Evolution Trends and Paradigms of Low Noise Frequency Synthesis and Signal Conversion Using Silicon Technologies
Abstract
:1. Introduction
2. Analog and Digital Frequency Synthesis
2.1. Voltage Controlled Oscillator
2.2. Direct Digital (Frequency) Synthesis (DDFS or DDS)
2.2.1. Radio Frequency DDFSs
- Inside the DAC which becomes nonlinear (NL-DAC) and shapes the output waveform at the same time it converts it to analog (Figure 13);
- After the DAC which remains linear and outputs an analog triangle waveform to a final analog stage which reshapes it in the analog world. We call it an analog sine PAC (AS-PAC) (Figure 14).
2.2.2. DDFS Figures of Merit
- The size n of the Pacc is used to weight the consumption: by doubling the number of bits n in the accumulator, its consumption is also roughly doubling, as well as its area.
- In an RF-DDFS with mainly a Pacc and a DAC, doubling the number of bits in the Pacc as well as in the DAC should roughly double the area and double the dynamic power, such that the area and dynamic power are both proportional to and their product to .
- Comparing the integration area is important, but preferably in a “normalized” way which is defined as the area divided by the technological node squared [79]. For example, switching from a 0.35 m to a 0.25 m technology gives a potential reduction of the integration area equal to . This shrinking coefficient is often more exact for CMOS devices than for their bipolar counterpart but still goes in the right way inside an FoM. Publications which give only the full area with no information on the core area are a bit penalized.
- The transition frequency is not always given in the publications; therefore, while being a parameter of interest, we do not use it.
- The FCW word is also of importance, because if it perfectly divides (null remainder) (e.g., for 8 bit: ), the output period is exactly the fundamental period, and the corresponding spurious disappear. However, of course, this is one of all the n (e.g., 8) best cases for FCW: with all the other (e.g., 248) integer values of FCW, the remainder is again different from zero, and the spurious are there again. The FoM should reflect those numerous FCW worst cases that occur during real running conditions and not the few n best ones. Unfortunately, this information is not always given and is not taken into account.
3. Mixers
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pengelly, R.; Turner, J. Monolithic Broadband GaAs F.E.T. Amplifiers. Electron. Lett. 1976, 12, 251. [Google Scholar] [CrossRef]
- Pengelly, R. Integrated Microwave Transistor Amplifiers. Electron. Power 1976, 22, 449. [Google Scholar] [CrossRef]
- Harame, D.; Ahlgren, D.; Coolbaugh, D.; Dunn, J.; Freeman, G.; Gillis, J.; Groves, R.; Hendersen, G.; Johnson, R.; Joseph, A.; et al. Current Status and Future Trends of SiGe BiCMOS Technology. IEEE Trans. Electron Devices 2001, 48, 2575–2594. [Google Scholar] [CrossRef]
- Chevalier, P.; Liebl, W.; Rücker, H.; Gauthier, A.; Manger, D.; Heinemann, B.; Avenier, G.; Böck, J. SiGe BiCMOS Current Status and Future Trends in Europe. In 2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS); IEEE: New York, NY, USA, 2018; pp. 64–71. [Google Scholar]
- Schroter, M.; Boeck, J.; d’Alessandro, V.; Fregonese, S.; Heinemann, B.; Jungemann, C.; Liang, W.; Kamrani, H.; Mukherjee, A.; Pawlak, A.; et al. The EU DOTSEVEN Project: Overview and Results. In Proceedings of the 2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Austin, TX, USA, 23–26 October 2016. [Google Scholar]
- Gauthier, A.; Aouimeur, W.; Okada, E.; Guitard, N.; Chevalier, P.; Gaquière, C. A 30.1 mW/µm2 SiGe:C HBT Featuring an Implanted Collector in a 55-nm CMOS Node. IEEE Electron Device Lett. 2020, 41, 12–14. [Google Scholar] [CrossRef]
- Chappell, W. Briefing Prepared for T-MUSIC Proposer’s Day. 2019. Available online: https://www.darpa.mil/attachments/T-MUSIC_Proposers Day_Presentations_Combined.pdf (accessed on 7 December 2021).
