Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,354)

Search Parameters:
Keywords = meta-heuristic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6474 KB  
Article
Symmetry-Aware EKV-Based Metaheuristic Optimization of CMOS LC-VCOs for Low-Phase-Noise Applications
by Abdelaziz Lberni, Malika Alami Marktani, Abdelaziz Ahaitouf and Ali Ahaitouf
Symmetry 2025, 17(10), 1693; https://doi.org/10.3390/sym17101693 - 9 Oct 2025
Abstract
The integration of AI-driven optimization into Electronic Design Automation (EDA) enables smarter and more adaptive circuit design, where symmetry and asymmetry play key roles in balancing performance, robustness, and manufacturability. This work presents a model-driven optimization methodology for sizing low-phase-noise LC voltage-controlled oscillators [...] Read more.
The integration of AI-driven optimization into Electronic Design Automation (EDA) enables smarter and more adaptive circuit design, where symmetry and asymmetry play key roles in balancing performance, robustness, and manufacturability. This work presents a model-driven optimization methodology for sizing low-phase-noise LC voltage-controlled oscillators (VCOs) at 5 GHz, targeting Wi-Fi, 5G, and automotive radar applications. The approach uses the EKV transistor model for analytical CMOS device characterization and applies a diverse set of metaheuristic algorithms for both single-objective (phase noise minimization) and multi-objective (joint phase noise and power) optimization. A central focus is on how symmetry—embedded in the complementary cross-coupled LC-VCO topology—and asymmetry—introduced by parasitics, mismatch, and layout constraints—affect optimization outcomes. The methodology implicitly captures these effects during simulation-based optimization, enabling design-space exploration that is both symmetry-aware and robust to unavoidable asymmetries. Implemented in CMOS 180 nm technology, the approach delivers designs with improved phase noise and power efficiency while ensuring manufacturability. Yield analysis confirms that integrating symmetry considerations into metaheuristic-based optimization enhances performance predictability and resilience to process variations, offering a scalable, AI-aligned solution for high-performance analog circuit design within EDA workflows. Full article
(This article belongs to the Special Issue AI-Driven Optimization for EDA: Balancing Symmetry and Asymmetry)
Show Figures

Figure 1

41 pages, 7490 KB  
Article
Harnessing TabTransformer Model and Particle Swarm Optimization Algorithm for Remote Sensing-Based Heatwave Susceptibility Mapping in Central Asia
by Antao Wang, Linan Sun and Huicong Jia
Atmosphere 2025, 16(10), 1166; https://doi.org/10.3390/atmos16101166 - 7 Oct 2025
Abstract
This study pioneers a fully remote sensing-based framework for mapping heatwave susceptibility, integrating the TabTransformer deep learning model with Particle Swarm Optimization (PSO) for robust hyperparameter tuning. The central question addressed is whether a fully remote sensing-driven, PSO-optimized TabTransformer can achieve accurate, scalable, [...] Read more.
This study pioneers a fully remote sensing-based framework for mapping heatwave susceptibility, integrating the TabTransformer deep learning model with Particle Swarm Optimization (PSO) for robust hyperparameter tuning. The central question addressed is whether a fully remote sensing-driven, PSO-optimized TabTransformer can achieve accurate, scalable, and spatially detailed heatwave susceptibility mapping in data-scarce regions such as Central Asia. Utilizing ERA5-derived heatwave evidence and thirteen environmental and socio-economic predictors, the workflow produces high-resolution susceptibility maps spanning five Central Asian countries. Comparative analysis evidences that the PSO-optimized TabTransformer model outperforms the baseline across multiple metrics. On the test set, the optimized model achieved an RMSE of 0.123, MAE of 0.034, and R2 of 0.938, outperforming the standalone TabTransformer (RMSE = 0.132, MAE = 0.038, R2 = 0.93). Discriminative capacity also improved, with AUROC increasing from 0.933 to 0.940. The PSO-tuned model delivered faster convergence, lower final loss, and more stable accuracy during training and validation. Spatial outputs reveal heightened susceptibility in southern and southwestern sectors—Turkmenistan, Uzbekistan, southern Kazakhstan, and adjacent lowlands—with statistically significant improvements in spatial precision and class delineation confirmed by Chi-squared, Friedman, and Wilcoxon tests, all with congruent p-values of <0.0001. Feature importance analysis consistently identifies maximum temperature, frequency of hot days, and rainfall as dominant predictors. These advancements validate the potential of data-driven, deep learning approaches for reliable, scalable environmental hazard assessment, crucial for climate adaptation planning in vulnerable regions. Full article
Show Figures

