (0.00082 min−1) within 6 h | [98] |
Cu-TiO2 nanopowders (Anatase phase) | 2.0% Cu-TiO2 | 1 g/L | Sol–gel method | 20 mg/L DFC (100 mL) | Visible light | 25% within 7 h | 33.26% within 7 h | [118] |
Cu-TiO2 nanopowders (Anatase to rutile phase) | 3% Cu-TiO2 | 0.125 mol L−1 | Sol–gel method | 20 mg/L MB (50 mL) | Xenon Lamp | 0.08124 min−1 within 6 h | 0.00575 min−1 within 6 h | [119] |
Cu-TiO2 nanoparticles (anatase phase) | - | 0.1 g | MWASG | 30 mg/L MO (100 mL) | Visible light | 1.4 × 10−3 min−1 within 6 h | 7.0 × 10−3 min−1 within 6 h | [120] |
Cu-TiO2 nanoparticles (anatase phase) | - | 0.1 g | MWASG | 30 mg/L MB (100 mL) | Visible light | 7.0 × 10−4 min−1 within 6 h | 5.6 × 10−3 min−1 within 6 h | [120] |
Cu-TiO2 nanoparticles (anatase phase) | - | 0.1 g | MWASG | 30 mg/L MO (100 mL) | UV | 5 × 10−3 min−1 within 6 h | 1.2 × 10−2 min−1 within 6 h | [120] |
Cu-TiO2 nanoparticles (anatase phase) | - | 0.1 g | MWASG | 30 mg/L MB (100 mL) | UV | 2.5 × 10−3 min−1 within 6 h | 8.6 × 10−3 min−1 within 6 h | [120] |
Cu-TiO2 nanoparticles (anatase phase) | 2 wt% Cu-TiO2 | 0.38 g/L | Sol–gel method | 10 mg/L Phenol (100 mL) | UV | 82% within 60 min for P25 | 98% within 60 min | [121] |
Cu-TiO2 nanoparticles (anatase phase) | 2 wt% Cu-TiO2 | 0.38 g/L | Sol–gel method | 10 mg/L Phenol (100 mL) | Visible light | 35 and 75% after 60 min and 180 min, respectively for P25 | 22 and 37% after 60 min and 180 min, respectively | [121] |
Cu-TiO2 nanopowders (anatase phase) | 0.21 mol% Cu-TiO2 | 3 g·dm−3 | Sol–gel method | 20 mg/L 2-CP (50 mL) | UV | - | 98.92% within 6 h | [122] |
Cu/TiO2/bentonite composite nanoparticles (anatase phase) | - | 0.02 g | Thermal decomposition and reduction method | 10 mg/L Deltamethrin insecticide (50 mL) | Sunlight | 87.01% within 120 min for TiO2/bentonite | 97% within 120 min | [123] |
Cu-TiO2 nanoparticles (anatase phase) | 3% Cu-TiO2 | 0.1 g | Sol–gel method | 15 mg/L MO (100 mL) | Xenon Lamp | 0.0011 min−1 within 60 min | 61% (0.0166, min−1) within 60 min | [124] |
Cu-TiO2 films (anatase phase) | 4% Cu-TiO2 | 0.1 g | Sol–gel method | 25 mg/L MB (100 mL) | UV | 92% ((0.015 min−1) within 180 min | 16% (0.001 min−1) within 180 min | [125] |
Cu/TiO2 nanoparticles (anatase to rutile phase) | 10% Cu-TiO2 | 0.5 g | Coprecipitation method | 100 mg/L ECR (200 mL) | Visible light | 20.9% within 120 min | 60.6% within 120 min | [89] |
Cu-TiO2 nanoparticles (anatase phase) | 1% Cu-TiO2 | 2 g/L | Sol–gel method | 100 mg/L MO, MB (100 mL) | Visible light | 45% for MB within 5 h for Degussa P25 | 81.22 and 44.05% for MB and MO, respectively within 5 h. | [94] |
Cu-TiO2 nanoparticles (anatase phase) | 5% Cu-TiO2 | 0.5 g/L | Sol–gel method | 60 mg/L Orange II (35 mL) | UV | 95% for P25 within 180 min | 82% within 180 min | [126] |
Cu-TiO2 nanoparticles (anatase phase) | 5% Cu-TiO2 | 0.5 g/L | Impregnation method | 60 mg/L Orange II (35 mL) | UV | 99% for P25 within 180 min | 90% within 180 min | [126] |
Cu2+/TiO2 nanoparticles (mixed anatase and brookite phases) | 0.5 mol% Cu2+/TiO2 | 1 g/L | Sol–gel method | 10 mg/L PNP (100 mL) | UV/Visible light | 20 and 50% and under visible and UV/Visible light, respectively for Degussa P25 within 24 h | 42 and 55% under visible and UV/visible light, respectively within 24 h | [127] |
Cu-TiO2 nanoparticles (mixed anatase and rutile phases) | - | 0.1 g | Sol–gel method | 20 mg/L MB (50 mL) | Visible light | 89.69% within 60 min | 27.5% within 60 min | [128] |
Materials (TiO2 Phase Transition) | Optimum | Catalyst Dosage | Synthetic Methods | Pollutants (Volume) | Light Source | Unmodified | Modified | Ref. |
---|---|---|---|---|---|---|---|---|
Mn-TiO2 nanoparticles (anatase phase) | 10% Mn-TiO2 | 0.025 g | Sol–gel method | 10−5 mol/L MO (50 mL) | UV/Visible light | 0.00075 min−1 and 0.002631 min−1 for visible light and UV light, respectively within 120 min. 95.6 and 16.3% under UV light and visible light, respectively | 0.00070 min−1 and 0.00074 min−1 for visible light and UV light, respectively within 120 min. Modifying with Mn presents a negative effect on the photocatalytic degradation of MO. 12.8% under UV light | [92] |
Mn2+/TiO2 nanoparticles (mixed crystal of anatase and rutile phases) | 1.90 wt% Mn2+/TiO2 | 0.05 g | Hydrothermal method | 50 mg/L MG (50 mL) | Visible light | 48% within 180 min for pure TiO2 | 81% within 180 min | [150] |
Mn-TiO2 nanopowders (anatase phase) | 0.6% Mn-TiO2 | 0.05 g/L | Sol–gel method | 10 mg/L DCF (100 mL) | UV | 51% within 240 min | 0.0033 min−1 within 240 min | [151] |
Mn-TiO2 nanoparticles (mixture of anatase and rutile phases) | 0.1% Mn-TiO2 | 0.1 g | Modified sol–gel method | Benzene, Xylene, toluene (100 mL) | UV/Visible light | 60, 60 and 55% for benzene, xylene and toluene, respectively under UV light. | 60, 60, and 40% for benzene, xylene and toluene, respectively under UV light. 34 and 22% for toluene and xylene, respectively under visible irradiation within 60 min | [152] |
Mn-TiO2 nanopowders | 4 wt% Mn-TiO2 | 0.1 g/L | Hydrothermal route | 10 mg/L Phenol (50 mL) | UV | 30% within 7 h | 90% within 7 h | [153] |
Mn-TiO2 nanoparticles (anatase phase) | 1 wt% Mn-TiO2 | 1 g | Sol–gel method | 30 mg/L Toluene (100 mL) | VUV | 70% without photocatalyst | 89.8% within 120 min | [154] |
Mn-TiO2 nanoparticles (anatase phase) | 0.3 wt% Mn-TiO2 | 0.1 g | Sol–gel method | 5 mg/L MO, MB (100 mL) | Visible light | 26.80 and 44.18% degradation rates for MO and MB, respectively for unmodified TiO2 within 5 h. 45% of MB for Degussa P25 within 5 h. | 15.48 and 16.41% for MO and MB, respectively within 5 h | [94] |
Mn-TiO2 films (anatase phase) | 5 wt% Mn-TiO2 | 0.5 g/L | Sol–gel method | 6 mg/L Orange II (50 mL) | UV | 95% for P25 within 180 min | 97% within 180 min | [126] |
Mn-TiO2 nanoparticles (anatase-brookite phase) | 5 wt% Mn-TiO2 | 0.5 g/L | Impregnation method | 6 mg/L Orange II (100 mL) | UV | 99% for P25 within 180 min | 97% within 180 min | [126] |
Mn-TiO2 nanoparticles (mixed anatase and brookite phases) | 0.5 mol% Mn-TiO2 | 1 g/L | Sol–gel method | 10 mg/L PNP (100 mL) | UV/Visible light | 50 and 20% under UV/Visible and visible light irradiation for Degussa P2 within 8 h. | 19 and 5% under UV/Visible and visible light irradiation, respectively within 8 h. | [127] |
Mn-TiO2 nanoparticles (anatase phase) | 5 wt% Mn-TiO2 | 0.1 g | Sol–gel method | 5 mg/L MB, MO (100 mL) | UV/Visible light | 65.3 and 72.4% under UV irradiation for MO and MB, respectively within 60 min. 4.1 and 6.2% for MO and MB, respectively under visible irradiation within 240 min | 85.2.1 and 93.6% under UV irradiation for MO and MB, respectively within 60 min. 65.2 and 73.2% for MO and MB, respectively under visible irradiation within 240 min | [38] |
Materials (TiO2 Phase Transition) | Optimum | Catalyst Dosage | Synthetic Methods | Pollutant (Volume) | Light Source | Unmodified | Modified | Ref. |
---|---|---|---|---|---|---|---|---|
Zr-TiO2 nanoparticles (mixed anatase and rutile phases) | 0.01% Zr-TiO2 | 0.1 g | Sol–gel method | 20 mg/L MB (50 mL) | Visible light | 89.69% within 60 min | 81.9% within 60 min | [128] |
Zr-TiO2 films (stable anatase phase) | 0.05% Zr/TiO2 | 0.005 g | EISA via dip-coating | 0.001 mM herbicide chloridazon, henol, 4-CP (50 mL) | Xenon lamp | 42% within 4 h for phenol, 58% within 4 h for 4-CP | The Zr-TiO2 film showed the superior photocatalytic activity for all pollutants but showed lowest rate using phenol | [167] |
Zr-TiO2 nanoparticles (anatase phase) | 0.2% Zr-TiO2 | 0.4 g | Sol–gel method | 1.0±0.5 mg/m3 formaldehyde | UV | 10% within 48 h for P25 | 95.14% within 48 h. Furthermore, 94.38% removal efficiency was achieved even after seven cycles | [168] |
Zr-TiO2 nanoparticles (anatase phase) | Zr:TiO2 = 0.08:0.92 | 0.005 g | EISA method | 0.001 mM formaldehyde | Xenon lamp | 45% within 48 h for TiO2 | 92% after 48 h | [166] |
Zr-TiO2 nanoparticles (anatase phase) | 5% Zr-TiO2 | 0.04 g/L | A combined sol–gel and CVD method | 10 ppm IBP | UV | - | 80% after 40 min | [33] |
Zr-TiO2 nanoparticles (mixed anatase and brookite phase) | 2.0% Zr-TiO2 | 1 g/L | Sol–gel method | 10 mg/L PNP (100 mL) | UVA/Visible light | 20 and 84% for pure TiO2 and commercial Evonik P25, respectively UV-A light. 25 and 12% for pure TiO2 and Evonik P25, respectively under visible irradiation within 17 h | 96% under UV-A light, 38% under visible irradiation within 17 h | [169] |