- Chevalier, P.; Schröter, M.; Bolognesi, C.R.; d’Alessandro, V.; Alexandrova, M.; Böck, J.; Flückiger, R.; Fregonese, S.; Heinemann, B.; Jungemann, C.; et al. Si/SiGe:C and InP/GaAsSb Heterojunction Bipolar Transistors for THz Applications. Proc. IEEE 2017, 105, 1035–1050. [Google Scholar] [CrossRef]
- Tartarin, J.G. Non-Destructive Techniques for Evaluating the Reliability of High Frequency Active Devices. Microelectron. Reliab. 2019, 100–101, 113359. [Google Scholar] [CrossRef]
- Ghazinour; Wennekers; Schmidt; Yi, Y.; Reuter; Teplik. A Fully-Monolithic SiGe-BiCMOS Transceiver Chip for 24 GHz Applications. In Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting, Toulouse, France, 28–30 September 2003; pp. 181–184. [Google Scholar]
- Moquillon, L.; Garcia, P.; Pruvost, S.; Le Tual, S.; Marchetti, M.; Chabert, L.; Bertholet, N.; Scuderi, A.; Scaccianoce, S.; Serratore, A.; et al. Low-Cost Fully Integrated BiCMOS Transceiver for Pulsed 24- GHz Automotive Radar Sensors. In Proceedings of the 2008 IEEE Custom Integrated Circuits Conference, San Jose, CA, USA, 21–24 September 2008; pp. 475–478. [Google Scholar]
- Bryllert, T.; Gunnarsson, S.E.; Zirath, H.; Yan, Y.; Vasillev, V. A 110–170 GHz Transceiver in 130 nm SiGe BiCMOS Technology for FMCW Applications. In Millimetre Wave and Terahertz Sensors and Technology XI; Salmon, N.A., Gumbmann, F., Eds.; SPIE: Berlin, Germany, 2018; p. 16. [Google Scholar]
- Leeson, D. A Simple Model of Feedback Oscillator Noise Spectrum. Proc. IEEE 1966, 54, 329–330. [Google Scholar] [CrossRef] [Green Version]
- Andreani, P.; Fard, A. More on the 1/f2 Phase Noise Performance of CMOS Differential-Pair LC-Tank Oscillators. IEEE J. Solid-State Circuits 2006, 41, 2703–2712. [Google Scholar] [CrossRef] [Green Version]
- Ponton, D.; Knoblinger, G.; Roithmeier, A.; Tiebout, M.; Fulde, M.; Palestri, P. Assessment of the Impact of Technology Scaling on the Performance of LC-VCOs. In Proceedings of the ESSCIRC, Athens, Greece, 14–18 September 2009; IEEE: Athens, Greece, 2009; pp. 364–367. [Google Scholar]
- Tartarin, J.G.; Wong, K.; Tournier, É.; Llopis, O. X-Band and K-Band Low-Phase-Noise VCOs Using SiGe BiCMOS Technology. In Proceedings of the International SiGe Technology and Device Meeting, Princeton, NJ, USA, 15–17 May 2006. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.Y.; Chen, R.Y. High-Performance Low-Cost Dual 15 GHz/30 GHz CMOS LC Voltage-Controlled Oscillator. IEEE Microw. Wirel. Components Lett. 2016, 26, 714–716. [Google Scholar] [CrossRef]
- Peng, Z.; Hou, D.; Chen, J.; Xiang, Y.; Hong, W. A 28 GHz Low Phase-Noise Colpitts VCO with Wide Tuning-Range in SiGe Technology. In Proceedings of the 2018 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Melbourne, Australia, 15–17 August 2018. [Google Scholar] [CrossRef]
- Wong, W.; Cibiel, G.; Tartarin, J.G.; Tournier, É.; Plana, R.; Llopis, O. X Band BiCMOS SiGe 0.35 µm Voltage Controlled Oscillator in Parallel and Reflection Topology and External Phase Noise Improvement Solution. In Proceedings of the IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Philadelphia, PA, USA, 8–10 June 2003; pp. 281–284. [Google Scholar] [CrossRef]
- Zou, Q.; Ma, K.; Yeo, K.S. A Low Phase Noise and Wide Tuning Range Millimeter-Wave VCO Using Switchable Coupled VCO-Cores. IEEE Trans. Circuits Syst. Regul. Pap. 2015, 62, 554–563. [Google Scholar] [CrossRef]
- Plouchart, J.O.; Ferriss, M.; Sadhu, B.; Sanduleanu, M.; Parker, B.; Reynolds, S. A 73.9–83.5 GHz Synthesizer with −111 dBc/Hz Phase Noise at 10 MHz Offset in a 130 nm SiGe BiCMOS Technology. In Proceedings of the 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Seattle, WA, USA, 2–4 June 2013; pp. 123–126. [Google Scholar] [CrossRef]
- Wu, Q.; Quach, T.; Mattamana, A.; Elabd, S.; Dooley, S.R.; McCue, J.J.; Orlando, P.L.; Creech, G.L.; Khalil, W. A 10 mW 37.8 GHz Current-Redistribution BiCMOS VCO with an Average FOMT of −193.5 dBc/Hz. In Proceedings of the 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, USA, 17–21 February 2013; pp. 150–151. [Google Scholar] [CrossRef]
- Lee, C.; Yao, T.; Mangan, A.; Yau, K.; Copeland, M.; Voinigescu, S. SiGe BiCMOS 65-GHz BPSK Transmitter and 30 to 122 GHz LC-Varactor VCOs with up to 21% Tuning Range. In Proceedings of the IEEE Compound Semiconductor Integrated Circuit Symposium, Monterey, CA, USA, 24–27 October 2004; pp. 179–182. [Google Scholar] [CrossRef]