Figure 1

37 pages, 9471 KB  
Article
Mathematical Approach Integrating Surrogate Models in Heuristic Optimization for Gabion Retaining Wall Design
by Esra Uray and Zong Woo Geem
Mathematics 2025, 13(19), 3216; https://doi.org/10.3390/math13193216 - 7 Oct 2025
Viewed by 43
Abstract
This study focuses on the mathematical method developed by integrating the surrogate model as constraints for wall stability into the heuristic optimization algorithm to gain the optimum cost and CO2 emission value of the gabion retaining wall (GRW). This study also includes [...] Read more.
This study focuses on the mathematical method developed by integrating the surrogate model as constraints for wall stability into the heuristic optimization algorithm to gain the optimum cost and CO2 emission value of the gabion retaining wall (GRW). This study also includes the comparison of optimum GRW results with optimum cantilever retaining wall (CRW) designs for different design cases. The Harmony Search Algorithm (HSA), which efficiently explores the design space and robustly reaches the optimum result in solving optimization problems, was used as the heuristic optimization algorithm. The primary construction scenario was considered as an optimization problem, which involved excavating the slope, constructing the wall, and compacting the backfill soil to minimize the cost and CO2 emissions for separate objective functions of GRW and CRW designs. Comparative results show that GRWs outperform CRWs in terms of sustainability and cost-efficiency, achieving 55% lower cost and 78% lower CO2 emissions on average, while the HSA–surrogate model provides a fast and accurate solution for geotechnical design problems. The surrogate models for sliding, overturning, and slope stability safety factors of GRW exhibited exceptional accuracy, characterized by minimal error values (MSE, RMSE, MAE, MAPE) and robust determination coefficients (R20.99), hence affirming their dependability in safety factor assessment. By integrating the surrogate model based on the statistical method into the optimization algorithm, a quick examination of the wall’s stability was performed, reducing the required computational power. Full article
Show Figures

Figure 1

22 pages, 1741 KB  
Article
Profit Optimization in Multi-Unit Construction Projects Under Variable Weather Conditions: A Wind Farm Case Study
by Michał Podolski, Jerzy Rosłon and Bartłomiej Sroka
Appl. Sci. 2025, 15(19), 10769; https://doi.org/10.3390/app151910769 - 7 Oct 2025
Viewed by 67
Abstract
This paper introduces a novel scheduling model that integrates weather-based productivity coefficients into multi-unit construction projects, aiming to enhance profit and reduce delays. The method is suitable especially for renewable energy, open-area projects. The authors propose a flow-shop optimization framework that considers key [...] Read more.
This paper introduces a novel scheduling model that integrates weather-based productivity coefficients into multi-unit construction projects, aiming to enhance profit and reduce delays. The method is suitable especially for renewable energy, open-area projects. The authors propose a flow-shop optimization framework that considers key aspects of construction contracts, e.g., contractual penalties, downtime losses, and cash flow constraints. A proprietary Tabu Search (TS) metaheuristic algorithm variant is used to solve the resulting NP-hard problem. Numerical experiments on multiple test sets indicate that the TS algorithm consistently outperforms other methods in finding higher-profit schedules. A real-world wind farm case study further demonstrates substantial improvements, transforming an initially loss-making operation into a profitable venture. By explicitly accounting for weather disruptions within a formalized scheduling model, this work advances the understanding of reliable project planning under uncertain environmental conditions. The solution framework offers contractors an effective tool for mitigating scheduling risks and optimizing resource usage. The integration of weather data and cash flow management increases the likelihood of on-time and on-budget project delivery. Full article
Show Figures

