A Rapid Sintering Method for Cerium Nitride Pellet: A Uranium Mononitride Surrogate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Green Body Fabrication
2.3. Rapid Sintering
2.4. Characterization
3. Results
3.1. Ball-Milled Powder
3.2. As-Sintered Pellets
4. Discussion
4.1. Rapid Sintering Mechanism
4.2. Maximum Sintering Temperature
4.3. Oxidation Effect
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Watkins, J.K.; Gonzales, A.; Wagner, A.R.; Sooby, E.S.; Jaques, B.J. Challenges and Opportunities to Alloyed and Composite Fuel Architectures to Mitigate High Uranium Density Fuel Oxidation: Uranium Mononitride. J. Nucl. Mater. 2021, 553, 153048. [Google Scholar] [CrossRef]
- Dell, R.M.; Wheeler, V.J.; Mciver, E.J. Oxidation of Uranium Mononitride and Uranium Monocarbide. Trans. Faraday Soc. 1966, 62, 3591–3606. [Google Scholar] [CrossRef]
- Metroka, R.R. Fabrication of Uranium Mononitride Compacts; National Aeronautics and Space Administration: Cleveland, OH, USA, 1970. [Google Scholar]
- Johnson, K.; Ström, V.; Wallenius, J.; Lopes, D.A. Oxidation of Accident Tolerant Fuel Candidates. J. Nucl. Sci. Technol. 2017, 54, 280–286. [Google Scholar] [CrossRef]
- Choi, J.; Ebbinghaus, B.; Livermore, M.-L. Laboratory Directed Research and Development (LDRD) on Mono-Uranium Nitride Fuel Development for SSTAR and Space Applications; Lawrence Livermore National Lab (LLNL): Livermore, CA, USA, 2006. [Google Scholar]
- Johnson, K.D.; Wallenius, J.; Jolkkonen, M.; Claisse, A. Spark Plasma Sintering and Porosity Studies of Uranium Nitride. J. Nucl. Mater. 2016, 473, 13–17. [Google Scholar] [CrossRef]
- Butt, D.P.; Jaques, B. Synthesis and Optimization of the Sintering Kinetics of Actinide Nitrides; Boise State University: Boise, ID, USA, 2009. [Google Scholar]
- Jaques, B.J.; Watkins, J.; Croteau, J.R.; Alanko, G.A.; Tyburska-Pueschel, B.; Meyer, M.; Xu, P.; Lahoda, E.J.; Butt, D.P. Synthesis and Sintering of UN-UO2 Fuel Composites. J. Nucl. Mater. 2015, 466, 745. [Google Scholar] [CrossRef] [Green Version]
- Yamasaki, K.; Tamaki, Y.; Takano, M.; Akabori, M.; Minatq, K.; Arai, Y.; Takano, M.; Minato, K. Fabrication of Lanthanide Nitride Pellets and Simulated Burnup Fuels. In Proceedings of the Symposium on Nitride Fuel Cycle Technology, Kashiwa, Japan, 28 July 2004. [Google Scholar]
- Munir, Z.A.; Quach, D.V.; Ohyanagi, M. Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process. J. Am. Ceram. Soc. 2011, 94, 1–19. [Google Scholar] [CrossRef]
- Saka, H.; Kamino, T.; Arai, S.; Sasaki, K. In Situ Heating Transmission Electron Microscopy. MRS Bull. 2008, 33, 93–100. [Google Scholar] [CrossRef]
- Li Phuah, X.; Jian, J.; Wang, H.; Wang, X.; Zhang, X.; Wang, H. Ultra-High Heating Rate Effects on the Sintering of Ceramic Nanoparticles: An in situ TEM Study. Mater. Res. Lett. 2021, 9, 373–381. [Google Scholar] [CrossRef]
- Yu, M.; Grasso, S.; Mckinnon, R.; Saunders, T.; Reece, M.J. Review of Flash Sintering: Materials, Mechanisms and Modelling. Adv. Appl. Ceram. 2017, 116, 24–60. [Google Scholar] [CrossRef] [Green Version]
- Cologna, M.; Francis, J.S.C.; Raj, R. Field Assisted and Flash Sintering of Alumina and Its Relationship to Conductivity and MgO-Doping. J. Eur. Ceram. Soc. 2011, 31, 2827–2837. [Google Scholar] [CrossRef]
- Ji, W.; Parker, B.; Falco, S.; Zhang, J.Y.; Fu, Z.Y.; Todd, R.I. Ultra-Fast Firing: Effect of Heating Rate on Sintering of 3YSZ, with and without an Electric Field. J. Eur. Ceram. Soc. 2017, 37, 2547–2551. [Google Scholar] [CrossRef]
- Ji, W.; Zhang, J.; Wang, W.; Fu, Z.; Todd, R. The Microstructural Origin of Rapid Densification in 3YSZ during Ultra-Fast Firing with or without an Electric Field. J. Eur. Ceram. Soc. 2020, 40, 5829–5836. [Google Scholar] [CrossRef]
- Grasso, S.; Sakka, Y.; Rendtorff, N.; Hu, C.; Maizza, G.; Borodianska, H.; Vasylkiv, O. Modeling of the Temperature Distribution of Flash Sintered Zirconia. J. Ceram. Soc. Jpn. 2011, 119, 144–146. [Google Scholar] [CrossRef] [Green Version]