- Djemel, K.; Aloulou, R.; Cordeau, D.; Mnif, H.; Paillot, J.M.; Loulou, M. Design, Optimization and Implementation of a New Low Phase Noise 2.4 GHz Differential Push-Push VCO in a 0.25 µm BICMOS SiGe:C Technology. In Proceedings of the 2020 IEEE International Conference on Design Test of Integrated Micro Nano—Systems (DTS), Hammamet, Tunisia, 7–10 June 2020. [Google Scholar] [CrossRef]
- Kuhnert, H.; Heinrich, W. Coplanar SiGe VCO MMICs beyond 20 GHz. In Proceedings of the 2001 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Ann Arbor, MI, USA, 12–14 September 2001; pp. 231–233. [Google Scholar] [CrossRef]
- Liu, S.; Sun, D.; Ding, R.; Huang, S.; Zhu, Z. High-Efficiency Class-C LC-VCO With AFC-Based Phase Noise Compensation. IEEE Microw. Wirel. Components Lett. 2018, 28, 1125–1127. [Google Scholar] [CrossRef]
- Song, J.H.; Kim, B.S.; Nam, S. An Adaptively Biased Class-C VCO With a Self-Turn-Off Auxiliary Class-B Pair for Fast and Robust Startup. IEEE Microw. Wirel. Components Lett. 2016, 26, 34–36. [Google Scholar] [CrossRef]
- Xu, X.; Sugiura, T.; Yoshimasu, T. A 0.3 V −190.2 dBc/Hz FoM 14-GHz Band LC-VCO IC with Harmonic Tuned LC Tank in 56-nm SOI CMOS. In Proceedings of the 2018 13th European Microwave Integrated Circuits Conference (EuMIC), Madrid, Spain, 23–25 September 2018; pp. 202–205. [Google Scholar] [CrossRef]
- Forsberg, T.; Wernehag, J.; Sjöland, H.; Törmänen, M. Two Ultra-Low Power mm-Wave Push-Pull VCOs in FD-SOI CMOS. In Proceedings of the 2018 Asia—Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018; pp. 1130–1132. [Google Scholar] [CrossRef]
- Soyuer, M.; Burghartz, J.; Ainspan, H.; Jenkins, K.; Xiao, P.; Shahani, A.; Dolan, M.; Harame, D. An 11- GHz 3-V SiGe Voltage-Controlled Oscillator with Integrated Resonator. In Proceedings of the 1996 BIPOLAR/BiCMOS Circuits and Technology Meeting, Minneapolis, MN, USA, 29 September–1 October 1996; pp. 169–172. [Google Scholar] [CrossRef]
- Sapone, G.; Ragonese, E.; Italia, A.; Palmisano, G. A 0.13 µm SiGe BiCMOS Colpitts-Based VCO for W-Band Radar Transmitters. IEEE Trans. Microw. Theory Tech. 2013, 61, 185–194. [Google Scholar] [CrossRef]
- Levinger, R.; Katz, O.; Vovnoboy, J.; Ben-Yishay, R.; Elad, D. A K-Band Low Phase Noise and High Gain Gm Boosted Colpitts VCO for 76–81 GHz FMCW Radar Applications. In Proceedings of the 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA, 22–27 May 2016. [Google Scholar] [CrossRef]
- Analog Devices. 14.7–15.4 GHz Phase Locked Oscillator. In Datasheet HMC535; Analog Devices: Norwood, MA, USA, 2016; Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/hmc535.pdf (accessed on 8 December 2021).
- Analog Devices. 12.17 GHz to 13.33 GHz MMIC VCO with Half Frequency Output. In Datasheet HMC1167; Analog Devices: Norwood, MA, USA, 2016; Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/HMC1167.pdf (accessed on 7 December 2021).
- TriQuint. 12.5–13.5 GHz VCO with Divide by 2. In Datasheet TGV2529-SM, TGV2529-SM; TriQuint: Hillsboro, OR, USA, 2012; Available online: http://www.qorvo.com/products/d/da005179 (accessed on 7 December 2021).
- STMicroelectronics. Wideband RF/Microwave PLL Fractional/Integer Frequency Synthesizer with Integrated VCOs and LDOs. In Datasheet STuW81300; STMicroelectronics: Geneva, Switzerland, 2019; Available online: https://www.st.com/resource/en/datasheet/stuw81300.pdf (accessed on 7 December 2021).
- Infineon. Silicon Germanium 24 GHz Radar Transceiver MMIC. In Datasheet BGT24LTR11N16; Infineon: Neubiberg, Germany, 2018; Available online: https://www.infineon.com/cms/en/product/sensor/radar-sensors/radar-sensors-for-iot/24ghz-radar/bgt24ltr11n16/ (accessed on 7 December 2021).
- Infineon. BGT70: Single-Chip SiGe Transciver Chipset for E-Band Backhaul Applications from 71 to 76 GHz. In Application Note AN377; Infineon: Neubiberg, Germany, 2014; Available online: https://www.infineon.com/cms/en/product/rf-wireless-control/mmw-backhaul-and-fronthaul/bgt70/ (accessed on 7 December 2021).
- RFMD. 9.8 GHz to 11.3 GHz MMIC VCO with F0/2 and F0/4 Outputs. In Datasheet RFVC1843; RFMD: Greensboro, NC, USA, 2006; Available online: https://datasheet.octopart.com/RFVC1843-RFMD-datasheet-10853657.pdf (accessed on 7 December 2021).
- Qorvo. 85-4200 MHz Wideband Synthesizer/VCO with Integrated 6 GHz RF Mixer. In Datasheet RFFC5071A; Qorvo: Greensboro, NC, USA, 2019; Available online: https://www.qorvo.com/products/p/RFFC5071A (accessed on 7 December 2021).