Figure 1

19 pages, 360 KB  
Article
Optimal Planning and Dynamic Operation of Thyristor-Switched Capacitors in Distribution Networks Using the Atan-Sinc Optimization Algorithm with IPOPT Refinement
by Oscar Danilo Montoya, Luis Fernando Grisales-Noreña and Rubén Iván Bolaños
Sci 2025, 7(4), 143; https://doi.org/10.3390/sci7040143 - 7 Oct 2025
Viewed by 59
Abstract
This paper proposes an innovative hybrid optimization framework for the optimal installation and operation of thyristor-switched capacitors (TSCs) within medium-voltage distribution networks, targeting both energy losses reduction and cost efficiency. The core of the approach combines the exploratory capabilities of the atan-sinc optimization [...] Read more.
This paper proposes an innovative hybrid optimization framework for the optimal installation and operation of thyristor-switched capacitors (TSCs) within medium-voltage distribution networks, targeting both energy losses reduction and cost efficiency. The core of the approach combines the exploratory capabilities of the atan-sinc optimization algorithm (ASOA), a recent metaheuristic inspired by mathematical functions, with the local refinement power of the IPOPT solver within a master–slave architecture. This integrated method addresses the inherent complexity of a multi-objective, mixed-integer nonlinear programming problem that seeks to balance conflicting goals: minimizing annual system losses and investment costs. Extensive testing on IEEE 33- and 69-bus systems under fixed and dynamic reactive power injection scenarios demonstrates that our framework consistently delivers superior solutions when compared to traditional and state-of-the-art algorithms. Notably, the variable operation case yields energy savings of up to 12%, translating into annual monetary gains exceeding USD 1000 in comparison with the fixed support scenario.The solutions produce well-distributed Pareto fronts that illustrate valuable trade-offs, allowing system planners to make informed decisions. The findings confirm that the proposed strategy constitutes a scalable, and robust tool for reactive power planning, supporting the deployment of smarter and more resilient distribution systems. Full article
(This article belongs to the Section Computer Sciences, Mathematics and AI)
Show Figures

Figure 1

20 pages, 3266 KB  
Article
A Simulated Annealing Approach for the Homogeneous Capacitated Vehicle Routing Problem
by Dalia Vanessa Arce-Ortega, Federico Alonso-Pecina, Marco Antonio Cruz-Chávez and Jesús del Carmen Peralta-Abarca
Mathematics 2025, 13(19), 3209; https://doi.org/10.3390/math13193209 - 7 Oct 2025
Viewed by 149
Abstract
This study addresses the Capacitated Vehicle Routing Problem (CVRP) known to be NP-hard. In this problem, a set of customers with varying demands is considered. To solve the problem, routes were generated for several vehicles with identical capacity, which were responsible for delivering [...] Read more.
This study addresses the Capacitated Vehicle Routing Problem (CVRP) known to be NP-hard. In this problem, a set of customers with varying demands is considered. To solve the problem, routes were generated for several vehicles with identical capacity, which were responsible for delivering products to a set of geographically dispersed customers. The purpose of the problem is to minimize the total cost of all routes. This problem was solved by applying the metaheuristic Simulated Annealing (SA) and incorporating four different neighborhoods to improve the initial solution generated randomly. In the SA, a set of cooling factors is used. The best solution obtained by SA is refined by the use of Hill Climbing using a double neighborhood. The algorithm was tested with instances from the literature in order to measure its effectiveness in solution quality and execution time. We tested the approach with 106 instances from the literature and obtained the optimum in 93 instances. The average time in most instances was less than five minutes. Delivery companies can benefit from this approach. They only need to identify the depot, the clients, and the distance between locations, and this approach can be used with relative ease. Full article
(This article belongs to the Special Issue Mathematical Programming, Optimization and Operations Research)
Show Figures