Zr-TiO2 nanoparticles (anatase phase) | 0.5% Zr-TiO2 | 0.25 g | Sol–gel method | 10 mg/L antipyrine (phenazone) (10 mL) | Visible light | - | 90% within 360 min. Furthermore, 8% lower degradation rate was achieved, even after six hours of irradiation | [170] |
Zr-TiO2 hollow microspheres (anatase phase) | 12.6 wt% Zr-TiO2 | 0.02 g | Facile solvothermal method | 20 mg/L RhB (50 mL) | UV | 14.6% within 60 min | 96.3% within 60 min | [171] |
Zr-TiO2 nanoparticles (mixed anatase and brookite phase) | 2.0% Zr-TiO2 | 1 g/L | Sol–gel method | 10 mg/L PNP (100 mL) | UV/Visible light | 20 and 84% for pure TiO2 and commercial Evonik P25, respectively within 24 h under UV–Visible light. 25 and 12% for pure TiO2 and commercial Evonik P25, respectively within 24 h under visible light. | 96% within 24 h under UV-Visible light. 38% within 24 h under visible light | [169] |
Zr-TiO2/reduced Graphene Oxide nanoparticles (mixed anatase and brookite phase) | 3% ZrO2–TiO2 | 0.025 g | Sol–gel method | 20 mg/L EB (100 mL) | Visible light | - | 75.75% within 90 min | [172] |
ZrO2/TiO2 nanofibers (anatase phase) | 40 wt% ZrO2/TiO2 (Zr:Ti = 1:3) | 0.02 g | Sol–gel method | 10 mg/L MB (50 mL) | Mercury lamp | 43.3% within 180 min. | 82.7% within 180 min | [173] |
ZrO2/TiO2 nanoparticles (anatase phase) | 6.9% ZrO2–TiO2 | 0.02 g | Facile surfactant self-assembly | 5 mg/L RhB (100 mL) | UV | 52.5% within 3 h. | 86.9% within 3 h. Rate constant was 3.0 times higher than unmodified TiO2 within 3 h | [165] |
ZrO2/TiO2 nanoparticles (anatase phase) | 5% ZrO2/TiO2 | 0.1 g | Sol–gel method | 5 × 10−5 mol/L MB, MO (100 mL) | UV/Visible light | 65.3 and 72.4% for MO and MB, respectively within 60 min under UV light. 4.1 and 6.2% for MO and MB, respectively within 240 min under visible light. | 70.1 and 77.3% for MO and MB, respectively within 60 min under UV light. 22.6 and 38.2% for MO and MB, respectively within 240 min under visible light. | [38] |
Zr-TiO2 nanoparticles (anatase phase) | 6 mol% Zr-TiO2 | 1 g/L | Sol–gel method | 5 mg/L Ponceau BS (180 mL) | UV | 24.45% (0.0107 min−1) within 30 min | 99.3% (0.1810 min−1) within 30 min | [155] |
Materials (TiO2 Phase Transition) | Optimum | Catalyst Dosage | Synthetic Methods | Pollutants (Volume) | Light Source | Unmodified | Modified | Ref. |
---|---|---|---|---|---|---|---|---|
Fe-TiO2 nanopowders (mixture of anatase and rutile phases) | 2wt% Fe-TiO2 | 0.01 g | Conventional solid-state reaction | 20 mg/L MB (50 mL) | Xenon arc lamp | 90.80% within 210 min | 94.93% within 210 min | [182] |
Fe-TiO2 nanoparticles (anatase phase) | 1 wt% Fe-TiO2 | 0.1 g | Sol–gel method | 5 mg/L MO, MB (100 mL) | Visible light | 44.18 and 26.80% degradation rates for MB and MO, respectively for unmodified TiO2 within 5 h; 45% for MB using Degussa P25 within 5 h | 1.41 and 7.94% for MB and MO, respectively within 5 h | [94] |
Fe-TiO2 nanoparticles (anatase phase) | 0.1 mol% Fe-TiO2 | 0.03 g/L | Precipitation method | MO, 4-CP (100 mL) | Xenon arc lamp | 30 and 45% of 4-CP and MO, respectively within 4 h | 65 and 95% for 4-CP and MO, respectively within 4 h | [183] |
Fe-TiO2 nanoparticles (anatase phase) | 0.0017 mol% Fe-TiO2 | 3 g/L | Sol–gel method | 10 mg/L AO7 (100 mL) | Visible light | 10% within 60 min | 80% within 60 min | [184] |
Fe-TiO2 nanoparticles (anatase phase) | 1.0% Fe-TiO2 | 0.05 g/0.5 g | Sol–gel method | 10 mg/L NPX, 4-CP (100 mL) | UV | 68.9% (0.1069 L g−1 min−1) and 84.9% (0.0124 L g−1 min−1) for 4-CP and NPX, respectively for unmodified TiO2 within 6 h | 97.7% (0.1111 L g−1 min−1) and 37% (0.0053 L g−1 min−1) for NPX and 4-CP, respectively within 6 h | [93] |
Fe-TiO2 nanoparticles (anatase phase) | 0.5% Fe-TiO2 | 0.5 g/L | Sol–gel method | 10 mg/L Phenol (200 mL) | Visible light | 33% within 90 min | 57% (about 73% increase) within 90 min. that the activity of pristine TiO2 was higher than that of the modified catalysts with high content | [185] |
Fe-TiO2 nanoparticles (anatase phase) | 0.1 wt% Fe-TiO2 | 0.5 g | Sol–gel method | 20 mg/L AO7 (500 mL) | Visible light | 25% within 300 min | 54% within 300 min | [186] |
Fe-TiO2 nanoparticles (mixture of anatase and rutile phases) | 0.05 mol% Fe-TiO2 | 0.5 g/L | Facile ultrasonic assisted hydrothermal method | 10 mg/L PNP (50 mL) | Visible light | 42% within 5 h for pure TiO2 | 92% within 5 h | [187] |
Fe-TiO2 nanoparticles (mixture of anatase and rutile phases) | 0.075 mol% Fe-TiO2 NPs | 0.5 g/L | Facile ultrasonic assisted hydrothermal method | 10 mg/L MB (50 mL) | Visible light | 50% within 180 min for pure TiO2 | 93% within 180 min | [187] |
Fe3+/TiO2 nanoparticles (anatase phase) | 3% Fe3+/TiO2 | 25 cm × 25 cm | Sol–gel spin coating technique | 5 mg/L MO (50 mL) | Visible light | 34% within 360 min. | 95.25% within 360 min. | [188] |
Fe3+/TiO2 nanoparticles (anatase phase) | 3% Fe3+/TiO2 | 25 cm × 25 cm | Sol–gel spin coating technique | 5 mg/L MB (50 mL) | Visible light | 34% within 360 min. | Fe-TiO2 (3% Fe3+) film exhibits high efficiency of about 97.8% after 10 cycling runs of MB degradation. | [188] |
Fe-TiO2 nanoparticles (anatase phase) | 0.5%Fe-TiO2 | 0.20 g/L | Wet-impregnation method | 5 ppm MO (200 mL) | UV/Visible light | 85 and 11% under UV light and visible light irradiation, respectively within 2 h. | 82.8 and 74.4% under UV light and visible light irradiation, respectively. within 2 h | [189] |
Fe-TiO2 thin films (anatase phase) | 0.5% Fe-TiO2 | - | Sol–gel method | 2.51 × 10−4 M NB (-) | UV | 70.52% within 240 min | 88.45% within 240 min | [190] |
Fe-TiO2 nanoparticles (mixture of anatase and rutile phases) | 2.5 wt% Fe-TiO2 | 0.1 g | Sol–gel method | 10 mg/L MB (50 mL) | UV | ~17% within 240 min. 54% within 90 min | 40% within 240 min. 78% within 90 min. Furthermore, the photocatalytic activity only decreased 7.7% after three runs. | [191] |
Fe-TiO2 nanoparticles (anatase phase) | 0.5 mol% Fe-TiO2 | 0.5 g/L | Ultrasonic dispersion method | 10 mg/L RhB (50 mL) | UV | 60% within 150 min | 91.11% within 150 min | [192] |
Fe-TiO2 microsized powder (anatase phase) | - | 0.2 g | sol–gel and hydrothermal treatment | 50 mg/L BO2 (3 L) | Solar | 25% within 180 min. | ≥90% within 180 min. | [193] |
Fe-TiO2 nanoparticles (anatase phase) | 6 wt% Fe-TiO2 | - | Sol–gel method | 10 mg/L MB (100 mL) | Visible light | 36% without irradiation for Fe-TiO2 | 99.5% within 3 h | [194] |
Fe-TiO2 nanoparticles (anatase phase) | 0.4 wt% Fe-TiO2 | 0.2 g/L | Sol–gel method | 10 mg/L Acid Blue 80 (50 mL) | UV | 27.86% (1.6 × 10−3 min−1) within 120 min | 31.13% (2.0 × 10−3 min−1) within 120 min | [195] |
Fe-TiO2 nanoparticles (anatase phase) | 0.4 wt% Fe-TiO2 | 0.2 g/L | Ultrasound assisted approach | 10 mg/L Acid Blue 80 (50 mL) | UV | 27.86% (1.6 × 10−3 min−1) within 120 min | 38.01% (2.4 × 10−3 min−1) within 120 min | [195] |
Fe-TiO2 nanoparticles (anatase phase) | 1.5 wt% Fe-TiO2 | 0.4 g/L | Hydrothermal | 20 mg/L Diazinon (100 mL) | UV | ~20% within 100 min | 75% within 100 min | [196] |
Fe-TiO2 nanoparticles (anatase phase) | 10% Fe-TiO2 | 0.005 g | Sol–gel method | 20 mg/L MB (250 mL) | UV | 76.09% within 150 min | 96.66% within 150 min | [197] |
Fe-TiO2 nanoparticles (anatase phase) | 2% Fe-TiO2 | 0.5 g/L | Sol–gel method | 50 mg/L AO7 (2.5 L) | UV/Visible/Solar light | 9.2% within 6 h | UV (100%), visible (100%) and solar light (90%) within 6 h. Furthermore, the Fe-TiO2 photocatalysts were stable and can maintain performance up to 6 recycle use. | [198] |
Fe-TiO2 nanotubes (anatase phase) | Hydrothermal temperature of 150 °C for 3 h | - | Hydrothermal | 5 mg/L CR (35 mL) | Visible light | 26.32% within 180 min | 92.5% within 180 min | [199] |
Fe-TiO2 thin films (anatase phase) | 0.02% Fe/TiO2 | - | Sol–gel method | 20 mg/L MB (100 mL) | Visible light | ~84 within 200 min | No enhancement in photocatalytic activity of Fe-TiO2 thin films was achieved. This was be attributed to sodium diffusion from the substrate used. | [200] |
Fe3+/TiO2 nanoparticles (anatase phase) | 7% Fe3+/TiO2 | - | Simple spin coating technique | 3 mg/L MB (50 mL) | Xenon arc lamp | 80% within 4 h | 96.7% within 4 h. Furthermore, the degradation rate of MB was ~83.8% after 10 cyclic runs. | [201] |
Fe-TiO2 nanoparticles (anatase phase) | 0.5 wt% Fe-TiO2 | - | Sol–gel method | 20 mg/L MO (200 mL) | Visible light | 24% within 60 min | 98% within 60 min | [202] |