- Quemerais, T.; Gloria, D.; Golanski, D.; Bouvot, S. High-Q MOS Varactors for Millimeter-Wave Applications in CMOS 28-nm FDSOI. IEEE Electron Device Lett. 2015, 36, 87–89. [Google Scholar] [CrossRef]
- Kim, H.I.; Bowrothu, R.; Lee, W.; Yoon, Y.K. Ultra-High Q-Factor Through Fused-Silica Via (TFV) Integrated 3D Solenoid Inductor for Millimeter Wave Applications. In Proceedings of the 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 1–4 June 2021; pp. 1187–1192. [Google Scholar] [CrossRef]
- Cayron, A.; Viallon, C.; Bushueva, O.; Ghannam, A.; Parra, T. High-Performance Compact 3-D Solenoids for RF Applications. IEEE Microw. Wirel. Components Lett. 2018, 28, 479–481. [Google Scholar] [CrossRef] [Green Version]
- Tierney, J.; Rader, C.; Gold, B. A Digital Frequency Synthesizer. Audio Electroacoust. IEEE Trans. 1971, 19, 48–57. [Google Scholar] [CrossRef]
- Turner, S.; Kotecki, D. Direct Digital Synthesizer with Sine-Weighted DAC at 32- GHz Clock Frequency in InP DHBT Technology. IEEE J. Solid-State Circuits 2006, 41, 2284–2290. [Google Scholar] [CrossRef]
- Langlois, J.P.; Al-Khalili, D. Phase to Sinusoid Amplitude Conversion Techniques for Direct Digital Frequency Synthesis. Circuits Devices Syst. IEE Proc. 2005, 151, 519–528. [Google Scholar] [CrossRef]
- Yamagishi, A.; Ishikawa, M.; Tsukahara, T. A 2-V, 2- GHz Low-Power Direct Digital Frequency Synthesizer Chip-Set for Wireless Communication. Solid-State Circuits IEEE J. 1998, 33, 210–217. [Google Scholar] [CrossRef]
- Mortezapour, S.; Lee, E. Design of Low-Power ROM-Less Direct Digital Frequency Synthesizer Using Nonlinear Digital-to-Analog Converter. IEEE J. Solid-State Circuits 1999, 34, 1350–1359. [Google Scholar] [CrossRef]
- Yu, X.; Dai, F.F.; Irwin, J.D.; Jaeger, R.C. A 12 GHz 1.9 W Direct Digital Synthesizer MMIC Implemented in 0.18 µm SiGe BiCMOS Technology. IEEE J. Solid-State Circuits 2008, 43, 1384–1393. [Google Scholar] [CrossRef]
- Yoo, T.; Yeoh, H.C.; Jung, Y.H.; Cho, S.J.; Kim, Y.S.; Kang, S.M.; Baek, K.H. A 2 GHz 130 mW Direct-Digital Frequency Synthesizer With a Nonlinear DAC in 55 nm CMOS. IEEE J. Solid-State Circuits 2014, 49, 2976–2989. [Google Scholar] [CrossRef]
- Yuan, L.; Zhang, Q.; Shi, Y. A 2 GHz Direct Digital Frequency Synthesizer Based on Multi-Channel Structure. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 24–27 May 2015; pp. 3064–3067. [Google Scholar] [CrossRef]
- Yu, X.; Dai, F.; Shi, Y.; Zhu, R. 2 GHz 8-Bit CMOS ROM-Less Direct Digital Frequency Synthesizer. In Proceedings of the 2005 IEEE International Symposium on Circuits and Systems, Kobe, Japan, 23–26 May 2005; Volume 5, pp. 4397–4400. [Google Scholar] [CrossRef]
- Yu, X.; Dail, F.F.; Yang, D.; Kakani, V.; Irwin, J.D.; Jaeger, R.C. A 9-Bit 9.6 GHz 1.9 W Direct Digital Synthesizer RFIC Implemented in 0.18 µm SiGe BiCMOS Technology. In Proceedings of the 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Honolulu, HI, USA, 3–5 June 2007; pp. 241–244. [Google Scholar] [CrossRef]
- Yu, X.; Dai, F.F.; Yang, D.; Kakani, V.; Irwin, J.D.; Jaeger, R.C. A 9-Bit 6.3 GHz 2.5 W Quadrature Direct Digital Synthesizer MMIC. In Proceedings of the 2007 IEEE Symposium on VLSI Circuits, Kyoto, Japan, 14–16 June 2007; pp. 52–53. [Google Scholar] [CrossRef]
- Geng, X.; Dai, F.; Irwin, J.; Jaeger, R. A 9-Bit 2.9 GHz Direct Digital Synthesizer MMIC with Direct Digital Frequency and Phase Modulations. In Proceedings of the 2009 IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA, 7–12 June 2009; pp. 1125–1128. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.H.; Kuo, C.C.; Hsin, Y.M.; Wang, H. A 15–50 GHz Broadband Resistive FET Ring Mixer Using 0.18 µm CMOS Technology. In Proceedings of the 2010 IEEE MTT-S International Microwave Symposium, Anaheim, CA, USA, 23–28 May 2010; pp. 784–787. [Google Scholar] [CrossRef]
- Wu, D.; Chen, G.; Chen, J.; Liu, X.; Zhao, L.; Jin, Z. A 6 GHz Direct Digital Synthesizer MMIC with Nonlinear DAC and Wave Correction ROM. In Proceedings of the 2010 IEEE Radio Frequency Integrated Circuits Symposium, Anaheim, CA, USA, 23–25 May 2010; pp. 421–424. [Google Scholar] [CrossRef]
- Geng, X.; Dai, F.; Irwin, J.; Jaeger, R. 24-Bit 5.0 GHz Direct Digital Synthesizer RFIC with Direct Digital Modulations in 0.13 µm SiGe BiCMOS Technology. IEEE J. Solid-State Circuits 2010, 45, 944–954. [Google Scholar] [CrossRef]