Figure 1

37 pages, 4435 KB  
Article
Federated Reinforcement Learning with Hybrid Optimization for Secure and Reliable Data Transmission in Wireless Sensor Networks (WSNs)
by Seyed Salar Sefati, Seyedeh Tina Sefati, Saqib Nazir, Roya Zareh Farkhady and Serban Georgica Obreja
Mathematics 2025, 13(19), 3196; https://doi.org/10.3390/math13193196 - 6 Oct 2025
Viewed by 107
Abstract
Wireless Sensor Networks (WSNs) consist of numerous battery-powered sensor nodes that operate with limited energy, computation, and communication capabilities. Designing routing strategies that are both energy-efficient and attack-resilient is essential for extending network lifetime and ensuring secure data delivery. This paper proposes Adaptive [...] Read more.
Wireless Sensor Networks (WSNs) consist of numerous battery-powered sensor nodes that operate with limited energy, computation, and communication capabilities. Designing routing strategies that are both energy-efficient and attack-resilient is essential for extending network lifetime and ensuring secure data delivery. This paper proposes Adaptive Federated Reinforcement Learning-Hunger Games Search (AFRL-HGS), a Hybrid Routing framework that integrates multiple advanced techniques. At the node level, tabular Q-learning enables each sensor node to act as a reinforcement learning agent, making next-hop decisions based on discretized state features such as residual energy, distance to sink, congestion, path quality, and security. At the network level, Federated Reinforcement Learning (FRL) allows the sink node to aggregate local Q-tables using adaptive, energy- and performance-weighted contributions, with Polyak-based blending to preserve stability. The binary Hunger Games Search (HGS) metaheuristic initializes Cluster Head (CH) selection and routing, providing a well-structured topology that accelerates convergence. Security is enforced as a constraint through a lightweight trust and anomaly detection module, which fuses reliability estimates with residual-based anomaly detection using Exponentially Weighted Moving Average (EWMA) on Round-Trip Time (RTT) and loss metrics. The framework further incorporates energy-accounted control plane operations with dual-format HELLO and hierarchical ADVERTISE/Service-ADVERTISE (SrvADVERTISE) messages to maintain the routing tables. Evaluation is performed in a hybrid testbed using the Graphical Network Simulator-3 (GNS3) for large-scale simulation and Kali Linux for live adversarial traffic injection, ensuring both reproducibility and realism. The proposed AFRL-HGS framework offers a scalable, secure, and energy-efficient routing solution for next-generation WSN deployments. Full article
Show Figures

Figure 1

16 pages, 2281 KB  
Article
Doing Good or Doing Better? Comparing Freelance and Employment Models for a Social Sustainable Food Delivery Sector
by Riccardo Tronconi and Francesco Pilati
Sustainability 2025, 17(19), 8876; https://doi.org/10.3390/su17198876 - 4 Oct 2025
Viewed by 234
Abstract
Delivery platforms in urban logistics connect providers with customers through distribution riders, who are usually distinguished by low incomes and limited social rights. This paper aims to compare and analyze the freelance and employment models for riders in different European countries in terms [...] Read more.
Delivery platforms in urban logistics connect providers with customers through distribution riders, who are usually distinguished by low incomes and limited social rights. This paper aims to compare and analyze the freelance and employment models for riders in different European countries in terms of social sustainability, i.e., work motivation and labor rights. To reach this goal, two activities were performed. On the one hand, qualitative interviews with German and Italian riders were carried out. On the other hand, a dynamic metaheuristic algorithm was developed and implemented to simulate an employment model with a central provider that manages order requests in real-time. The qualitative interviews indicate that riders’ motivations differ between freelance riders and employed riders: freelance riders do feel more controlled. Using a quantitative algorithm, this manuscript shows that when an efficient centralized order–rider assignment strategy is applied, a socially sustainable and simultaneously profitable employment model for food delivery businesses is possible. The results have the potential to legitimize adequate rights and salaries for riders while allowing digital platforms to operate profitably. Such win–win situations could support the implementation of platform structures across different logistics sectors and overcome conflicts regarding working rights in such contexts. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