Fe-TiO2 nanoparticles (anatase phase) | 3% Fe-TiO2 | 0.2 g | Sol–gel method | 20 mg/L RhB (100 mL) | Solar | 34% within 120 min | 64% within 120 min | [203] |
Fe-TiO2 nanoparticles (anatase-brookite phase) | 5 wt% Fe-TiO2 | 0.5 g/L | Impregnation method | 6 mg/L Orange II (100 mL) | UV | 99% for P25 within min | 69% within 180 min | [126] |
Fe-TiO2 nanoparticles (anatase-brookite phase) | 5 wt% Fe-TiO2 | 0.5 g/L | Sol–gel method | 6 mg/L Orange II (100 mL) | UV | 95% for P25 within min | 95% within 180 min | [126] |
Fe-TiO2 nanopowders (anatase phase) | 0.5% Fe-TiO2 | 0.1 g/L | Sol–gel method | 2.45 × 104 M NB (-) | Mercury lamp | 32.14% within 240 min for pure TiO2 | 84.91% within 240 min | [204] |
Fe-TiO2 nanopowders (anatase phase) | 1 wt% Fe-TiO2 | 0.1 g | Sol–gel method | 10 mg/L MO, 4-CP (100 mL) | Visible light | 31 and 28% for MO and 4-CP, respectively within 180 min | 54 and 49% for MO and 4-CP, respectively within 180 min | [205] |
Fe3+/TiO2 nanoparticles (mixed anatase and brookite phases) | 0.5 mol% Fe3+/TiO2 | 1 g/L | Sol–gel method | 10 mg/L PNP (100 mL) | UV/Visible light | 50 and 20% under UV/Visible light and visible light, respectively using Degussa P25 within 8 h | 56 and 44% under UV/Visible light and visible light, respectively within 8 h | [127] |
Fe-TiO2 nanoparticles (mixture of anatase and rutile phases) | 2 wt% Fe-TiO2 | 0.25 g/L | Surface impregnation method | 0.0755 mg/L Carbendazim and 0.0096 mg/L for propiconazole(-) | Sunlight | - | 98.5 and 92% of carbendazim and propiconazole, respectively within 60 min | [206] |
Fe-TiO2 nanotube (anatase phase) | 1% Fe-TNAs | 0.001 g/L | solvothermal method | 20 mg/L MB (100 mL) | Solar | - | 98.79% within 120 min | [207] |
Fe-TiO2 nanotube (anatase phase) | 0.1 mol% Fe-TiO2 | 1 g | Sol–gel method | 10 mg/L AR-27 (1000 mL) | Visible light | 78% within 2 h. | 99% within 2 h. The removal efficiency was kept at 89% after catalyst used for 4 times. | [208] |
Fe-TiO2 thin films (anatase phase) | 25 wt% Fe-TiO2 | - | Sol–gel method | 4 mg/L MB (200 mL) | Visible light | 0.018/h within 8 h | 0.038/h within 8 h | [209] |
Fe-TiO2 nanoparticles (anatase phase) | 1 wt% Fe-TiO2 | 0.03 g | Sol–gel method | 10 mg/L Orange II (500 mL) | UV/Visible light | 30% within 60 min | 24% within 60 min | [210] |
Fe3+/TiO2 nanoparticles (anatase phase) | 0.1% Fe3+/TiO2 | 0.2 g | Sol–gel method | 10 mg/L MB (100 mL) | Xenon arc lamp | 90% within 6 h | 0.716 min−1 within 6 h | [211] |
Fe3+/TiO2 thin films (anatase phase) | 25 wt% Fe3+/TiO2 | - | Sol–gel method | 10 mg/L MB (100 mL) | Visible light | 13.4% within 8 h | 24.9% within 8 h | [212] |
Fe-TiO2 nanoparticles (anatase phase) | 0.5 wt% Fe-TiO2 | 0.25 g/L | Sol–gel method | (0.37–8.45) × 10−4 M NB (-) | Mercury lamp | 48% within 240 min | 99% within 240 min | [213] |
Fe-TiO2 nanotube (anatase phase) | 5 wt% Fe/TNAs | 0.5 mol·L−1 | Electrochemical anodization and subsequent dip-coating | 10 mg/L BPA (200 mL) | Xenon lamp | - | 18.3% within 240 min | [214] |
Fe-TiO2 nanoparticles (anatase phase) | 0.15% Fe-TiO2 | 0.3 g/L | Sol–gel method | 20 mg/L RB5 (250 mL) | Xenon lamp | 0.0180 min−1 within 60 min | 0.0875 min−1 within 60 min | [215] |
Fe-TiO2 nanoparticles (anatase phase) | 0.5 wt.% Fe-TiO2 | 0.25 g/L | Sol–gel method | (0.37–8.45) × 10−4 M NB (-) | Medium-pressure mercury lamp | 48% within 240 min | 99% within 240 min | [213] |
Fe-TiO2 nanoparticles (anatase phase) | 1.0% Fe-TiO2 | 0.05 g/0.5 g | Sol–gel method | 10 mg/L NPX,4-CP (100 mL) | UV | 79% (0.1210 L g−1 min−1) within 6 h | 97% (0.1111 L g−1 min−1) within 6 h | [93] |
Fe-TiO2 nanoparticles (anatase phase) | 0.05 wt% Fe-TiO2 | 0.001 g/cm2 | Sol–gel method | 25 mg/L DB15 (100 mL) | UV | 3.3% within 1 h | 31% within 1 h | [216] |
Fe-TiO2 nanoparticles (anatase phase) | 1.75 wt% Fe-TiO2 | 0.03 g/L | Nanosol/dip-coating method. | 30 mg/L MB (50 mL) | UV | - | 76% within 2 h | [217] |
Materials (TiO2 Phase Transition) | Optimum | Catalyst Dosage | Synthetic Methods | Pollutants | Light Source | Unmodified | Modified | Ref. |
---|---|---|---|---|---|---|---|---|
Cr-TiO2 nanoparticles (anatase phases) | 0.5 wt% Cr-TiO2 | 1.5 g/L | Sol–gel method | 10 mg/L MB (100 mL) | Hg vapor lamp | 62% within 120 min for pure TiO2 | 58% within 120 min | [84] |
Cr-TiO2 nanoparticles (anatase phase) | 1 mol% Cr | 0.1 g | Sol–gel method | 15 mg/L MB (50 mL) | UV | 33.43% for pure anatase within 24 h | 50.01% within 24 h | [222] |
Cr-TiO2 nanoparticles (anatase phase) | 4 mol% Cr | 0.1 g | Sol–gel method | 100 ppm CR (50 mL) | UV | 0.73% for pure anatase within 24 h | 17.78% within 24 h | [222] |
Cr-TiO2 nanoparticles (anatase phase) | 10% Cr-TiO2 | 0.025 g | Sol–gel method | 10−5 mol/L MO (50 mL) | UV/Visible light | 95.6 and 16.35% under UV and visible light irradiation, respectively within 120 min | 0.00276 min−1 (3.7 larger than that of the unmodified TiO2 (0.00075 min−1) within 120 min | [92] |
Cr-TiO2 nanoparticles (anatase phase) | 1 wt% Cr-TiO2 | 0.1 g | Sol–gel method | 5 mg/L MO, MB (100 mL) | Visible light | 44.18 and 26.80% for MB and MO, respectively for unmodified TiO2. 45% for MB within 5 h for Degussa P25. | 11.47 and 15.48% for MB and MO, respectively within 5 h. | [94] |
Cr-TiO2 nanoparticles (anatase phase) | 0.5% Cr-TiO2 | 0.008 g | Sol–gel method | 10 mg/L 4-CP (100 mL) | Visible light | 76.5% within 390 min | 90.7% within 390 min | [223] |
Cr-TiO2 nanoparticles (anatase phase) | - | 0.4 g | FSP, coprecipitation, and sol–gel synthesis techniques | 50 μM 4-CP (50 mL) | Visible light | 2% within 4 h | 61% within 4 h. | [224] |
Cr-TiO2 nanoparticles (mixed anatase and brookite phases) | 0.5 mol% Cr-TiO2 | 1 g/L | Sol–gel method | 10 mg/L PNP (100 mL) | UV/Visible light | 50 and 20% under UV/Visible and visible light, respectively for Degussa P25 within 8 h. | 38 and 27% under UV/Visible and visible light, respectively within 8 h. | [127] |
Materials (TiO2 Phase Transition) | Optimum | Catalyst Dosage | Synthetic Methods | Pollutants (Volume) | Light Source | Unmodified | Modified | Ref. |
---|---|---|---|---|---|---|---|---|
Mo-TiO2 nanocrystals (anatase phase) | 5% Mo-TiO2 | 0.03 g | Facile hydrothermal method | 25 ppm Benzene (-) | UV | 13.6% within 4 h | 79.1% (0.0065 min−1, which was 4.81 times higher than the unmodified TiO2) within 4 h. Furthermore, the degradation ratio of benzene at the sixth run was 76.4%. | [234] |
Mo-TiO2 layer (rutile to stable anatase phase) | 6.0% Mo-Ti O2 | 15 mm × 10 mm | PEOx | 10 mg/L MB (100 mL) | 660-nm Tungsten-halogen | 55% within 180 min for pure TiO2 | 86% within 180 min | [76] |
Mo-TiO2 nanoparticles (anatase phase) | 1 wt% Mo-TiO2 | 0.2 g/L | EISA method | 0.156 mmol L−1 4-CP (1.5 L) | UV | 32% within 100 min | 95% (three times faster than Degussa P25) within 100 min | [233] |
Mo-TiO2 nanoparticles (anatase to brookite and rutile phases) | 0.125 mol% Mo-TiO2 | 0.1 g/L | MWASG | 85 mg/L MB, SMX (100 mL) | UV | 0.031 min−1 for MB within 64 min | 0.04 and 0.0318 min−1 for MB and SMX, respectively within 64 min | [77] |
MoO3/P25 nanoparticles (anatase phase) | 0.25% MoO3/P25 | 0.1 g | Impregnation method | 15 mg/L MB (100 mL) | High pressure sodium lamp | 8% within 150 min | 38% within 150 min | [235] |
Materials (TiO2 Phase Transition) | Optimum | Catalyst Dosage | Synthetic Methods | Pollutants (Volume) | Light Source | Unmodified | Modified | Ref. |
---|---|---|---|---|---|---|---|---|
Co-TiO2 nanosheets (anatase phase) | 2.81% Co-TiO2 | 100 mg | Hydrothermal route | 30 mg/L TC (100 mL) | Visible light | 51.56% within min | 50.19% within 140 min. | [247] |
Co-TiO2 nanoparticles (anatase phase) | 1 wt% Co-TiO2 | 0.5 g/L | Sol–gel and precipitation methods | 10 mg/L MO (250 mL) | White compact fluorescent lamp | 16.3% within 360 min. | 34.7% within 360 min | [248] |
Cobalt phthalocyanine complex sensitized TiO2 nanoparticles (anatase phase) | - | 0.3 g/L | Hydrothermal methods | 40 mg/L 4-CP (200 mL) | Visible light | 25% within 90 min. | 50% within 90 min. | [249] |
Co-TiO2 film (anatase phase) | 8% Co-TiO2 | - | MBE methods | 20 mg/L MB, Azo (100 mL) | Visible light | 38 and ~37% for MB and AZO dyes, respectively within 70 min. | 91 and 88% for MB and Azo dye, respectively within 70 min | [239] |
Co-TiO2 nanosheets (Co-TNT) (anatase phase) | 0.152% Co- TNT/rGO | 0.152 g | Hydrothermal methods | 30 mg/L TC (100 mL) | Visible light | 48.57% within 180 min. | ~60% within 180 min. Reusing the optimal photocatalyst after five successive cycles showed ~7% decline in its activity for degrading of TC. | [250] |