- Geng, X.; Dai, F.; Irwin, J.; Jaeger, R. An 11-Bit 8.6 GHz Direct Digital Synthesizer MMIC with 10-Bit Segmented Sine-Weighted DAC. IEEE J. Solid-State Circuits 2010, 45, 300–313. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Wang, Z.; Zhang, Y.; Zhang, M.; Cheng, W.; Gao, H. A 14- GHz 8-Bit Direct Digital Synthesizer in InP DHBT Technology. In Proceedings of the 2019 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Nanjing, China, 28–30 August 2019. [Google Scholar] [CrossRef]
- Yeoh, H.C.; Jung, J.H.; Jung, Y.H.; Baek, K.H. A 1.3- GHz 350-mW Hybrid Direct Digital Frequency Synthesizer in 90-nm CMOS. IEEE J. Solid-State Circuits 2010, 45, 1845–1855. [Google Scholar] [CrossRef]
- Guo, T.; Tang, K.; Zheng, Y. A 1 GHz Configurable Chirp Modulation Direct Digital Frequency Synthesizer in 65 nm CMOS. In Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 22–28 May 2021. [Google Scholar] [CrossRef]
- Guo, X.; Wu, D.; Zhou, L.; Liu, H.; Wu, J.; Liu, X. A 2- GHz 32-Bit ROM-Based Direct-Digital Frequency Synthesizer in 0.13 Mm CMOS. Analog. Integr. Circuits Signal Process. 2018, 94, 127–138. [Google Scholar] [CrossRef]
- Turner, S.; Chan, R.; Feng, J. ROM-based direct digital synthesizer at 24 GHz clock frequency in InP DHBT technology. IEEE Microw. Wireless Compon. Lett 2008, 18, 566–568. [Google Scholar] [CrossRef]
- Martinez Alonso, A.; Miyahara, M.; Matsuzawa, A. A 12.8-ns-Latency DDFS MMIC With Frequency, Phase, and Amplitude Modulations in 65-nm CMOS. IEEE J. Solid-State Circuits 2018, 53, 2840–2849. [Google Scholar] [CrossRef]
- Jun-an, Z.; Guangjun, L.; Ruitao, Z.; Jiaoxue, L.; Yafeng, W.; Bo, Y. A 2.5- GHz Direct Digital Frequency Synthesizer in 0.18 µm CMOS. Analog. Integr. Circuits Signal Process. 2015, 82, 369–379. [Google Scholar] [CrossRef]
- Baek, K.H.; Merlo, E.; Choe, M.J.; Yen, A.; Sahrling, M. A 1.7 GHz 3V Direct Digital Frequency Synthesizer with an on-Chip DAC in 0.35µm SiGe BiCMOS. In Proceedings of the ISSCC, 2005 IEEE International Digest of Technical Papers, Solid-State Circuits Conference, San Francisco, CA, USA, 6–10 February 2005; Volume 1, pp. 114–587. [Google Scholar] [CrossRef]
- McEwan, A.; Collins, S. Analogue Interpolation Based Direct Digital Frequency Synthesis. In Proceedings of the 2003 International Symposium on Circuits and Systems (ISCAS’03), Bangkok, Thailand, 25–28 May 2003; Volume 1, pp. 1–621. [Google Scholar] [CrossRef]
- Thuries, S.; Tournier, É. A DDS-Oriented Phase-to-Amplitude Converter Using a SiGe:C Bipolar Transistors Differential Pair. In Proceedings of the 2005 IEEE International Workshop on Radio-Frequency Integration Technology: Integrated Circuits for Wideband Communication and Wireless Sensor Networks, Singapore, 30 November–2 December 2005; pp. 211–214. [Google Scholar] [CrossRef]
- Thuries, S.; Tournier, É.; Cathelin, A.; Godet, S.; Graffeuil, J. A 6- GHz Low-Power BiCMOS SiGe:C 0.25 µm Direct Digital Synthesizer. IEEE Microw. Wireless Compon. Lett 2008, 18, 46–48. [Google Scholar] [CrossRef]
- McEwan, A.; Collins, S. Direct Digital-Frequency Synthesis by Analog Interpolation. Circuits Syst. II Express Briefs IEEE Trans. 2006, 53, 1294–1298. [Google Scholar] [CrossRef]
- Laemmle, B.; Wagner, C.; Knapp, H.; Jaeger, H.; Maurer, L.; Weigel, R. A Differential Pair-Based Direct Digital Synthesizer MMIC with 16.8- GHz Clock and 488-mW Power Consumption. IEEE Trans. Microw. Theory Technol. 2010, 58, 1375–1383. [Google Scholar] [CrossRef]
- Yang, C.Y.; Weng, J.H.; Chang, H.Y. A 5- GHz Direct Digital Frequency Synthesizer Using an Analog-Sine-Mapping Technique in 0.35 µm SiGe BiCMOS. IEEE J. Solid-State Circuits 2011, 46, 2064–2072. [Google Scholar] [CrossRef]
- Jensen, B.; Khafaji, M.; Johansen, T.; Krozer, V.; Scheytt, J. Twelve-Bit 20- GHz Reduced Size Pipeline Accumulator in 0.25 µm SiGe:C Technology for Direct Digital Synthesiser Applications. IET Circuits, Devices Syst. 2012, 6, 19–27. [Google Scholar] [CrossRef]
- Shrestha, A.; Moll, J.; Raemer, A.; Hrobak, M.; Krozer, V. 20 GHz Clock Frequency ROM-Less Direct Digital Synthesizer Comprising Unique Phase Control Unit in 0.25 µm SiGe Technology. In Proceedings of the 2018 13th European Microwave Integrated Circuits Conference (EuMIC), Madrid, Spain, 23–25 September 2018; pp. 206–209. [Google Scholar] [CrossRef]