24 pages, 1040 KB  
Article
The SIOA Algorithm: A Bio-Inspired Approach for Efficient Optimization
by Vasileios Charilogis, Ioannis G. Tsoulos, Dimitrios Tsalikakis and Anna Maria Gianni
AppliedMath 2025, 5(4), 135; https://doi.org/10.3390/appliedmath5040135 - 4 Oct 2025
Viewed by 158
Abstract
The Sporulation-Inspired Optimization Algorithm (SIOA) is an innovative metaheuristic optimization method inspired by the biological mechanisms of microbial sporulation and dispersal. SIOA operates on a dynamic population of solutions (“microorganisms”) and alternates between two main phases: sporulation, where new “spores” are generated through [...] Read more.
The Sporulation-Inspired Optimization Algorithm (SIOA) is an innovative metaheuristic optimization method inspired by the biological mechanisms of microbial sporulation and dispersal. SIOA operates on a dynamic population of solutions (“microorganisms”) and alternates between two main phases: sporulation, where new “spores” are generated through adaptive random perturbations combined with guided search towards the global best, and germination, in which these spores are evaluated and may replace the most similar and less effective individuals in the population. A distinctive feature of SIOA is its fully self-adaptive parameter control, where the dispersal radius and the probabilities of sporulation and germination are dynamically adjusted according to the progress of the search (e.g., convergence trends of the average fitness). The algorithm also integrates a special “zero-reset” mechanism, enhancing its ability to detect global optima located near the origin. SIOA further incorporates a stochastic local search phase to refine solutions and accelerate convergence. Experimental results demonstrate that SIOA achieves high-quality solutions with a reduced number of function evaluations, especially in complex, multimodal, or high-dimensional problems. Overall, SIOA provides a robust and flexible optimization framework, suitable for a wide range of challenging optimization tasks. Full article
Show Figures

Figure 1

28 pages, 650 KB  
Systematic Review
Systematic Review of Optimization Methodologies for Smart Home Energy Management Systems
by Abayomi A. Adebiyi and Mathew Habyarimana
Energies 2025, 18(19), 5262; https://doi.org/10.3390/en18195262 - 3 Oct 2025
Viewed by 450
Abstract
Power systems are undergoing a transformative transition as consumers seek greater participation in managing electricity systems. This shift has given rise to the concept of “prosumers,” individuals who both consume and produce electricity, primarily through renewable energy sources. While renewables offer undeniable environmental [...] Read more.
Power systems are undergoing a transformative transition as consumers seek greater participation in managing electricity systems. This shift has given rise to the concept of “prosumers,” individuals who both consume and produce electricity, primarily through renewable energy sources. While renewables offer undeniable environmental benefits, they also introduce significant energy management challenges. One major concern is the variability in energy consumption patterns within households, which can lead to inefficiencies. Also, improper energy management can result in economic losses due to unbalanced energy control or inefficient systems. Home Energy Management Systems (HEMSs) have emerged as a promising solution to address these challenges. A well-designed HEMS enables users to achieve greater efficiency in managing their energy consumption, optimizing asset usage while ensuring cost savings and system reliability. This paper presents a comprehensive systematic review of optimization techniques applied to HEMS development between 2019 and 2024, focusing on key technical and computational factors influencing their advancement. The review categorizes optimization techniques into two main groups: conventional methods, emerging techniques, and machine learning methods. By analyzing recent developments, this study provides an integrated perspective on the evolving role of HEMSs in modern power systems, highlighting trends that enhance the efficiency and effectiveness of energy management in smart grids. Unifying taxonomy of HEMSs (2019–2024) and integrating mathematical, heuristic/metaheuristic, and ML/DRL approaches across horizons, controllability, and uncertainty, we assess algorithmic complexity versus tractability, benchmark comparative evidence (cost, PAR, runtime), and highlight deployment gaps (privacy, cybersecurity, AMI/HAN, and explainability), offering a novel synthesis for AI-enabled HEMS. Full article
(This article belongs to the Special Issue Advanced Application of Mathematical Methods in Energy Systems)
Show Figures