Co-TiO2 nanoparticles (anatase phase) | 0.06% Co/TiO2 | 0.1 g | Sol–gel using cobalt resinate as both template and cobalt source. | 10 mg/L MB, RhB (100 mL) | Visible light | Unmodified TiO2 and unmodified Degussa P25 titania (P25) was 55 and 4.7%, respectively within 4 h. | 82 and 55% for MB and RhB, respectively within 4 h | [251] |
Co-TiO2 nanoparticles (anatase phase) | 0.060% Co/TiO2 | 0.1 g | Sol–gel using resin acids as both template and cobalt source. | 10 mg/L MB, RhB (100 mL) | Visible light | Unmodified TiO2 and unmodified Degussa P25 titania (P25) were 5.2 and 4.7%, respectively within 4 h. | 86 and 94% for MB and RhB, respectively within 4 h | [251] |
Co-TiO2 nanoparticles (anatase phase) | 1 wt% Co-TiO2 NPs | 0.5 g | Sol gel method | 40 mg/L 2, 4-DCP (100 mL) | Visible light | 43.65% within 120 min | 68.03% within 120 min | [252] |
Co-TiO2 flim (anatase phase) | 1 wt% Co-TiO2 | 0.5 g | Phase inversion technique | 40 mg/L 2, 4-DCP (100 mL) | UV/Visible light | - | 61.6 and 63.74% in the presence of UV and visible light, respectively within 120 min. Furthermore, the membrane flux was increased by 53%. | [252] |
Co-TiO2 nanoparticles (anatase phase) | 2 wt% Co-TiO2 NPs | 0.38 g/L | Photochemical deposition-assisted sol–gel technique. | 10 mg/L Phenol (120 mL) | UV/Visible light | ~95 and ~58% in the presence of UV and visible light, respectively for neat TiO2 within 180 min. Moreover, the neat P25 shows ~85 and ~80% in the presence of UV and visible light, respectively. | ~98 and ~67% in the presence of UV and visible light, respectively within 180 min | [121] |
Co-TiO2 nanopowders (anatase phase) | 1 wt% Co | 0.1 g/L | Sol–gel method | 25 mg/L NB (-) | Medium-pressure mercury lamp | - | ~81% within 180 min | [253] |
Co-TiO2 nanopowders (anatase phase) | 2 wt% Co- TiO2 | 0.01 g | Conventional solid-state reaction | 20 mg/L MB (100 mL) | Xenon arc lamp | 90.80% within 210 min. | 90.92% within 210 min | [182] |
Co-TiO2 nanoparticles (anatase phase) | 1% Co-TiO2 | 0.1 g | Sol–gel method | 5 mg/L MO, MB (100 mL) | Visible light | 44.18 and 26.80% degradation rates for MB and MO, respectively for unmodified TiO2 within 5 h. 45% for MB for Degussa P25 | 66.17 and 38.14% for MB and MO, respectively within 5 h. | [94] |
Co-TiO2 nanoparticles (anatase phase) | 0.05% Co-TiO2 | 2 g/L | Sol–gel method | 75 μM Crystal violet (100 mL) | UV | 60% within 120 min | ~100% within 120 min | [254] |
CoO-RGO-TiO2 nanoparticles (anatase phase) | 0.5% TiO2–RGO–CoO | 0.05 g | Sol–gel method | 10 mg/L 2-CP (100 mL) | Visible light | 35.7% within 12 h. | 58.9% within 12 h | [255] |
Co-TiO2 nanoparticles (anatase phase) c | 1% Co-TiO2 | 0.01 g | Sol–gel method | 10 mg/L RhB (10 mL) | Visible light | ~86% within 40 min | 99% within 40 min | [237] |
Co-TiO2 nanopowders (anatase phase) | 1% Co-TiO2 | 0.1 g/L | Sol–gel method | 2.5 × 10−4 M NB (-) | UV | 57.13% within 2 h | 81.03% within 2 h | [256]{FormattingCitation} |
Co-TiO2 nanopowders (anatase phase) | 2% Co-TiO2 | 0.1 g/L | Sol–gel method | 2.5 × 10−4 M NB (-) | UV | 57.13% within 2 h | 67.17% within 2 h | [256]{FormattingCitation} |
Co-TiO2/(GO) inverse opal photonic crystal (IO PC) (anatase phase) | - | 0.1 g | Simple casting and calcination process using polystyrene opal as the template | 0.013 M 4-CP (100 mL) | LT50 lamp | 60% within 120 min. | 75% within 120 min | [257] |
Co-TiO2 nanopowders (anatase phase) | 0.05 mol% Co-TiO2 | 1 g L−1 | Sol–gel method (non-aqueous) | 10 mg L−1 MB (500 mL) | UV | 88.0% within 120 min | 97.7% within 120 min | [91] |
Co-TiO2 nanoparticles (anatase phase) | 1.75% Co-TiO2 | 0.03 g/L | Nanosol/dip-coating method. | 30 mg/L MB (50 mL) | UV | - | 69% within 2 h | [217] |
Co-TiO2 nanoparticles (anatase phase) | 1% Co-TiO2 | 0.025 g | Sol–gel method | 10−5 mol/L MO (50 mL) | Visible light | 0.00075 and 0.002631 min−1 for visible and UV irradiation, respectively. 16.3 and 95.6% for visible and 95.6 for visible and UV light, irradiation within 120 min | 0.00149 and 0.00280 min−1 (2 times larger than that of the unmodified TiO2) for visible and UV irradiation, respectively. | [92] |
Co-TiO2 nanoparticles (anatase phase) | 5% Co-TiO2 | 0.1 g | Sol–gel method | 5×10−5 mol/L MB, MO (100 mL) | UV/Visible light | 65.3 and 72.4% for MO and MB, respectively within 60 min under UV irradiation. 4.1 and 6.2% for MO and MB, respectively within 240 min under visible irradiation. | 78.2 and 86.4% for MO and MB, respectively within 60 min under UV irradiation. 53.2 and 64.3% for MO and MB, respectively within 240 min under visible irradiation. | [38] |
Co-TiO2 nanoparticles (mixed anatase and brookite phases) | 0.5 mol% Co-TiO2 | 1 g/L | Sol–gel method | 10 mg/L PNP (100 mL) | UV/Visible light | 50 and 20% under UV/Visible and visible light, respectively for Degussa P25 within 8 h. | 32 and 15% under UV/Visible and visible light, respectively within 8 h. | [127] |
Materials (TiO2 Phase Transition) | Optimum | Catalyst Dosage | Synthetic Methods | Pollutants (Volume) | Light Source | Unmodified | Modified | Ref. |
---|---|---|---|---|---|---|---|---|
Nb-TiO2 Nanoparticles (Anatase phase) | 0.5 mol%Nb-TiO2 | 1 g/L | Sol–gel method | 100 uM 4-CP (-) | Visible light | 8% within 120 min | The degradation of Nb-TiO2 was only slightly enhanced from the bare TiO2 case.39% within120 min | [264] |
Nb-TiO2 nanoparticles (anatase phase) | 0.5 at% Nb-TiO2 | 0.5 g/L | Sol–gel method | 100 uM 4-CP (30 mL) | Visible light | ~90% within 4 h | ~100% within 4 h | [265] |
Nb2O5/TiO2 hexagonal (anatase phase) | 60 wt% or 0.6 of Nb2O5 | 1 g/L | Sol–gel method | 50 mg/L MB (100 mL) | Visible light | ~14% within 150 in | ~23% within 150 in | [266] |
Nb-TiO2 microspheres microspheres (anatase phase) | - | 0.1 g | Ultrasonic spray pyrolysis method combined with impregnation method | 10 mg/L MB (100 mL) | Visible light irradiation | 5% within 60 min | Nb-TiO2 microspheres show higher activity as compared to unmodified TiO2, 26% within 60 min | [267] |
Nb2O5/TiO2 nanoparticles (anatase phase) | 0.5 mol% Nb2O5/TiO2 | 50 mg | Coprecipitation | 10 μmol/L MB (300 mL) | UV | P25 showed the highest photocatalytic activity within 1 h. | Degradation rate for 0.5 mol% Nb2O5-TiO2 was slightly higher than the unmodified TiO2 within 1 h | [268] |
Nb-TiO2 nanoparticles (anatase phase) | 2 mol% Nb-TiO2 | - | Hydrothermal method | 10 ppm MB (-) | Solar light | ~40% within 100 min | ~40% within 100 min | [262] |
Nb–TiO2 films (mixture of anatase and rutile phases) | 0.58 mol% Nb–TiO2 | - | Spin coating technology | 10 ppm MB (-) | UV | ~10% (1.07 × 10−3 min−1) within 120 min | ~60% (4.97 × 10−3 min−1) within 120 min | [269] |
Materials (TiO2 Phase Transition) | Optimum | Catalyst Dosage | Synthetic Methods | Pollutant | Light Source | Unmodified | Modified | Ref. |
---|---|---|---|---|---|---|---|---|
W-TiO2 nanoparticles (anatase phase) | 5% W-TiO2 | 0.5 g | Liquid phase plasma | 10 mg/L DEP (600 mL) | UV/Blue light | 1.22 × 10−2 min−1 and 4.72 × 10−2 min−1 for UV light and blue light, respectively within 180 min | 0.92 × 10−2 min−1 and 29.37 × 10−2 min−1 for UV light and blue light, respectively within 180 min | [280] |
W-TiO2 nanoparticles (anatase phase) | 2.5 wt% W-TiO2 | 2 g/L | Sol–gel method | 600 mg/L COD (150 mL) | Fluorescent light | - | 50% within 34 h | [281] |
W-TiO2/reduced graphene oxide nanoparticles (anatase phase) | 1% W-TiO2 | 0.01 g | Sol–gel method | 10 mg/L PNP (50 mL) | UV | 30% within 180 min | 62% within 180 min | [271] |
W-TiO2 nanoparticles (anatase phase to stable rutile phase) | TiO2/W50 ppm | 0.1 g | Hydrothermal method | 20 mg/L RhB, MB, MO (100 mL) | Visible light | ~81% of MO within 15 min. 0.0031 min−1, 0.01612 min−1 and 0.1441 min−1 for RhB, MB and MO, respectively | Degradation rate is 10 times the unmodified TiO2. 0.03181 min−1, 0.04148 min−1, 0.2730 min−1 for RhB, MB and MO, respectively. ~99.4% of MO within 15 min. Furthermore, 93.1 and 87.1% of MB and RhB were degraded, respectively, within 60 min, while 99.61% of MO within 20 min. | [282] |
W-TiO2 nanoparticles (anatase phase) | 0.5 mol% W-TiO2 | 0.5 g | Sol–gel method | 50 mg/L CR (250 mL) | Visible light | 1.25 min−1 for Degussa P25 within 180 min | 2.62 min−1 within 180 min | [283] |