- Nicholas, H.; Samueli, H. An Analysis of the Output Spectrum of Direct Digital Frequency Synthesizers in the Presence of Phase-Accumulator Truncation. In Proceedings of the 41st Annual Symposium on Frequency Control, Philadelphia, PA, USA, 27–29 May 1987; pp. 495–502. [Google Scholar] [CrossRef]
- Wang, C.C.; Lou, P.Y.; Tsai, T.Y.; Shih, H.Y. 74-dBc SFDR 71-MHz Four-Stage Pipeline ROM-Less DDFS Using Factorized Second-Order Parabolic Equations. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27, 2464–2468. [Google Scholar] [CrossRef]
- Li, Y.; Bakkaloglu, B.; Chakrabarti, C. A System Level Energy Model and Energy-Quality Evaluation for Integrated Transceiver Front-Ends. IEEE Trans. Very Large Scale Integr. (Vlsi) Syst. 2007, 15, 90–103. [Google Scholar] [CrossRef]
- Ashrafi, A.; Adhami, R.; Milenkovic, A. A Direct Digital Frequency Synthesizer Based on the Quasi-Linear Interpolation Method. IEEE Trans. Circuits Syst. Regul. Pap. 2010, 57, 863–872. [Google Scholar] [CrossRef] [Green Version]
- Case, M.; Maas, S.; Larson, L.; Rensch, D.; Harame, D.; Meyerson, B. An X-Band Monolithic Active Mixer in SiGe HBT Technology. In Proceedings of the 1996 IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, USA, 17–21 June 1996; Volume 2, pp. 655–658. [Google Scholar] [CrossRef]
- Dürr, W.; Erben, U.; Schüppen, A.; Dietrich, H.; Schumacher, H. Low-Power Low-Noise Active Mixers for 5.7 and 11.2 GHz Using Commercially Available SiGe HBT MMIC Technology. Electron. Lett. 1998, 34, 1994. [Google Scholar] [CrossRef]
- Voinigescu, S.; Maliepaard, M. 5.8 GHz and 12.6 GHz Si Bipolar MMICs. In Proceedings of the 1997 IEEE International Solids-State Circuits Conference, San Francisco, CA, USA, 6–8 February 1997; pp. 372–373. [Google Scholar] [CrossRef]
- Crols, J.; Steyaert, M. A 1.5 GHz Highly Linear CMOS Downconversion Mixer. IEEE J. Solid-State Circuits 1995, 30, 736–742. [Google Scholar] [CrossRef]
- Chan, P.Y.; Rofougaran, A.; Ahmed, K.A.; Abidi, A.A. A Highly Linear 1-GHz CMOS Downconversion Mixer. In Proceedings of the ESSCIRC ’93: Nineteenth European Solid-State Circuits Conference, Sevilla, Spain, 22–24 September 1993; Volume 1, pp. 210–213. [Google Scholar]
- Mazor, N.; Sheinman, B.; Katz, O.; Levinger, R.; Bloch, E.; Carmon, R.; Ben-Yishay, R.; Elad, D. Highly Linear 60-GHz SiGe Downconversion/Upconversion Mixers. IEEE Microw. Wirel. Components Lett. 2017, 27, 401–403. [Google Scholar] [CrossRef]
- Qayyum, J.A.; Albrecht, J.D.; Ulusoy, A.C. A Compact V-Band Upconversion Mixer With -1.4-dBm OP1 dB in SiGe HBT Technology. IEEE Microw. Wirel. Components Lett. 2019, 29, 276–278. [Google Scholar] [CrossRef]
- Milner, L.E.; Hall, L.T.; Chakraborty, S.; Ritchie, C.G.; Heimlich, M.C. A Broadband 25 to 42 GHz SiGe Upconverter. In Proceedings of the 2020 4th Australian Microwave Symposium (AMS), Sydney, Australia, 13–14 February 2020. [Google Scholar] [CrossRef]
- Glenn, J.; Case, M.; Harame, D.; Meyerson, B.; Poisson, R. 12-GHz Gilbert Mixers Using a Manufacturable Si/SiGe Epitaxial-Base Bipolar Technology. In Proceedings of the Bipolar/Bicmos Circuits and Technology Meeting, Minneapolis, MN, USA, 2–3 October 1995; pp. 186–189. [Google Scholar] [CrossRef]
- Hackl, S.; Bock, J.; Wurzer, M.; Scholtz, A. 40 GHz Monolithic Integrated Mixer in SiGe Bipolar Technology. In Proceedings of the 2002 IEEE MTT-S International Microwave Symposium Digest, Seattle, WA, USA, 2–7 June 2002; pp. 1241–1244. [Google Scholar] [CrossRef]
- Issakov, V.; Knapp, H.; Tiebout, M.; Thiede, A.; Simburger, W.; Maurer, L. Comparison of 24 GHz Low-Noise Mixers in CMOS and SiGe:C Technologies. In Proceedings of the 2009 European Microwave Integrated Circuits Conference (EuMIC), Rome, Italy, 28–29 September 2009. [Google Scholar]
- Tsai, J.H.; Wu, P.S.; Lin, C.S.; Huang, T.W.; Chern, J.G.J.; Huang, W.C. A 25–75 GHz Broadband Gilbert-Cell Mixer Using 90-nm CMOS Technology. IEEE Microw. Wirel. Components Lett. 2007, 17, 247–249. [Google Scholar] [CrossRef]
- Ahn, D.; Kim, D.W.; Hong, S. A K-Band High-Gain Down-Conversion Mixer in 0.18µm CMOS Technology. IEEE Microw. Wirel. Components Lett. 2009, 19, 227–229. [Google Scholar] [CrossRef]
- Kim, S.K.; Cui, C.; Huang, G.; Kim, S.; Kim, B.S. A 77 GHz Low LO Power Mixer With a Split Self-Driven Switching Cell in 65 nm CMOS Technology. IEEE Microw. Wirel. Components Lett. 2012, 22, 480–482. [Google Scholar] [CrossRef]