- Eqbal, A.; Arya, K.S.; Chakrabarti, T. In-Depth Study of the Evolving Thermal Runaway and Thermal Gradient in the Dog Bone Sample during Flash Sintering Using Finite Element Analysis. Ceram. Int. 2020, 46, 10370–10378. [Google Scholar] [CrossRef]
- Wang, C.; Ping, W.; Bai, Q.; Cui, H.; Hensleigh, R.; Wang, R.; Brozena, A.H.; Xu, Z.; Dai, J.; Pei, Y.; et al. A General Method to Synthesize and Sinter Bulk Ceramics in Seconds. Science 2020, 368, 521–526. [Google Scholar] [CrossRef]
- Olson, W.M.; Mulford, R.N.R. The Decomposition Pressure and Melting Point of Uranium Mononitride. J. Phys. Chem. 1963, 67, 952–954. [Google Scholar] [CrossRef]
- O’Dell, K.D.; Hensley, E.B. The Decomposition Pressure, Congruent Melting Point and Electrical Resistivity of Cerium Nitride. J. Phys. Chem. Solids 1972, 33, 443–449. [Google Scholar] [CrossRef]
- Hayes, S.L.; Thomas, J.K.; Peddicord, K.L. Material Property Correlations for Uranium Mononitride I. Physical Properties. J. Nucl. Mater. 1990, 171, 262–270. [Google Scholar] [CrossRef]
- Schram, R.P.C.; Boshoven, J.G.; Cordfunke, E.H.P.; Konings, R.J.M.; van der Laan, R.R. Enthalpy Increment Measurements of Cerium Mononitride, CeN. J. Alloys Compd. 1997, 252, 20–23. [Google Scholar] [CrossRef]
- Suzuki, Y.; Arai, Y. Thermophysical and Thermodynamic Properties of Actinide Mononitrides and Their Solid Solutions. J. Alloys Compd. 1998, 271–273, 577–582. [Google Scholar] [CrossRef]
- Cavender, D.P.; Mireles, O.R.; Frendi, A. Design of a Uranium Dioxide Spheroidization System. In Proceedings of the Proceedings of Nuclear and Emerging Technologies for Space, Albuquerque, NM, USA, 25 February 2013. [Google Scholar]
- Porfirio, T.C.; Muccillo, E.N.S.; Muccillo, R. Electric Field-Assisted Synthesis/Sintering Cerium Oxide: 5 Wt.% Gadolinium Oxide. J. Eur. Ceram. Soc. 2021, 41, 7105–7110. [Google Scholar] [CrossRef]
- Roleček, J.; Foral, Š.; Katovský, K.; Salamon, D. A Feasibility Study of Using CeO2 as a Surrogate Material during the Investigation of UO2 Thermal Conductivity Enhancement. Adv. Appl. Ceram. 2017, 116, 123–131. [Google Scholar] [CrossRef]
- Wan, Y.; Yi, T.; Fu, Y.; Zheng, F.; Yang, M.; He, Z.; Cao, L. Structure and Oxidation Properties of CeN Thin Films Prepared by DC Reactive Magnetron Sputtering. Surf. Coat Technol. 2020, 381, 125168. [Google Scholar] [CrossRef]
- Rogozkin, B.D.; Stepennova, N.M.; Bergman, G.A.; Proshkin, A.A. Thermochemical Stability, Radiation Testing, Fabrication, And Reprocessing of Mononitride Fuel. At. Énergiya 2003, 95, 428–438. [Google Scholar] [CrossRef]
- Lide, D.R.; Baysinger, G.; Berger, L.I.; Goldberg, R.N.; Kehiaian, H.V.; Kuchitsu, K.; Roth, D.L.; Zwillinger, D. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2004; Volume 85. [Google Scholar]
- Jorge, A.B.; Fraxedas, J.; Cantarero, A.; Williams, A.J.; Rodgers, J.; Attfield, J.P.; Fuertes, A. Nitrogen Doping of Ceria. Chem. Mater. 2008, 20, 1682–1684. [Google Scholar] [CrossRef]
- Gschneidner, K.A., Jr.; Verkade, M.E. Selected Cerium Phase Diagrams; White Plains: New York, NY, USA, 1975; p. 10604. [Google Scholar]
- Sharan, A.; Lany, S. Computational Discovery of Stable and Metastable Ternary Oxynitrides. J. Chem. Phys. 2021, 154, 234706. [Google Scholar] [CrossRef]
Maximum Temperature °C | Number of Attempts | Result |
---|---|---|
2500 | 2 | Melted |
2200 | 1 | Melted |
2000 | 2 | Melted |
1900 | 1 | Melted |
1850 | 1 | Melted |
1800 | 11 | 92–98%TD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joyce, L.; Xie, Y. A Rapid Sintering Method for Cerium Nitride Pellet: A Uranium Mononitride Surrogate. Ceramics 2022, 5, 1009-1018. https://doi.org/10.3390/ceramics5040072
Joyce L, Xie Y. A Rapid Sintering Method for Cerium Nitride Pellet: A Uranium Mononitride Surrogate. Ceramics. 2022; 5(4):1009-1018. https://doi.org/10.3390/ceramics5040072
Chicago/Turabian StyleJoyce, Logan, and Yi Xie. 2022. "A Rapid Sintering Method for Cerium Nitride Pellet: A Uranium Mononitride Surrogate" Ceramics 5, no. 4: 1009-1018. https://doi.org/10.3390/ceramics5040072
APA StyleJoyce, L., & Xie, Y. (2022). A Rapid Sintering Method for Cerium Nitride Pellet: A Uranium Mononitride Surrogate. Ceramics, 5(4), 1009-1018. https://doi.org/10.3390/ceramics5040072