WO3/TiO2 nanotube (anatase phase) | - | 1 cm × 2 cm | Electrochemical approach | 100 ppm Toluene (-) | Xenon lamp | - | 65% within 60 min | [284] |
Colloidal W- TiO2 nanocrystals (anatase phase) | 2% W–TiO2 | 1 g/L | Hydrothermal method | 10 mg/L Phenol (-) | UV | 48.9% (0.1092 h−1) within 6 h | 80.0% (0.2694 h−1) within 6 h | [285] |
W-TiO2 layer (rutile to stable anatase phase) | 6 wt% W-TiO2 | 15 mm×10 mm | PEOx method | 10 mg/L MB (100 mL) | 660-nm Tungsten-halogen | 55% within 180 min for pure TiO2 | 95% within 180 min | [76] |
W-TiO2 nanoparticles (anatase phase) | 1 wt% W-TiO2 | 0.2 g/L | EISA method | 0.156 mol L−1 4-CP (70 mL) | UV | 32% within 100 min | 88% within 100 min | [233] |
WO3/TiO2 nanoparticles (anatase phase) | 10% WO3/TiO2 | 0.05 g | combination of hydrothermal and calcination method | 10 mg/L MB (50 mL) | Visible light | 40.7 and 55.3% using pure TiO2 and WO3, respectively for MB within 2 h. 41.6 and 54.8% using pure TiO2 and WO3, respectively for MET within 2 h. | 87.8 and 67.1% for MB and MET, respectively within 2 h. After three cycles, 10% WO3/TiO2 samples could still remove 63.2% of MET and 79.8% of MB. | [286] |
W-TiO2 nanoparticles (anatase phase) | - | 0.5 g/L | Sol–gel method | 30 mg/L SMZ (200 mL) | Metal-halide lamps | 80% within 30 min | The extended reuse of the photocatalysts for five consecutive runs obtained an SMZ degradation of 97.7, 97.6, 96.2, 95.1, and 90.34% in the same order. | [287] |
W-TiO2 nanoparticles (anatase phase) | 1.5 wt% W-TiO2 | - | Sol–gel method | 10 mg/L Thymol (100 mL) | Solar light | 9.65% (0.085 × 10−2 min−1) within 120 min | 48.76% (0.582 × 10−2 min−1) within 120 min | [288] |
W-TiO2 nanosheets (anatase phase) | - | 64 m2 | Spray pyrolysis method | 1 mM oxalic acid 2.5 × 10−4 M NB (-) | Sunlight | 42% within 320 min | ~83% within 180 min | [289] |
W-TiO2 coupons (rutile to stable anatase phase) | 6 wt% W-TiO2 | 15 mm × 10 mm | PEOx method | 10 mg/L MB (100 mL) | 660-nm Tungsten-halogen | 55% within 180 min for pure TiO2 | 95% within 180 min | [76] |
Materials (TiO2 Phase Transition) | Optimum | Catalyst Dosage | Synthetic Methods | Pollutants (Volume) | Light Source | Unmodified | Modified | Ref. |
---|---|---|---|---|---|---|---|---|
Zn-TiO2 nanoparticles (anatase phase) | 1 wt% Zn-TiO2 | 0.1 g | Single step of sonochemical method | 10 mg/L RhB (100 mL) | UV | 18% within 90 min | 35% within 90 min | [290] |
Zn-TiO2 nanoparticles (mixed anatase and rutile phases) | 0.01% Zn-TiO2 | 0.1 g | Sol–gel method | 20 mg/L MB (50 mL) | Visible light | 89.69% within 60 min | 99.64% within 60 min | [128] |
Zn-TiO2 nanoparticles (mixed anatase and brookite phases) | 0.5 mol% Zn-TiO2 | 1 g/L | Sol–gel method | 10 mg/L PNP (100 mL) | UV/Visible light | 50 and 20% under UV/Visible and visible light, respectively for Degussa P25 within 8 h. | 75 and 32% for UV/Visible and visible light, respectively within 8 h | [127] |
Zn-TiO2 nanoparticles (anatase phase) | 5 wt% Zn-TiO2 | 0.007 g | Sol–gel method | 5 mg/L MB (50 mL) | Visible light | 50% within 150 min | 28.75 and 50% within 35 min and 47 min, respectively | [291] |
Zn-TiO2 nanoparticles (anatase phase) | 0.2 wt% Zn-TiO2 | - | Sol–gel method | 50 mg/L MO (50 mL) | Visible light | 27% (0.45 min−1) and 3% (0.40 min−1) under UV irradiation and visible irradiation, respectively within 30 min | 62% (1.54 min−1) and 40% (0.92 min−1) under UV irradiation and visible irradiation, respectively within 30 min | [113] |
Zn-TiO2 nanoparticles (anatase phase) | 5% Zn-TiO2 | 0.1 g | Oil-in-water microemulsions, (O/W) microemulsion method | 30 mg/L Phenol (200 mL) | UV | 84% within 5 h | 93% within 5 h | [292] |
Materials (TiO2 Phase Transition) | Optimum | Catalyst Dosage | Synthetic Methods | Pollutant | Light Source | Unmodified | Modified | Ref. |
---|---|---|---|---|---|---|---|---|
Au-TiO2 nanoparticles (anatase phase) | 1% Au-TiO2 | 0.005 g | Photodeposition method | 10 mg/L MB, CBN, MNZ (10 mL) | UV | 73.9 and 88.7% for CBN and MNZ, respectively | 35.7 and 46.8% for CBN and MNZ, respectively | [304] |
Au-P25 nanoparticles (mixed anatase rutile phase) | 1% Au-P25 | 0.005 g | Precipitation–deposition method | 10 mg/L BPA (10 mL) | UV | 35% within 24 h | 76% within 24 h | [305] |
Au-TiO2 nanoparticles (mixed anatase rutile phase) | 1% Au-TiO2 | 0.005 g | Sol–gel method | 10 mg/L BPA (10 mL) | UV | 35% within 24 h | ~57% within 24h | [305] |
Au-TiO2 nanoparticles (mixed anatase rutile phase) | 1% Au-TiO2 NPs | 0.005 g | Sol–gel method | 10 mg/L BPA (10 mL) | UV | 35% within 24 h | ~56% within 24 h | [305] |
Au-meso-TiO2 nanoparticles (mixed anatase rutile phase) | 1% Au-meso-TiO2 | 0.005 g | Sol–gel method | 10 mg/L BPA (10 mL) | UV | 35% within 24 h | 37% within 24 h | [305] |
TiO2 hollow microspheres impregnated with biogenic Au nanoparticles (stable anatase phase) | 5% Au-TiO2 NPs | 0.005 g | Sol–gel method | 2.5 × 10−4 mol/L Phenol (10 mL) | Visible light | 21% within 1 h | 95% within 1 h | [306] |
Au-TiO2 nanoparticles (anatase phase) | 0.154 wt% Au-TiO2 | 0.004 g | Simple synthesis route | 3.125 × 10−5 mol/L MB (-) | Visible LED light | 25% within 150 min | 97% within 150 min | [307] |
Au-TiO2 yolk-shell (anatase phase) | 0.14 at% Au-TiO2 | 0.005 g | Seed-growth method | 300 ppm gaseous toluene (-) | Visible light | 20% within 3 h | 57.3% within 3 h | [308] |
Au-TiO2 nanoparticles (anatase phase) | - | - | Sol–gel, wet chemical synthesis, hydrothermal, and plasma oxidative pyrolysis | 20 mg/L CR, MO (100 mL) | UV | - | 40.1 and 19.7 for MO and CR, respectively within 210 min. | [309] |
Ag-TiO2 nanoparticles (anatase phase) | 0.005 wt% Ag-TiO2 | 1.005 g | Sol–gel, wet chemical synthesis, hydrothermal, and plasma oxidative pyrolysis | 20 mg/L CR, MO (100 mL) | UV | - | 52.3 and 34.4% for MO and CR, respectively within 3.5 h | [309] |
Au-TiO2 nanoparticles (anatase phase) | 0.1% Au-TiO2 | 0.5 g | Hydrothermal method | 10 mg/L Resorcinol (500 mL) | UVA | 72.36% (0.0044 min−1) within 5 h | 95.34% (0.0102 min−1) within 5 h (1.5 times of magnitude higher than pure TiO2 NPs while the rate constant was 2.5 times greater than that for pure TiO2). Furthermore, it shows 95% after five repeating experiments | [310] |
Au-TiO2 films (anatase phase) | 0.02 wt% Au/TiO2 meso-porous thin films | - | Sol–gel method | 5 mg/L TC (100 mL) | UVA | 27% within2 h | After 6 cycles, the percentage removal of TC is decreased from 58.51% to 57.89% only (i.e., a 0.62% decrease) | [311] |
Au-TiO2 plasmonic nanohybrids (anatase phase) | - | 0.005 g | Wet chemical method | 10 mg/L MB, MO (100 mL) | Sunlight | 25% within 20 min | 94% for MB, 85% for MO, and 87% for the mixture of MO and MB within 20 min (3.3 times greater than that of the unmodified TiO2) | [312] |
Au-TiO2 nanoparticles (Mixed anatase rutile phase) | 2 wt% Au-TiO2 | 1.3 g/L | Deposition–precipitation method | 50 mg/L CFS (100 mL) | UV/Visible light | <5% within 2 h under visible light irradiation | 95 and 65% within 2 h under UV–visible and visible light irradiation, respectively | [313] |
Au-TiO2 photoanode on carbon cloth (anatase phase) | 0.1 wt% Au-TiO2 | 2 cm2 | Sol–gel method | 78.5 mg/L paracetamol (100 mL) | PEC/Sunlight | - | 62 and 66% under PEC process and sunlight radiation in solar PEC, respectively within 180 min | [314] |
Au-TiO2 film (anatase phase) | 3 at% Au-TiO2 film | 10 cm × 10 cm | Chemical spray pyrolysis technique | 1 mmol/L benzoic acid (-) | UV | 37% within 400 min | 49% within 400 min | [29] |
Materials (TiO2 Phase Transition) | Optimum | Catalyst Dosage | Synthetic Methods | Pollutant (Volume) | Light Source | Unmodified | Modified | Ref. |
---|---|---|---|---|---|---|---|---|
Ag-TiO2 nanoparticles (anatase phase) | 5% Ag-TiO2 | 0.0113 mg | Sol–gel method | 8 mg/L 2-CP (300 mL) | UV | 16% within 150 min | 30.4% within 150 min | [340] |
Ag-TiO2 thin films (anatase phase) | 5%Ag-TiO2 | 2.5 cm × 2.5 cm | Sol–gel method | 5 mg/L MO, MB (25 mL) | Visible light | 40.10% for MB within 240 min | 98.86% for MB within 240 min, 96.34% for MO within 180 min. After ten consecutive cycles, approximately 98.85% MB dye were removed. | [341] |
Ag-TiO2 Films (anatase phase) | Ag-TiO2 films | - | Sol–gel method | 10 mg/L RB (-) | Solar light/Visible light/UV | 45% within 70 min | 98, 78, and 50% under solar light, visible and UV within 70 min. After four consecutive cycles, approximately 96.5% RB dye was removed. | [342] |