- Chen, F.; Wang, Y.; Lin, J.L.; Tsai, Z.M.; Wang, H. A 24-GHz High Linearity Down-Conversion Mixer in 90-nm CMOS. In Proceedings of the 2018 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Melbourne, VIC, Australia, 15–18 August 2018; IEEE: Melbourne, VIC, Australia, 2018. [Google Scholar] [CrossRef]
- Wu, C.L.; Yun, Y.; Yu, C.; O, K. High Linearity 23–33 GHz SOI CMOS Downconversion Double Balanced Mixer. Electron. Lett. 2011, 47, 1283. [Google Scholar] [CrossRef]
- Wu, C.L.; Yu, C.; O, K.K. Amplification of Nonlinearity in Multiple Gate Transistor Millimeter Wave Mixer for Improvement of Linearity and Noise Figure. IEEE Microw. Wirel. Components Lett. 2015, 25, 310–312. [Google Scholar] [CrossRef]
- Cheng, J.H.; Hsieh, C.L.; Wu, M.H.; Tsai, J.H.; Huang, T.W. A 0.33 V 683 µW K-Band Transformer-Based Receiver Front-End in 65 nm CMOS Technology. IEEE Microw. Wirel. Components Lett. 2015, 25, 184–186. [Google Scholar] [CrossRef]
- Lin, Y.H.; Hsiao, S.C.; Tsai, J.H.; Huang, T.W. A 0.7-mW V-Band Transformer-Based Positive- Feedback Receiver Front-End in a 65-nm CMOS. IEEE Microw. Wirel. Components Lett. 2020, 30, 613–616. [Google Scholar] [CrossRef]
- Ahmed, A.; Huang, M.Y.; Munzer, D.; Wang, H. A 43–97-GHz Mixer-First Front-End With Quadrature Input Matching and On-Chip Image Rejection. IEEE J. Solid-State Circuits 2021, 56, 705–714. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Iotti, L.; Niknejad, A.M. Design of High-Linearity Mixer-First Receivers for mm-Wave Digital MIMO Arrays. IEEE J. Solid-State Circuits 2021, 56, 3375–3387. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, Y.; Gao, H. A 60 GHz Down-Conversion Passive Mixer in 65 nm CMOS Technology. In Proceedings of the 2021 IEEE MTT-S International Wireless Symposium (IWS), Nanjing, China, 23–26 May 2021. [Google Scholar] [CrossRef]
- Chang, T.; Lin, J. 1-11 GHz Ultra-Wideband Resistive Ring Mixer in 0.18µm CMOS Technology. In Proceedings of the IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, San Francisco, CA, USA, 11–13 June 2006; pp. 409–412. [Google Scholar] [CrossRef]
- Liu, P.; Wu, T.; Chen, Z.; Yu, Y.; Zhao, C.; Liu, H.; Wu, Y.; Kang, K. A 15-27 GHz Low Conversion Loss and High Isolation Resistive Ring Mixer for Direct Conversion Receiver. In Proceedings of the 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Guangzhou, China, 19–22 May 2019. [Google Scholar] [CrossRef]
- Lin, Y.S.; Lan, K.S.; Wang, C.C.; Chi, C.C.; Lu, S.S. 6.3 mW 94 GHz CMOS Down-Conversion Mixer With 11.6 dB Gain and 54 dB LO-RF Isolation. IEEE Microw. Wirel. Components Lett. 2016, 26, 604–606. [Google Scholar] [CrossRef]
- Liu, Z.; Jiang, Z.; Chen, Z.; Zhang, L.; Liu, H.; Wu, Y.; Zhao, C.; Kang, K. A 24 GHz CMOS Mixer Using Symmetrical Design Methodology with I/Q Imbalance Calibration. In Proceedings of the 2017 IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpur, Malaysia, 13–16 November 2017; pp. 903–905. [Google Scholar] [CrossRef]
- Liu, Z.; Dong, J.; Chen, Z.; Jiang, Z.; Liu, P.; Wu, Y.; Zhao, C.; Kang, K. A 62-90 GHz High Linearity and Low Noise CMOS Mixer Using Transformer-Coupling Cascode Topology. IEEE Access 2018, 6, 19338–19344. [Google Scholar] [CrossRef]
- Peng, Y.; He, J.; Hou, H.; Wang, H.; Chang, S.; Huang, Q.; Zhu, Y. A K-Band High-Gain and Low-Noise Folded CMOS Mixer Using Current-Reuse and Cross-Coupled Techniques. IEEE Access 2019, 7, 133218–133226. [Google Scholar] [CrossRef]
- Parveg, D.; Varonen, M.; Karkkainen, M.; Karaca, D.; Vahdati, A.; Halonen, K.A.I. Wideband Millimeter-Wave Active and Passive Mixers in 28 nm Bulk CMOS Technology. In Proceedings of the 2015 10th European Microwave Integrated Circuits Conference (EuMIC), Paris, France, 7–8 September 2015; pp. 116–119. [Google Scholar] [CrossRef]
- Zhang, N.; Xu, H.; Wu, H.T.; Kenneth, K. W-Band Active Down-Conversion Mixer in Bulk CMOS. IEEE Microw. Wirel. Components Lett. 2009, 19, 98–100. [Google Scholar] [CrossRef]
- Magnani, A.; Viallon, C.; Burciu, I.; Epert, T.; Borgarino, M.; Parra, T. A K-Band BiCMOS Low Duty-Cycle Resistive Mixer. In Proceedings of the IEEE 14th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF 2014), Newport Beach, CA, USA, 19–23 January 2014; pp. 95–97. [Google Scholar] [CrossRef] [Green Version]
- Camus, M.; Butaye, B.; Garcia, L.; Sie, M.; Pellat, B.; Parra, T. A 5.4 mW/0.07 mm2 2.4 GHz Front-End Receiver in 90 nm CMOS for IEEE 802.15.4 WPAN Standard. IEEE J. Solid-State Circuits 2008, 43, 1372–1383. [Google Scholar] [CrossRef]