Figure 1

35 pages, 10740 KB  
Article
Contextual Real-Time Optimization on FPGA by Dynamic Selection of Chaotic Maps and Adaptive Metaheuristics
by Rabab Ouchker, Hamza Tahiri, Ismail Mchichou, Mohamed Amine Tahiri, Hicham Amakdouf and Mhamed Sayyouri
Appl. Sci. 2025, 15(19), 10695; https://doi.org/10.3390/app151910695 - 3 Oct 2025
Viewed by 177
Abstract
In dynamic and information-rich contexts, systems must be capable of making instantaneous, context-aware decisions. Such scenarios require optimization methods that are both fast and flexible. This paper introduces an innovative hardware-based intelligent optimization framework, deployed on FPGAs, designed to support autonomous decisions in [...] Read more.
In dynamic and information-rich contexts, systems must be capable of making instantaneous, context-aware decisions. Such scenarios require optimization methods that are both fast and flexible. This paper introduces an innovative hardware-based intelligent optimization framework, deployed on FPGAs, designed to support autonomous decisions in real-time systems. In contrast to conventional methods based on a single chaotic map, our scheme brings together six separate chaotic generators in simultaneous operation, orchestrated by an adaptive voting system based on past results. The system, in conjunction with the Secretary Bird Optimization Algorithm (SBOA), constantly adjusts its optimization approach according to the changing profile of the objective function. This delivers first-rate, timely solutions with improved convergence, resistance to local minima, and a high degree of adaptability to a variety of decision-making contexts. Simulations carried out on reference standards and engineering problems have demonstrated the scalability, responsiveness, and efficiency of the proposed model. These characteristics make it particularly suitable for use in embedded intelligence applications in sectors such as intelligent production, robotics, and IoT-based infrastructures. The suggested solution was tested using post-synthesis simulations on Vivado 2022.2 and experimented on three concrete engineering challenges: welded beam design, pressure equipment design, and tension/compression spring refinement. In each situation, the adaptive selection process dynamically determined the most suitable chaotic map, such as the logistics map for the Welded Beam Design Problem (WBDP) and the Tent map for the Pressure Vessel Design Problem (PVDP). This led to ideal results that exceed both conventional static methods and recent references in the literature. The post-synthesis results on the Nexys 4 DDR (Artix-7 XC7A100T, Digilent Inc., Pullman, WA, USA) show that the initial Q16.16 implementation exceeded the device resources (128% LUTs and 100% DSPs), whereas the optimized Q4.8 representation achieved feasible deployment with 80% LUT utilization, 72% DSP usage, and 3% FF occupancy. This adjustment reduced resource consumption by more than 25% while maintaining sufficient computational accuracy. Full article
Show Figures