Ag-TiO2 nanopowders (anatase phase) | 10% Ag-TiO2 | 0.05 g | Sol–gel method | 0.03 mg/L MB (50 mL) | UV | 96% within 2 h, 97% within 35 min | 97% within 35 min, 96% within 2 h | [343] |
Ag-TiO2 nanoparticles (anatase phase) | 10 wt% Ag-TiO2 | 0.3 g/L | Polyol method | 1000 mg/L DCA (100 mL) | UV | 65.4% within 480 min | 79.3% within 480 min | [344] |
Ag-TiO2 nanoparticles (anatase phase) | 10 wt% Ag-TiO2 | 0.05 g | Sol–gel method | 0.01 mmol/L MB (-) | Visible light | ~30% within 50 h | Almost 100% within 50 h | [317] |
Ag-TiO2 nanoparticles (anatase phase) | 1.4 wt% Ag-TiO2 | 0.05 g | Photoreduction method | 10 mg/L 4-CP (50 mL) | UV | - | After 8 times of reaction, the degradation effect of 4-CP decreased to 65%. | [345] |
Ag-TiO2 nanoparticles (anatase phase) | 4.0 mol% Ag-TiO2 | 0.18 g | Sol–gel method | 10 mg/L MB (180 mL) | Visible light irradiation | 30% within 60 min | 96% within 60 min. After five consecutive cycles, approximately 89% MB dye was removed. | [318] |
Ag TiO2 nanopowders (anatase phase) | Ag 3% TiO2 | 0.125 mol/L | Sol–gel method | 2.10−5 mol./L MB (-) | UV | 0.08124 min−1 within 120 min | 0.11319 min−1 within 120 min | [119] |
Ag/TiO2 photoanode (anatase phase) | - | - | Photoreduction method | 30 mg/L RhB (250 mL) | UV | 97.3% (0.0301 min−1) within 120 min | 99.5% (0.0451 min−1) within 120 min | [346] |
Ag/TiO2 nanoparticles (mixture of anatase and rutile phases) | 1.06 wt% Ag-TiO2 | 1.5 g/L | Photodeposition method | 5 mg/L DXM (600 mL) | UV/VIS | 2% within 240 min | 77.6 and 63.8% for UV and visible light irradiation, respectively | [347] |
Ag/TiO2 nanoparticles (mixture of anatase and rutile phases) | 0.03 wt% Ag-TiO2 | 1.0 g/L | LP followed by wet impregnation and reduction methods | 125 µM MO (130 mL) | UV | 6.54 × 10−3 min−1 and 0.19 × 10−3 min−1 for UV and visible light irradiation within 120 min, respectively | 28.74 × 10−3 min−1 and 16.78 × 10−3 min−1 for UV and visible light irradiation within 120 min, respectively | [348] |
Ag/TiO2 nanoparticles (anatase phase) | 0.25 wt% Ag-TiO2 | 1 g/dm3 | MWASG | 20 mg/L MO (100 mL) | UV | 57% within 70 min | 99.5% within 70 min | [349] |
Ag-TiO2 nanoparticles (mixture of anatase and rutile phases) | 0.15 wt% Ag-TiO2 | 0.5 g | Sol–gel method | 8 mg/L MB (100 mL) | Visible light | 40 and 42% for unmodified TiO2 and P25, respectively within 7 h | ~68% within 7 h | [350] |
Ag2+/TiO2 nanoparticles (anatase-brookite TiO2 nanoparticles with a spherical shape) | 2 mol% Ag2+/TiO2 | 1 g/L | Sol–gel method | 10 mg/L PNP (100 mL) | UV/Visible light | 50 and 20% for Degussa P25 under UV/Visible light and visible light, respectively within 8 h | 60 and 31% under UV/Visible light and visible light, respectively within 8 h | [127] |
Ag-TiO2 nanopowders (anatase phase) | 3% Ag-TiO2 | 0.125 molL−1 | Sol–gel method | 20 mg/L MB (100 mL) | UV | 0.08124 min−1 within 6 h | 0.11319 min−1 within 6 h | [119] |
Ag-TiO2 nanoparticles (anatase phase) | 10% Ag-TiO2 | 0.5 g | Sol–gel, mechanothermal decomposition method | 5 × 10−5 M MO (500 mL) | UV/Solar | 69% within 60 min under UV, 8% within 80 min under solar irradiation | 98.9% within 60 min under UV, 99.3% within 80 min under solar irradiation | [351] |
Ag-TiO2 Nanoparticles (anatase phase) | 1.75% Ag-TiO2 | 0.03 g/L | Nanosol/dip-coating method | 30 mg/L MB (50 mL) | UV | - | 74% within 2 h | [217] |
Materials (TiO2 Phase Transition) | Optimum | Catalyst Dosage | Synthetic Methods | Pollutant (Volume) | Light Source | Unmodified | Modified | Ref. |
---|---|---|---|---|---|---|---|---|
Pt-TiO2 nanoparticles (mixed rutile and anatase phase) | 5 wt% Pt-TiO2 | 1 g/L | hydrothermal method | 10 mg/L RhB (100mL) | Visible light | Amount of RhB degraded in 90 min reaction time 0.326 ± 0.011 × 10−9moles/min/mg. | 99.5% within 90 min (4.5-fold better than pristine TiO2) | [354] |
Pt-TiO2 nanocrystals (mixed anatase and brookite phases) | 0.1wt% Pt-TiO2 | 1g/L | Sol–gel method | 10 mg/L PNP (10mL) | Halogen lamp | 20 and 12% for TiO2 and P25, respectively within 24 h under visible light. 47 and 84% for TiO2 and P25, respectively within 24 h under UV/Visible light. | ~46% within 24 h under visible light. ~78% within 24 h under UV/Visible light. | [114] |
Pt-TiO2 film (mixed anatase and brookite phases) | 0.1% Pt-TiO2 | size of 100 mm × 120 mm | Immersion and reduction method | 100 ppb/500 ppb Ethenzamide (-) | V-UV | 50 and 42% for 500 ppb and 100 ppb, respectively. | 94.52 and 100% for 500 ppb and 100 ppb, respectively. The rate constant (0.180 min−1) was 1.86 times as compared to unmodified nanoporous TiO2 film (0.097 min−1) | [355] |
Pt-TiO2 nanoparticles (mixed rutile and anatase phase) | 10 wt% Pt-TiO2 | 0.3 g/L | Polyol method | 1000 mg/L DCA (100 mL) | UV | 34.6% within 420 min | Almost 100% within 420 min | [344] |
Pt-P25 nanoparticles (mixed rutile and anatase phase) | / | 0.5 g L−1 | Sol–gel method | 20 mg/L MG (250 mL) | UV | 70% within 30 min for P25 | 100% within 30 min | [356] |
Pt-MTiO2 nanoparticles (mixed rutile and anatase phase) | 1.5 wt% Pt-MTiO2 | 1.5 g/L | facile synthesis procedure | CIP (-) | Visible light | ~5% within 120 min | 100% within 120 min. After five cycles, approximately 100% was still maintained. | [357] |
Pt/P25 and Pt/TiO2 nanoparticles (mix ed rutile and anatase phase) | 0.14 wt% Pt/TiO2 and Pt/P25 | 1.0 g/L | laser pyrolysis (LP) followed by wet impregnation and reduction methods; | 125 µM MO (-) | UV/Visible light | 6.54 × 10−3 and 9.6 × 10−3 min−1 for pure P25 and TiO2 (LP), respectively in the presence of UV light. 0.19 × 10−3 and 1.8 × 10−3 min−1 for pure P25 and TiO2 (LP), respectively in the presence of VIS lamp | In the presence of UV lamp, the rate constant of Pt/P25 and Pt/TiO2 was 9.78 × 10−3 min−1 and 10.16 × 10−3 min−1. In the presence of VIS lamp, the rate constant of Pt/P25 and Pt/TiO2 were 5.47 × 10−3 min−1 and 4.1 × 10−3 min−1. | [348] |
Pt-TiO2 nanoparticles (mixed anatase and brookite phases) | 0.8 wt% Pt-TiO2 | 0.2 g/L | Sol–gel method | 6 mg/L MB(50 mL) | UVC | - | 57% within 60 min | [358] |
Pt-TiO2 nanoparticles (mixed anatase and brookite phases) | 0.5 mol% Pt-TiO2 | 1 g/L | Sol–gel method | 10 mg/L PNP (100 mL) | UV/Visible light | 50 and 20% for UV/Visible light and visible light, respectively for Degussa P25 within 8 h | 80 and 45% for UV/Visible light and visible light, respectively within 8 h | [127] |
Pt-TiO2 nanoparticles (mixed anatase and brookite phases) | 3 wt% Pt-HPT | 0.3 g/L | Hydrothermal method | 10 mg/L RhB (100 mL) | UV/Visible light | 0.0013 min−1 for core(metal)-shell (TiO2) within 180 min | 63% (0.0053 min−1) within 180 min | [359] |
Pt-TiO2 nanoparticles (mixed anatase and brookite phases) | 10 wt% Pt-TiO2 | 0.3 g/L | Polyol method | 1000 mg/L DCA (100 mL) | UV | 34.6% within 420 min | 100% within 420 min | [344] |
Materials (TiO2 Phase Transition) | Optimum | Catalyst Dosage | Synthetic Methods | Pollutants (Volume) | Light Source | Unmodified | Modified | Ref. |
---|---|---|---|---|---|---|---|---|
Ru-TiO2 nanotube arrays (anatase phase) | 0.15 wt%Ru-TiO2 | - | Anodic oxidation | 0.11 M TB (20 mL) | UV/Visible light | 84 and 26% under UV and visible light, respectively within 120 min | 82 and 28% under UV and visible light, respectively within 120 min. | [364] |
[Ru(4,4′-dicarboxy-2,2′-bipyridine)3]Cl2 (RuC)-TiO2 (anatase phase) | - | 0.2 g | Hydrothermal method | 20 mg/L Bromophenol blue (500 mL) | UV | 0.0018 min−1 within 120 min | 0.0038 min−1 within 120 min | [365] |
Ru-TiO2 nanoparticles (mixed anatase and brookite phases) | 0.2 wt% Ru-TiO2 | 0.002/L | Incipient wet impregnation method | 100 mg/L 2-CP (500 mL) | UV/Visible light | 45 and 40% for UV and visible light, respectively within 60 min for pure TiO2. | 61 and 53% for UV and visible light, respectively within 60 min. | [366] |
RuO2/TiO2 composite nanotube arrays (anatase phase) | 0.0030 mol/L Ru-TiO2 | - | Anodic oxidation method combined with dipping | 8 mg/L MB (12 mL) | Fluorescent lamp | 37.8% within 2 h | 69% within 2 h | [362] |
Ru-TiO2 nanotube arrays (mixed anatase and brookite phases) | 0.16 wt% Ru-TiO2 | 0.01 mol L−1 | Electrochemical anodization | 4 ppm TB (-) | UV | 0.0150 min−1; 81.4% color removal within 120 min | 1.33 higher activity than the unmodified TiO2 | [363] |
Materials (TiO2 Phase Transition) | Optimum | Catalyst Dosage | Synthetic Methods | Pollutants (Volume) | Light Source | Unmodified | Modified | Ref. |