- Soer, M.; Klumperink, E.; Ru, Z.; van Vliet, F.; Nauta, B. A 0.2-to-2.0 GHz 65 nm CMOS Receiver without LNA Achieving > 11 dBm IIP3 and <6.5 dB NF. In Proceedings of the 2009 IEEE International Solid-State Circuits Conference—Digest of Technical Papers, San Francisco, CA, USA, 8–12 February 2009; pp. 222–223. [Google Scholar] [CrossRef] [Green Version]
- Mirzaei, A.; Darabi, H.; Leete, J.; Chang, Y. Analysis and Optimization of Direct-Conversion Receivers With 25% Duty-Cycle Current-Driven Passive Mixers. IEEE Trans. Circuits Syst. Regul. Pap. 2010, 57, 2353–2366. [Google Scholar] [CrossRef]
- Wu, K.; Hella, M.M. Silicon Based Millimeter Wave ASICs: From Circuits to System Applications. In Proceedings of the 2020 IEEE 20th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), Singapore, 26–29 January 2020; pp. 70–76. [Google Scholar] [CrossRef]
- Dielacher, F. Silicon Technology Trends. In Proceedings of the Winter School SERENA H2020—Technology and Integration Platforms for Future mm-Wave Communication and Radar Applications, Gothenburg, Sweden, 15–17 January 2020. [Google Scholar]
- Flete, A.; Viallon, C.; Cathelin, P.; Parra, T. A ×3 Sub-Sampling Mixer for a 77 GHz Automotive Radar Receiver in 28 nm FD-SOI CMOS Technology. In Proceedings of the IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF 2022), Las Vegas, NV, USA, 16–19 January 2022. [Google Scholar]
- Aissi, M.; Tournier, É.; Dubois, M.A.; Parat, G.; Plana, R. A 5.4 GHz 0.35 µm BiCMOS FBAR Resonator Oscillator in Above-IC Technology. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 6–9 February 2006; pp. 1228–1235. [Google Scholar] [CrossRef]
- Aissi, M.; Tournier, É.; Dubois, M.-A.; Billard, C.; Ziad, H.; Plana, R. A 5 GHz Above-IC FBAR Low Phase Noise Balanced Oscillator. In Proceedings of the 2006 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, San Francisco, CA, USA, 10–13 June 2006. [Google Scholar] [CrossRef]
- Corbiere, R.; Louis, B.; Tartarin, J.G. A Novel Active Variable Gain X-Band Amplifier in SiGe Technology. In Proceedings of the 2010 IEEE MTT-S International Microwave Symposium, Anaheim, CA, USA, 23–28 May 2010. [Google Scholar] [CrossRef]
- Kibaroglu, K.; Sayginer, M.; Rebeiz, G.M. A Low-Cost Scalable 32-Element 28-GHz Phased Array Transceiver for 5G Communication Links Based on a 2×2 Beamformer Flip-Chip Unit Cell. IEEE J. Solid-State Circuits 2018, 53, 1260–1274. [Google Scholar] [CrossRef]
- Lv, W.; Liao, B.; Li, Y.; Ding, N.; Sun, L.; Duan, Z.; Dai, Y. A 24-27 GHz Phased Array Transceiver with 6 bit Phase Shifter and 31.5 dB Gain Control for 5G Communication in 65 nm CMOS. In Proceedings of the 2020 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), Nanjing, China, 23–25 November 2020; pp. 23–24. [Google Scholar] [CrossRef]
- Ozturk, E.; Genschow, D.; Yodprasit, U.; Yilmaz, B.; Kissinger, D.; Debski, W.; Winkler, W. A 60 GHz SiGe BiCMOS Double Receive Channel Transceiver for Radar Applications. In Proceedings of the 2017 12th European Microwave Integrated Circuits Conference (EuMIC), Nuremberg, Germany, 8–10 October 2017; pp. 269–272. [Google Scholar] [CrossRef]
- Voelkel, M.; Pechmann, S.; Hussein, E.M.; Kissinger, D.; Weigel, R.; Hagelauer, A. A Cascadable Integrated Bistatic Six-Port Transceiver at 60 GHz in a 130-nm BiCMOS Technology for SIMO-Radar Applications. In Proceedings of the 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 10–13 December 2019; pp. 622–624. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tartarin, J.-G.; Tournier, É.; Viallon, C. Evolution Trends and Paradigms of Low Noise Frequency Synthesis and Signal Conversion Using Silicon Technologies. Electronics 2022, 11, 684. https://doi.org/10.3390/electronics11050684
Tartarin J-G, Tournier É, Viallon C. Evolution Trends and Paradigms of Low Noise Frequency Synthesis and Signal Conversion Using Silicon Technologies. Electronics. 2022; 11(5):684. https://doi.org/10.3390/electronics11050684
Chicago/Turabian StyleTartarin, Jean-Guy, Éric Tournier, and Christophe Viallon. 2022. "Evolution Trends and Paradigms of Low Noise Frequency Synthesis and Signal Conversion Using Silicon Technologies" Electronics 11, no. 5: 684. https://doi.org/10.3390/electronics11050684
APA StyleTartarin, J.-G., Tournier, É., & Viallon, C. (2022). Evolution Trends and Paradigms of Low Noise Frequency Synthesis and Signal Conversion Using Silicon Technologies. Electronics, 11(5), 684. https://doi.org/10.3390/electronics11050684