Framework of Meta-Heuristic Variable Length Searching for Feature Selection in High-Dimensional Data
Abstract
:1. Introduction
2. Literature Survey
3. Methodology
3.1. Genetic Optimization
Algorithm 1: Pseudocode of genetic optimization: |
|
3.2. Particle Swarm Optimization
- denotes the inertia;
- , denotes constants;
- , denotes random numbers between 0 and 1;
- denotes best local of solution at moment ;
- denotes best global of solution at moment .
Algorithm 2: Pseudocode of particle swarm optimization: |
|
3.3. Variable Length Variants
3.3.1. Variable Length Particle Swarm Optimization
- denotes the population size;
- denotes the rank of particle .
Algorithm 3: The pseudocode of exemplar assignment: |
|
- denotes the number of particles in each division;
- denotes the population size;
- denotes the number of divisions;
- denotes the maximum length or the dimensionality of the problem.
3.3.2. Variable Length Genetic Optimization
3.3.3. Variable Length Black-Hole Optimization
Algorithm 4: The General algorithm of variable length black hole optimization: |
|
4. Experimental Results and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sahmoud, S.; Topcuoglu, H.R. A general framework based on dynamic multi-objective evolutionary algorithms for handling feature drifts on data streams. Futur. Gener. Comput. Syst. 2020, 102, 42–52. [Google Scholar] [CrossRef]
- Solorio-Fernández, S.; Carrasco-Ochoa, J.A.; Martínez-Trinidad, J.F. A review of unsupervised feature selection methods. Artif. Intell. Rev. 2020, 53, 907–948. [Google Scholar] [CrossRef]
- Tran, B.; Xue, B.; Zhang, M. Variable-Length Particle Swarm Optimization for Feature Selection on High-Dimensional Classification. IEEE Trans. Evol. Comput. 2018, 23, 473–487. [Google Scholar] [CrossRef]
- Zebari, R.; AbdulAzeez, A.; Zeebaree, D.; Zebari, D.; Saeed, J. A Comprehensive Review of Dimensionality Reduction Techniques for Feature Selection and Feature Extraction. J. Appl. Sci. Technol. Trends 2020, 1, 56–70. [Google Scholar] [CrossRef]
- Mafarja, M.; Mirjalili, S. Whale optimization approaches for wrapper feature selection. Appl. Soft Comput. 2018, 62, 441–453. [Google Scholar] [CrossRef]
- Zhang, J.; Xiong, Y.; Min, S. A new hybrid filter/wrapper algorithm for feature selection in classification. Anal. Chim. Acta 2019, 1080, 43–54. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, M.; Liu, Q. An embedded feature selection method for imbalanced data classification. IEEE/CAA J. Autom. Sin. 2019, 6, 703–715. [Google Scholar] [CrossRef]
- Qiao, W.; Yang, Z. Solving Large-Scale Function Optimization Problem by Using a New Metaheuristic Algorithm Based on Quantum Dolphin Swarm Algorithm. IEEE Access 2019, 7, 138972–138989. [Google Scholar] [CrossRef]
- Hitomi, N.; Selva, D. Constellation optimization using an evolutionary algorithm with a variable-length chromosome. In Proceedings of the 2018 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2018; pp. 1–12. [Google Scholar]
- Xiao, X.; Yan, M.; Basodi, S.; Ji, C.; Pan, Y. Efficient hyperparameter optimization in deep learning using a variable length genetic algorithm. arXiv 2020, arXiv:arXiv:12703. [Google Scholar]
- Wang, B.; Sun, Y.; Xue, B.; Zhang, M. A hybrid differential evolution approach to designing deep convolutional neural networks for image classification. In Australasian Joint Conference on Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2018; pp. 237–250. [Google Scholar]