---|---|---|---|---|---|---|---|---|
Pd-TiO2 nanoparticles (anatase phase) | 0.5 wt% Pd-TiO2 | 0.01 g | Sol–gel methods | 20 mg/L MB, MO (1 L) | UV | 96.7% (0.024 min−1) and 82.5% (0.012 min−1) for MB and MO, respectively within 120 min. | 92.6% (0.018 min−1) and 99.4% (0.044 min−1) for MO and MB, respectively within 120 min. The catalytic performance remained nearly unchanged and the degradation of MB was maintained at 95.9% after 10 continuous cycles. | [368] |
Pd-TiO2 flower-like structures (anatase phase) | 2 wt% Pd-TiO2 | 0.01 g | UV light-induced method | 10 mg/L BPA (500 mL) | UV/Visible light | 100% within 45 min. | 100% within 45 min, 50% within 10 min under UV light; 100% within 240 min under visible light. The rate constants were 2.92, and 3.88 times higher than the P25 TiO2. Furthermore, they were 1.65 and 1.91 times higher than those of unmodified TiO2 under visible and UV lights, respectively. | [369] |
Pd-TiO2 nanoparticles (mixed anatase and brookite phases) | 1.3 wt% Pd-TiO2 | 0.01 g/L | Photodeposition | 20 mg/L MB (100 m) | Xenon Lamp | 0.008 min−1 within 45 min. | 0.023 min−1 within 45 min. | [370] |
Pd-TiO2 nanoparticles (anatase phase) | 1 wt% Pd-TiO2 | 1 g/L | Hydrothermal | 5 mM Oxalic acid (100 mL) | Fluorescent lamps | 50, 54, and 87% for bare Aldrich rutile, bare P25 and P25 (cubical), respectively within 2 h, | 96, 70, 72% for AA-Pd(spherical), AA-Pd(cubical), P25-Pd(spherical), respectively within 120 min. ~100 for AR-Pd(cubical) within 100 min | [371] |
Pd-TiO2 nanoparticles (anatase phase) | 1 wt% Pd-TiO2 | 1 g/L | Hydrothermal | 0.5 mM Phenol | Fluorescent lamps | 87, 63, 41% for P25, AA and bare Aldrich rutile, respectively within 2 h | 72, 66, 98, 90, 75, and 71% for P25-Pd (spherical), P25-Pd(cubical), AA-Pd(spherical), AA-Pd(cubical), AR-Pd(spherical)), and AR-Pd(cubical), respectively within 2 h. | [371] |
Materials (TiO2 Phase Transition) | Optimum | Catalyst Dosage | Synthetic Methods | Pollutants (Volume) | Light Source | Unmodified | Modified | Ref. |
---|---|---|---|---|---|---|---|---|
Y-TiO2 nanoparticles (Anatase phase) | - | 4 cm2 | Electrochemical method | 0.21 mM Toluene (200 μL) | Visible light | 9% within 60 min | 21% within 60 min | [374] |
Y3+/TiO2 nanoparticles (Anatase phase) | 0.25 mol% Y3+/TiO2 | 0.125 g | Hydrothermal methods | 0.21 mM Phenol (100 mL) | UV/Visible light | 2.40 h−1 within 60 min | 3.85 h−1 within 60 min | [375] |
Y3+/TiO2 nanoparticles (Anatase phase) | 0.25 mol% Y3+/TiO2 | 0.125 g | Sol–gel methods | 0.21 mM Phenol (-) | UV/Visible light | 2.40 h−1 within 60 min | 1.43 h−1 within 60 min | [375] |
Material (TiO2 Phase Transition) | Optimum | Catalyst Dosage | Synthetic Methods | Pollutants (Volume) | Light source | Unmodified | Modified | Ref. |
---|---|---|---|---|---|---|---|---|
Er-TiO2 mesoporous spheres (anatase phase) | 1 mM of Er-TiO2 | 1 g | Solvothermal method | 10 ppm RhB (50 mL) | Visible light | 84.27% (0.0428 min−1) within 60 min | 98.78% (0.1544 min−1) within 60 min | [389] |
Ce-TiO2 nanoparticles (mixture of anatase and rutile phases) | 1% Ce-TiO2 | 0.5 g/L | Facile EDTA-citrate method | 10 mg/L CIP, NOR (200 mL) | Sunlight | 69.29 and 75% for CIP and NOR, respectively within 180 min | 90–93% for both CIP and NOR within180 min | [390] |
Ce-TiO2 nanoparticles (anatase phase) | 0.5% Ce-TiO2 | 0.5 g | Facile hydrothermal method | MEK (200 mL) | Visible light | - | 76% for 0.5% Ce-TiO2 | [391] |
Ce-TiO2 nanoparticles (anatase phase) | 0.5% Ce-TiO2 | 0.5 g | Facile hydrothermal method | MEK (200 mL) | UV | - | 62% for 0.5% Ce-TiO2 | [391] |
Ce-TiO2 nanoparticles (anatase phase) | 0.41% Ce-TiO2 | 10 mg/cm2 | Sol–gel method | 25 mg/L DB15 | Visible light | 3.3% within 1 h | 33% within 1 h | [216] |
Ce-TiO2 mesoporous (mixture of anatase and rutile phases) | 2.5% Ce-TiO2 | 0.001 g | EISA approach | 20 mg/L Phenol (100 mL) | UV | - | 95–99% within 4 h | [392] |
Ce-TiO2 nanocrystalline films (anatase phase) | 2.5% Ce-TiO2 | - | EISA approach | 20 mg/L Phenol (100 mL) | Solar light | 99% within 4 h for the mesoporous TiO2 | 55-68% within 4 h | [392] |
Ce-TiO2 nanocrystalline films (anatase phase) | 10% Ce-TiO2 | 0.05 g | Sol–gel method | 2.5 × 10−5 M BB-41 (80 mL) | UV | 16.8 × 10−3 min−1 within 180 min | 15.9 × 10−3 min−1 within 180 min | [393] |
Ce-TiO2 nanocrystalline films (anatase phase) | 12% Ce-TiO2 | 0.05 g | Sol–gel method | 2.5 × 10−5 M BB-41 (80 mL) | Visible light | 11.2 × 10−3 min−1 within 180 min | 16.1 × 10−3 min−1 within 180 min | [393] |
CeO2/TiO2 core-shell nanoparticles (anatase phase) | - | 0.04 g | Hydrothermal route assisted with the Stöber method | 1 × 10−5 M RhB (40 mL) | Xe arc-lamp | 0.004 min−1 for CeO2 nanocubes and 0.003 min−1 for unmodified TiO2 within 120 min | 0.012 min−1 within 120 min | [394] |
CeO2/TiO2 nanoparticles (mixture of anatase and rutile phases) | 0.25% CeO2/TiO2 | 0.1 g | Sol–gel method | 40 ppm MB (100 mL) | Visible light | 96.43% within 150 min | 97.86% within 150 min | [395] |
Ho-TiO2 nanotubes (anatase phase) | - | 4 cm2 | Electrochemical method | 0.21 mM Toluene (200 μL) | Visible light | 9% within 60 min | 30% within 60 min | [374] |
Er-TiO2 nanotubes (anatase phase) | - | 4 cm2 | Electrochemical method | 0.21 mM Toluene (200 μL) | Visible light | 9% within 60 min | 22% within 60 min | [374] |
Gd-TiO2 nanotubes (anatase phase) | -/ | 4 cm2 | Electrochemical method | 0.21 mM Toluene (200 μL) | Visible light | 9% within 60 min | 28% within 60 min | [374] |
Tb-TiO2 nanotubes (anatase phase) | - | 4 cm2 | Electrochemical method | 0.21 mM Toluene (200 μL) | Visible light | 9% within 60 min | 28% within 60 min | [374] |
Nd3+/TiO2 nanosphere (anatase phase) | 1.0 mol% Nd3+/TiO2 | 0.05 g | template-free method (recombined coprecipitation with hydrothermal method | 20 mg/L MB (50 mL) | Visible light | 91.83% (0.46 h−1) within 120 min | 99.14% (2.3 h−1) within 120 min | [396] |
Nd3+/TiO2 nanosphere (anatase phase) | 1.0 mol% Nd3+/TiO2 | 0.05 g | template-free method (recombined coprecipitation with hydrothermal method | 20 mg/L MB (50 mL) | Sunlight | 60.09% of dyes degraded without catalyst | almost completely degradation within 80 min. | [396] |
Nd-TiO2 nanoparticles (anatase phase) | 2.0 mM Nd-TiO2 | 0.02 g | Sol–gel method | 40 mg/L CR (100 mL) | UV | 64% within 30 min | 86% within 30 min, the photocatalytic efficiency after utilizing five times was more than 92%. | [397] |
Nd-TiO2 nanoparticles (anatase phase) | 2.0 mM Nd- TiO2 | 0.02 g | Sol–gel method | 40 mg/L MB (100 mL) | UV | 74% within 45 min | 92% within 45 min, the photocatalytic efficiency after utilizing five times was more than 92%. | [397] |
Yb3+/TiO2 nanoparticles (anatase phase) | 1% Yb3+/TiO2 | 0.05 g | Sol–gel method | 0.21 mM phenol (5 mL) | Visible light | 45% within 180 min | 89% within 180 min | [398] |
Er3+/TiO2 nanoparticles (anatase phase) | 0.5% Er3+/TiO2 | 0.05 g | Sol–gel method | 0.21 mM Phenol (5 mL) | Visible light | - | 75% within 180 min | [398] |
Er3+/TiO2 nanoparticles (anatase phase) | 2 mol% Er3+/TiO2 | 0.025 g | Electrospinning | 10 mg/L MO (25 mL) | Solar light | 78% within 60 min | 43% within 60 min | [399] |
Er3+/TiO2 nanoparticles (anatase phase) | 0.5 mo% Er3+/TiO2 | 0.05 g | Electrospinning | 10−5 mol/L RhB (25 mL) | Solar light | 71.3% within 10 h | 91.3% within 10 h | [399] |
Er3+/TiO2 nanoparticles (anatase phase) | 0.5 mol% Er3+/TiO2 | 0.05 g | Electrospinning | 20 mg/L Phenol (25 mL) | Solar light | 23.9% within 72 h | 46.1% within 72 h | [399] |
Yb-TiO2 nanoparticles (anatase phase) | 10% Yb-TiO2 | 1 g/L | Hydrothermal process | 10 ppm Phenol (100 mL) | Solar light | ~Initial Rate with 31.9 mol/L/h | ~Initial Rate with 54 mol/L/h | [400] |
Er-TiO2 nanoparticles (anatase phase) | 2% Er-TiO2 | 1 g/L | Hydrothermal process | 10 ppm Phenol (100 mL) | Solar light | ~Initial Rate with 31.9 mol/L/h | ~Initial Rate with 144 mol/L/h | [400] |
Gd-TiO2 nanoparticles (anatase phase) | 1.8 at% Gd- TiO2 | 0.1 g | Sol–gel method sintering at 550 °C | 20 mg/L CR (100 mL) | UV | 42% within 1 h | 76% within 1 h | [401] |
Gd-TiO2 nanoparticles (anatase phase) | 1.8 at% Gd- TiO2 | 0.1 g | Sol–gel method sintering at 700 °C | 20 mg/L CR (100 mL) | UV | 35% within 1 h | 84% within 1 h | [401] |
Sm-TiO2 nanoparticles (anatase phase) | 1.8 at% Sm-TiO2 | 0.1 g | Sol–gel method sintering at 700 °C | 20 mg/L CR (100 mL) | UV | 35% within 1 h | 74% within 1 h | [401] |