Figure 1

34 pages, 3263 KB  
Systematic Review
From Network Sensors to Intelligent Systems: A Decade-Long Review of Swarm Robotics Technologies
by Fouad Chaouki Refis, Nassim Ahmed Mahammedi, Chaker Abdelaziz Kerrache and Sahraoui Dhelim
Sensors 2025, 25(19), 6115; https://doi.org/10.3390/s25196115 - 3 Oct 2025
Viewed by 304
Abstract
Swarm Robotics (SR) is a relatively new field, inspired by the collective intelligence of social insects. It involves using local rules to control and coordinate large groups (swarms) of relatively simple physical robots. Important tasks that robot swarms can handle include demining, search, [...] Read more.
Swarm Robotics (SR) is a relatively new field, inspired by the collective intelligence of social insects. It involves using local rules to control and coordinate large groups (swarms) of relatively simple physical robots. Important tasks that robot swarms can handle include demining, search, rescue, and cleaning up toxic spills. Over the past decade, the research effort in the field of Swarm Robotics has intensified significantly in terms of hardware, software, and systems integrated developments, yet significant challenges remain, particularly regarding standardization, scalability, and cost-effective deployment. To contextualize the state of Swarm Robotics technologies, this paper provides a systematic literature review (SLR) of Swarm Robotic technologies published from 2014 to 2024, with an emphasis on how hardware and software subsystems have co-evolved. This work provides an overview of 40 studies in peer-reviewed journals along with a well-defined and replicable systematic review protocol. The protocol describes criteria for including and excluding studies and outlines a data extraction approach. We explored trends in sensor hardware, actuation methods, communication devices, and energy systems, as well as an examination of software platforms to produce swarm behavior, covering meta-heuristic algorithms and generic middleware platforms such as ROS. Our results demonstrate how dependent hardware and software are to achieve Swarm Intelligence, the lack of uniform standards for their design, and the pragmatic limits which hinder scalability and deployment. We conclude by noting ongoing challenges and proposing future directions for developing interoperable, energy-efficient Swarm Robotics (SR) systems incorporating machine learning (ML). Full article
(This article belongs to the Special Issue Cooperative Perception and Planning for Swarm Robot Systems)
Show Figures

Figure 1

21 pages, 1625 KB  
Article
Multi-Objective Feature Selection for Intrusion Detection Systems: A Comparative Analysis of Bio-Inspired Optimization Algorithms
by Anıl Sezgin, Mustafa Ulaş and Aytuğ Boyacı
Sensors 2025, 25(19), 6099; https://doi.org/10.3390/s25196099 - 3 Oct 2025
Viewed by 290
Abstract
The increasing sophistication of cyberattacks makes Intrusion Detection Systems (IDSs) essential, yet the high dimensionality of modern network traffic hinders accuracy and efficiency. We conduct a comparative study of multi-objective feature selection for IDS using four bio-inspired metaheuristics—Grey Wolf Optimizer (GWO), Genetic Algorithm [...] Read more.
The increasing sophistication of cyberattacks makes Intrusion Detection Systems (IDSs) essential, yet the high dimensionality of modern network traffic hinders accuracy and efficiency. We conduct a comparative study of multi-objective feature selection for IDS using four bio-inspired metaheuristics—Grey Wolf Optimizer (GWO), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO)—on the X-IIoTID dataset. GA achieved the highest accuracy (99.60%) with the lowest FPR (0.39%) using 34 features. GWO offered the best accuracy–subset balance, reaching 99.50% accuracy with 22 features (65.08% reduction) within 0.10 percentage points of GA while using ~35% fewer features. PSO delivered competitive performance with 99.58% accuracy, 32 features (49.21% reduction), FPR 0.40%, and FNR 0.44%. ACO was the fastest (total training time 3001 s) and produced the smallest subset (7 features; 88.89% reduction), at an accuracy of 97.65% (FPR 2.30%, FNR 2.40%). These results delineate clear trade-off regions of high accuracy (GA/PSO/GWO), balanced (GWO), and efficiency-oriented (ACO) and underscore that algorithm choice should align with deployment constraints (e.g., edge vs. enterprise vs. cloud). We selected this quartet because it spans distinct search paradigms (hierarchical hunting, evolutionary recombination, social swarming, pheromone-guided foraging) commonly used in IDS feature selection, aiming for a representative, reproducible comparison rather than exhaustiveness; extending to additional bio-inspired and hybrid methods is left for future work. Full article
Show Figures