- Kadlec, P.; Šeděnka, V. Particle swarm optimization for problems with variable number of dimensions. Eng. Optim. 2018, 50, 382–399. [Google Scholar] [CrossRef]
- Kunakote, T.; Sabangban, N.; Kumar, S.; Tejani, G.G.; Panagant, N.; Pholdee, N.; Bureerat, S.; Yildiz, A.R. Comparative Performance of Twelve Metaheuristics for Wind Farm Layout Optimisation. Arch. Comput. Methods Eng. 2022, 29, 717–730. [Google Scholar] [CrossRef]
- Jubair, A.M.; Hassan, R.; Aman, A.H.M.; Sallehudin, H. Social class particle swarm optimization for variable-length Wireless Sensor Network Deployment. Appl. Soft Comput. 2021, 113, 107926. [Google Scholar] [CrossRef]
- Jalili, S.; Khani, R.; Maheri, A.; Hosseinzadeh, Y. Performance assessment of meta-heuristics for composite layup optimisation. Neural Comput. Appl. 2022, 34, 2031–2054. [Google Scholar] [CrossRef]
- Al-Helali, B.; Chen, Q.; Xue, B.; Zhang, M. Genetic programming-based selection of imputation methods in symbolic regression with missing values. In Australasian Joint Conference on Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2020; pp. 163–175. [Google Scholar]
- Ryerkerk, M.; Averill, R.; Deb, K.; Goodman, E. A survey of evolutionary algorithms using metameric representations. Genet. Program. Evolvable Mach. 2019, 20, 441–478. [Google Scholar] [CrossRef]
- Ryerkerk, M.; Averill, R.; Deb, K.; Goodman, E. A novel selection mechanism for evolutionary algorithms with metameric variable-length representations. Soft Comput. 2020, 24, 16439–16452. [Google Scholar] [CrossRef]
- Dwivedi, P.; Kant, V.; Bharadwaj, K.K. Learning path recommendation based on modified variable length genetic algorithm. Educ. Inf. Technol. 2018, 23, 819–836. [Google Scholar] [CrossRef]
- Lamini, C.; Benhlima, S.; Elbekri, A. Genetic Algorithm Based Approach for Autonomous Mobile Robot Path Planning. Procedia Comput. Sci. 2018, 127, 180–189. [Google Scholar] [CrossRef]
- Maulik, U.; Mukhopadhyay, A.; Bandyopadhyay, S. Finding multiple coherent biclusters in microarray data using variable string length multiobjective genetic algorithm. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 969–975. [Google Scholar] [CrossRef]
- Cruz-Piris, L.; Marsa-Maestre, I.; Lopez-Carmona, M.A. A Variable-Length Chromosome Genetic Algorithm to Solve a Road Traffic Coordination Multipath Problem. IEEE Access 2019, 7, 111968–111981. [Google Scholar] [CrossRef]
- Huang, P.-Q.; Wang, Y.; Wang, K.; Yang, K. Differential Evolution with a Variable Population Size for Deployment Optimization in a UAV-Assisted IoT Data Collection System. IEEE Trans. Emerg. Top. Comput. Intell. 2019, 4, 324–335. [Google Scholar] [CrossRef]
- Mohammadi, A.; Zahiri, S.H.; Razavi, S.M.; Suganthan, P.N. Design and modeling of adaptive IIR filtering systems using a weighted sum—Variable length particle swarm optimization. Appl. Soft Comput. 2021, 109, 107529. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, X. A Novel Network Planning Algorithm of Three-Dimensional Dense Networks Based on Adaptive Variable-Length Particle Swarm Optimization. IEEE Access 2019, 7, 45940–45950. [Google Scholar] [CrossRef]
- Dantzig, G.B.; Ramser, J.H. The Truck Dispatching Problem. Manag. Sci. 1959, 6, 80–91. [Google Scholar] [CrossRef]
- Takshi, H.; Dogan, G.; Arslan, H. Joint Optimization of Device to Device Resource and Power Allocation Based on Genetic Algorithm. IEEE Access 2018, 6, 21173–21183. [Google Scholar] [CrossRef]
- Han, J.-H.; Choi, D.-J.; Park, S.-U.; Hong, S.-K. Hyperparameter Optimization Using a Genetic Algorithm Considering Verification Time in a Convolutional Neural Network. J. Electr. Eng. Technol. 2020, 15, 721–726. [Google Scholar] [CrossRef]