Sm-TiO2 nanoparticles (anatase phase) | 1.8 at% Sm-TiO2 | 0.1 g | Sol–gel method sintering at 550 °C | 20 mg/L CR (100 mL) | UV | 42% within 1 h | 70% within 1 h | [401] |
Er-TiO2 nanotube arrays (anatase phase) | 10 wt% Er-TiO2 | - | Electrochemical anodization | 0.5 mM Toluene (8 mL) | Visible light | - | 2.85 × 10−3 μmol·min−1 within 60 min | [402] |
Ho-TiO2 nanotube arrays (anatase phase) | 10 wt% Ho-TiO2 | - | Electrochemical anodization | 0.5 mM Toluene (8 mL) | Visible light | - | 2.87 × 10−3 μmol·min−1 within 60 min | [402] |
Gd-TiO2 nanoparticles (anatase phase) | 0.3% Gd-TiO2 | 0.01 g | Sol–gel method | 10 mg/L RhB (10 mL) | Visible light | 75% within 240 min | 93% within 240 min | [403] |
La-TiO2 nanoparticles (mixture of anatase and rutile phases) | 0.05 La-TiO2 | 1 g/L | Ultrasound-assisted wet impregnation method | 10 mg/L MB (1 L) | UV | 0.1372 ± 0.0038 min−1 and 0.1332 ± 0.0051 min−1 for pristine TiO2 and P25-TiO2, respectively within 30 min | 0.1528 ± 0.0017 min−1 within 30 min | [404] |
Gd-TiO2 nanoparticles (anatase phase) | 3% Gd3+/TiO2 | 0.05 g | Impregnation method | 20 mg/L RhB (60 mL) | Mercury lamp | 75% within 50 min | 81–96% within 50 min | [405] |
Ce3+/TiO2 nanoparticles (mixture of anatase and rutile phases) | 1 mol% Ce3+/TiO2 | 0.2 g/L | Combustion synthesis method | 20 mg/L MB (100 mL) | Visible light | 41% within 120 min | 72% within 120 min | [406] |
La-TiO2 nanoparticles (anatase phase) | 1.0% La–TiO2 | 0.05 g | Sol–gel method | 10 mg/L RhB (100 mL) | 562-nm Xenon Lamp | 21.56% within 300 min | 11.09% within 300 min | [74] |
Ce-TiO2 nanoparticles (anatase phase) | 1.0% Ce–TiO2 | 0.05 g | Sol–gel method | 10 mg/L RhB (100 mL) | 562-nm Xenon Lamp | 21.56% within 300 min | 83.43% within 300 min | [74] |
Eu-TiO2 nanopowders (anatase phase) | 3% Eu-TiO2 | 0.125 molL−1 | Sol–gel method | 20 mg/L MB (250 mL) | Xenon Lamp | 0.08124 min−1 within 6 h | 0.03719 min−1 within 6 h | [119] |
Gd-TiO2 nanopowders (anatase phase) | 1 wt% Gd-TiO2 | 0.1 g | Sol–gel method | 10 mg/L MO (100 mL) | Visible light | 31% within 180 min | 78% within 180 min | [205] |
Gd-TiO2 nanopowders (anatase phase) | 1 wt% Gd-TiO2 | 0.1 g | Sol–gel method | 10 mg/L 4-CP (100 mL) | Visible light | 28% within 180 min | 69% within 180 min | [205] |
Eu-TiO2 nanoparticles (anatase phase) | 10% Eu-TiO2 | 0.3 g | LPP process | 50 mg/L ASA (250 mL) | Blue light | 0.685 × 10−3 min−1 within 24 h | 1.475 × 10−3 min−1 within 24 h | [407] |
Eu-TiO2 nanoparticles (anatase phase) | 10% Eu-TiO2 | 0.3 g | LPP process | 50 ppm ASA (250 mL) | UV | 9.37 × 10−3 min−1 within 24 h | 10.65 × 10−3 min−1 within 24 h | [407] |
Materials (TiO2 Phase Transition) | Optimum | Catalyst Dosage | Synthetic Methods | Pollutants (Volume) | Light Source | Unmodified | Modified | Ref. |
---|---|---|---|---|---|---|---|---|
Ga3+-TiO2 nanoparticles (anatase phase) | 0.5 wt% Ga3+-TiO2 | 0.1 g | Ultrasonic irradiation | 20 mg/L MB (100 mL) | Solar light | 70.6% (0.0096 min−1) in 150 min | 86.4% (0.021 min−1) in 150 min | [418] |
In2O3-TiO2 nanopowders (anatase phase) | 5 mol% In2O3/TiO2 | 0.5 g | Sol–gel method | 200 mg/L CR (-) | UV | 0.15 h−1 in 4 h | 0.86 h−1 in 4 h | [426] |
In2O3-TiO2 nanorods (anatase phase) | 0.4 wt% In2O3/TiO2 | 1 × 1.5 cm2 | Hydrothermal method | 10 uM MO (-) | Sunlight | 86% in 6 h | 94% in 6 h | [427] |
In2O3-TiO2 nanorods (anatase phase) | 0.4 wt% In2O3/TiO2 | 1 × 1.5 cm2 | Hydrothermal method | 2.5 uM BPA (-) | Sunlight | 65% in 6 h | 68% in 6 h | [427] |
In2O3-TiO2 nanoparticles (mixture of anatase and rutile phases) | 0.15 mol% In2O3/TiO2 | 0.5 g | Sol–gel method | 8 mg/L MB (100 mL) | high-voltage Mercury lamp | 40 and 42% in 7 h for pure TiO2 and P25, respectively. | ~80% in 7 h | [350] |
TiO2-In2O3 porous structure and spherical morphology (anatase phase) | 1 mol% In2O3/TiO2 | 0.02 g | UAS assisted method | 10 ppm MO (20 mL) | Visible light | 26% in 5 h for pure In2O3 | ~98% within 5 h | [411] |
TiO2-In2O3 porous structure and spherical morphology (anatase phase) | 1 mol% In2O3/TiO2 | 0.02 g | UAS assisted method | 10 ppm RhB (20 mL) | Visible light | 18% in 3 h for pure In2O3 | 95% within 3 h | [411] |
Ga3+-TiO2 nanoparticles (anatase phase) | 0.5 wt% Ga3+-TiO2 | - | Ultrasonic irradiation | 20 ppm Phenol (100 mL) | Solar | 0.0052 min−1 in 180 min | 0.021 min−1 and ~4 times higher activity than unmodified TiO2 | [418] |
Ga-TiO2/rGO nanoparticles (mixed anatase and rutile phases) | 1.0 wt% Ga-TiO2/rGO | 0.01 g | Simple synthesis process | 10 mg/L RB dye (-) | Visible light | 0.0015 min−1 in 180 min | 0.0029 min−1 in 180 min | [428] |
Ga2O3-TiO2 nanoparticles (anatase phase) | 0.1% Ga2O3-TiO2 | 0.05 g | Sol–gel method | 0.08 mmol/L Imazapyr (100 mL) | UV | 19% in 180 min for mesoporous Ga2O3. | 98% within 180 min (10 times higher than the mesoporous Ga2O3). The photodegradation efficiency of imazapyr continues to maintain over 95% after five cycles. | [429] |
Al-TiO2 nanoparticles (anatase to rutile phase) | 0.25% Al-TiO2 | 2 g/L | Impregnation method | 10−6 M MB (100 mL) | LED lamp | 75% within 60 min for P-25 | - | [430] |
Al-TiO2 nanoparticles (anatase to rutile) | 0.25% Al-TiO2 | 0.5 g/L | Impregnation method | 10−6 M MB (100 mL) | LED lamp | - | 80% in 60 min | [430] |
Al-TiO2 nanoparticles (anatase to rutile) | 0.25% Al-TiO2 | 1 g/L | Impregnation method | MB (100 mL) | LED lamp | - | 85% in 60 min | [430] |
Sn-TiO2 nanoparticles (anatase to rutile) | 1% Sn-TiO2 | 0.2 g | Sol–gel method | 600 ppm DES (-) | Solar light | 38% in 90 min,48% in 180 min | ~100% in 90 min, 75% in 150 min | [431] |
Sn-TiO2 nanoparticles (anatase to rutile phase) | 5 mol% Sn-TiO2 | 0.005 g | Sol–gel method | 10 mg/L MB (25 mL) | Solar lamp | 98% within 60 min for TiO2-NTs, 94% within 60 min for TiO2–P25 | 98% (reaction rate of 0.1215 min−1 which is 1.8 and 2.7 times as much as those of TiO2-NTs and TiO2−P, respectively) within 30 min | [432] |
Sn-TiO2 nanoparticles (anatase to rutile phase) | 1 mol% Sn-TiO2 | 0.3 g | Sol−gel method | 10 mg/L RhB (300 mL) | UV | 46.2% within 180 min | 99.5% (0.02732 min−1) within 180 min | [433] |
Sn-TiO2 Hollow Spheres | 1 mol% Sn-TiO2 | 0.025 g | Sol−gel method templated by polystyrene spheres | 0.00385 g/L MO (50 mL) | UV | ~55% within 240 min | ~72% within 240 min | [434] |
SnO2-TiO2 nanoparticles (anatase to rutile phase) | 1% Sn-TiO2 | 1 g/L | Sonication–impregnation method | 10 mg/L TC (-) | Visible light | - | 95% within 15 min, 81–95% within 20 min | [435] |
Sn-TiO2 nanoparticles (anatase phase) | 0.20 ± 0.03% Sn-TiO2 | - | Washcoating method | ERY (1 L) | UV-A | ~18% within 240 min | 67% within 240 min, 50% within 2280 min | [436] |
Sn-TiO2 nanoparticles | 5% Sn-TiO2 | 0.8 g/L | Hydrothermal method | 10 mg/L DCF (-) | UV | ~62% within 300 min | 89% within 300 min 53% after 4 cycles (1200 min) | [437] |
Sn-TiO2 nanoparticles | 1 mol% Sn-TiO2 | 0.2 g | Sol−gel method | 40 ppm 2,4-DCA (-) | UV | 77% within 180 min | 93% (16.8 × 10−3 min−1) within 180 min | [438] |
Al3+/TiO2 nanoparticles (mixed anatase and brookite phases) | 0.5 mol% Al3+/TiO2 | 1 g/L | Sol−gel method | 10−4 M PNP (100 mL) | UV/Visible light | 50 and 20% under UV/Visible and visible light, respectively for Degussa P25 within 8 h, | 64 and 24% under UV/Visible and visible light, respectively within 8 h | [127] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, D.; Otitoju, T.A.; Ouyang, Y.; Shoparwe, N.F.; Wang, S.; Zhang, A.; Li, S. A Review on Metal Ions Modified TiO2 for Photocatalytic Degradation of Organic Pollutants. Catalysts 2021, 11, 1039. https://doi.org/10.3390/catal11091039
Jiang D, Otitoju TA, Ouyang Y, Shoparwe NF, Wang S, Zhang A, Li S. A Review on Metal Ions Modified TiO2 for Photocatalytic Degradation of Organic Pollutants. Catalysts. 2021; 11(9):1039. https://doi.org/10.3390/catal11091039
Chicago/Turabian StyleJiang, Dafu, Tunmise Ayode Otitoju, Yuanyuan Ouyang, Noor Fazliani Shoparwe, Song Wang, Ailing Zhang, and Sanxi Li. 2021. "A Review on Metal Ions Modified TiO2 for Photocatalytic Degradation of Organic Pollutants" Catalysts 11, no. 9: 1039. https://doi.org/10.3390/catal11091039
APA StyleJiang, D., Otitoju, T. A., Ouyang, Y., Shoparwe, N. F., Wang, S., Zhang, A., & Li, S. (2021). A Review on Metal Ions Modified TiO2 for Photocatalytic Degradation of Organic Pollutants. Catalysts, 11(9), 1039. https://doi.org/10.3390/catal11091039