Figure 1

27 pages, 6645 KB  
Article
Performance Comparison of Metaheuristic and Hybrid Algorithms Used for Energy Cost Minimization in a Solar–Wind–Battery Microgrid
by Seyfettin Vadi, Merve Bildirici and Orhan Kaplan
Sustainability 2025, 17(19), 8849; https://doi.org/10.3390/su17198849 - 2 Oct 2025
Viewed by 468
Abstract
The integration of renewable energy sources has become a strategic necessity for sustainable energy management and supply security. This study evaluates the performance of eight metaheuristic optimization algorithms in scheduling a renewable-based smart grid system that integrates solar, wind, and battery storage for [...] Read more.
The integration of renewable energy sources has become a strategic necessity for sustainable energy management and supply security. This study evaluates the performance of eight metaheuristic optimization algorithms in scheduling a renewable-based smart grid system that integrates solar, wind, and battery storage for a factory in İzmir, Türkiye. The algorithms considered include classical approaches—Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), the Whale Optimization Algorithm (WOA), Krill Herd Optimization (KOA), and the Ivy Algorithm (IVY)—alongside hybrid methods, namely KOA–WOA, WOA–PSO, and Gradient-Assisted PSO (GD-PSO). The optimization objectives were minimizing operational energy cost, maximizing renewable utilization, and reducing dependence on grid power, evaluated over a 7-day dataset in MATLAB. The results showed that hybrid algorithms, particularly GD-PSO and WOA–PSO, consistently achieved the lowest average costs with strong stability, while classical methods such as ACO and IVY exhibited higher costs and variability. Statistical analyses confirmed the robustness of these findings, highlighting the effectiveness of hybridization in improving smart grid energy optimization. Full article
Show Figures

Figure 1

25 pages, 2008 KB  
Article
Optimizing Agricultural Management Practices for Maize Crops: Integrating Clusterwise Linear Regression with an Adaptation of the Grey Wolf Optimizer
by Germán-Homero Morán-Figueroa, Carlos-Alberto Cobos-Lozada and Oscar-Fernando Bedoya-Leyva
Agriculture 2025, 15(19), 2068; https://doi.org/10.3390/agriculture15192068 - 1 Oct 2025
Viewed by 579
Abstract
Effectively managing agricultural practices is crucial for maximizing yield, reducing investment costs, preserving soil health, ensuring sustainability, and mitigating environmental impact. This study proposes an adaptation of the Grey Wolf Optimizer (GWO) metaheuristic to operate under specific constraints, with the goal of identifying [...] Read more.
Effectively managing agricultural practices is crucial for maximizing yield, reducing investment costs, preserving soil health, ensuring sustainability, and mitigating environmental impact. This study proposes an adaptation of the Grey Wolf Optimizer (GWO) metaheuristic to operate under specific constraints, with the goal of identifying optimal agricultural practices that boost maize crop yields and enhance economic profitability for each farm. To achieve this objective, we employ a probabilistic algorithm that constructs a model based on Clusterwise Linear Regression (CLR) as the primary method for predicting crop yield. This model considers several factors, including climate, soil conditions, and agricultural practices, which can vary depending on the specific location of the crop. We compare the performance of the Grey Wolf Optimizer (GWO) algorithm with other optimization techniques, including Hill Climbing (HC) and Simulated Annealing (SA). This analysis utilizes a dataset of maize crops from the Department of Córdoba in Colombia, where agricultural practices were optimized. The results indicate that the probabilistic algorithm defines a two-group CLR model as the best approach for predicting maize yield, achieving a 5% higher fit compared to other machine learning algorithms. Furthermore, the Grey Wolf Optimizer (GWO) metaheuristic achieved the best optimization performance, recommending agricultural practices that increased farm yield and profitability by 50% relative to the original practices. Overall, these findings demonstrate that the proposed algorithm can recommend optimal practices that are both technically feasible and economically viable for implementation and replication. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

Back to TopTop