- Ryerkerk, M.L.; Averill, R.C.; Deb, K.; Goodman, E.D. Solving metameric variable-length optimization problems using genetic algorithms. Genet. Program. Evolvable Mach. 2016, 18, 247–277. [Google Scholar] [CrossRef]
- Qadir, T.O.; Fuad, N.; Taujuddin, N.S.A.M. Variable Length Black Hole for Optimization and Feature Selection. IEEE Access 2022, 10, 63855–63866. [Google Scholar] [CrossRef]
- Li, Q.Q.; He, Z.C.; Li, E. The feedback artificial tree (FAT) algorithm. Soft Comput. 2020, 24, 17. [Google Scholar] [CrossRef]
Author | Algorithm | Application | Operator |
---|---|---|---|
[19] | Variable length genetic | Learning path recommendation | Modified double-point crossover |
[20] | Variable length genetic | Mobile Robot Path Planning | improved crossover operators |
[21] | multiobjective genetic with variable length chromosome | Biclustering | Selection, crossover and mutation |
[22] | genetic algorithm with variable length chromosomes | vehicle coordination multipath problem in intersections | selection, crossover and mutation operators with supporting variable length chromosome |
[23] | Variable length genetic algorithm | UAV deployment for IoT data collection | Modified crossover and mutation |
[3] | Variable length particle swarm optimization | High-Dimensional Classification | enabling particles to have different and shorter lengths |
[24] | Variable length particle swarm optimization | Feature Selection on High-Dimensional Classification | Length-changing mechanism |
[12] | Variable length particle swarm optimization | spaces with a variable number of dimensions | Modified mobility equation to change the length of the variable |
[25] | adaptive variable length particle swarm optimization | optimization problem with the objective of minimizing the number of small base stations (SBSs) while satisfying both coverage and capacity constraints | Modified mobility equation |
Parameter | VLBHO-Fitness | VLBHO-Position | VLPSO | Gavl |
---|---|---|---|---|
Population size | 40 | 40 | 40 | 40 |
Iterations | 50 | 50 | 50 | 50 |
Min-length | 1 | 1 | 1 | 1 |
Max-length | 10 | 10 | 10 | 10 |
Number of divisions | 10 | 10 | 10 | - |
W | - | - | 0.5 | - |
C | - | - | 0.5 | - |
Alpha | - | - | 7 | - |
Beta | 4 | 4 | 4 | - |
Emax | 10 | 10 | - | - |
Emin | 10−³ | 10−³ | - | - |
EH | 2 | 2 | - | - |
Time_window_length | 5 | 5 | - | - |
T | 5 | 5 | - | - |
elitism_rate | - | - | - | 0.1 |
mutation_rate | - | - | - | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saraf, T.O.Q.; Fuad, N.; Taujuddin, N.S.A.M. Framework of Meta-Heuristic Variable Length Searching for Feature Selection in High-Dimensional Data. Computers 2023, 12, 7. https://doi.org/10.3390/computers12010007
Saraf TOQ, Fuad N, Taujuddin NSAM. Framework of Meta-Heuristic Variable Length Searching for Feature Selection in High-Dimensional Data. Computers. 2023; 12(1):7. https://doi.org/10.3390/computers12010007
Chicago/Turabian StyleSaraf, Tara Othman Qadir, Norfaiza Fuad, and Nik Shahidah Afifi Md Taujuddin. 2023. "Framework of Meta-Heuristic Variable Length Searching for Feature Selection in High-Dimensional Data" Computers 12, no. 1: 7. https://doi.org/10.3390/computers12010007
APA StyleSaraf, T. O. Q., Fuad, N., & Taujuddin, N. S. A. M. (2023). Framework of Meta-Heuristic Variable Length Searching for Feature Selection in High-Dimensional Data. Computers, 12(1), 7. https://doi.org/10.3390/computers12010007