Structural Stability of Urban Trees Using Visual and Instrumental Techniques: A Review
Abstract
:1. Introduction
2. Urban Tree Health Assessment Methodologies
2.1. Visual Analyses
2.2. Acoustic Tomography
2.3. Digital Wood Inspection Drill
3. Biodeterioration of Wood by Fungi and Termites
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wilcox, W.W. Review of literature on the effects of early stages of decay on wood strength. Wood Fiber Sci. 1978, 4, 252–257. [Google Scholar]
- Gilbert, E.A.; Smiley, T. Picus Sonic tomography for the quantification of decay in white oak (Quercus alba) and hickory (Carya sp.). J. Arboric. 2004, 30, 277–281. [Google Scholar]
- Fraedrich, B.R. Compartmentalization of Decay in Trees, TR-18; Technical Report; Bartlett Tree Research Laboratories: Charlotte, NC, USA, 1999. [Google Scholar]
- Dandy, N. The Social and Cultural Values, and Governance, of Street Trees. In Climate Change & Street Trees Project: Social Research Report; The Research Agency of the Forestry Commission: Surrey, UK, 2010. [Google Scholar]
- Klinenberg, E. Heat Wave: A Social Autopsy of Disaster in Chicago; University of Chicago Press: Chicago, IL, USA, 2002; ISBN-13 978-0226443225. [Google Scholar]
- Williamson, T.; Dubb, S.; Alperovitz, G. Climate Change, Community Stability, and the Next 150 Million Americans; The Democracy Collaborative: College Park, MD, USA, 2010. [Google Scholar]
- Nowak, D. Estimating Leaf Area and Leaf Biomass of Open-Grown Deciduous Urban Trees. For. Sci. 1996, 42, 504–507. [Google Scholar]
- Mcpherson, E.; Nowak, D.; Heisler, G.; Grimmond, S.; Souch, C.; Grant, R.; Rowntree, R. Quantifying Urban Forest Structure, Function, and Value: The Chicago Urban Forest Climate Project. Urban Ecosyst. 1997, 1, 49–61. [Google Scholar] [CrossRef]
- Nowak, D. Assessing urban forest structure: Summary and conclusions. Arboric. Urban For. 2008, 34, 391–392. [Google Scholar]
- Escobedo, F.J.; Nowak, D.J. Spatial heterogeneity and air pollution removal by an urban forest. Landsc. Urban Plan. 2009, 90, 102–110. [Google Scholar] [CrossRef]
- Tallis, M.; Taylor, G.; Sinnett, D.; Freer-Smith, P. Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landsc. Urban Plan. 2011, 103, 129–138. [Google Scholar] [CrossRef]
- Ng, E.; Liang, C.; Yingna, W.; Chao, Y. A study on the cooling effects of greening in a high-density city: An experience from Hong Kong. Build. Environ. 2012, 47, 256–271. [Google Scholar] [CrossRef]
- Heisler, G. Effects of individual trees on the solar radiation climate of small buildings. Urban Ecol. 1986, 9, 337–359. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Muñoz, V.M.; Porta-Gándara, M.A.; Fernández, J.L. Effect of tree shades in urban planning in hot-arid climatic regions. Landsc. Urban Plan. 2010, 94, 149–157. [Google Scholar] [CrossRef]
- Hamada, S.; Ohta, T. Seasonal variations in the cooling effect of urban green areas on surrounding urban areas. Urban For. Urban Green. 2010, 9, 15–24. [Google Scholar] [CrossRef]
- Jansson, M. Green space in compact cities: The benefits and values of urban ecosystem services in planning. Nord. J. Arch. Res. 2014, 26, 139–160. [Google Scholar]
- Christopoulou, O.; Serafeim, P.; Minetos, D. Peri-urban and urban forests in Greece: Obstacle or advantage to urban development? Manag. Environ. Qual. Int. J. 2007, 18, 382–395. [Google Scholar] [CrossRef]
- Rivero, R. Arquitetura e Clima: Acondicionamento Térmico Natural; D. C. Luzzatto Editores: Porto Alegre, Brazil, 1986. [Google Scholar]
- Givoni, B. Performance and applicability of passive and low-energy cooling systems. Energy Build. 1991, 17, 177–199. [Google Scholar] [CrossRef]
- Molla, M. The value of urban green infrastructure and its environmental response in urban ecosystem: A literature review. Int. J. Environ. Sci. 2015, 4, 89–101. [Google Scholar]
- Roy, S.; Byrne, J.; Pickering, C. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban For. Urban Green. 2012, 11, 351–363. [Google Scholar] [CrossRef] [Green Version]
- Timur, Ö.B.; Karaca, E. Vertical Gardens. In Advances in Landscape Architecture; Özyavuz, M., Ed.; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef] [Green Version]
- Almeida, E.J.M. Desenhar a Verde: Um Estudo Comparativo Entre a Arquitectura Sustentável High-Tech e Low-Tech. Master’s Thesis, Universidade de Coimbra, Coimbra, Portugal, 2012. [Google Scholar]
- Nowak, D.; Greenfield, E.; Hoehn, R.; Lapoint, E. Carbon storage and sequestration by trees in urban and community areas of the United States. Environ. Pollut. 2013, 178, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Hernández, J.G.; Pallagst, K.; Zdunek-Wielgołaska, J. Urban green spaces as a component of an ecosystem. In Handbook of Engaged Sustainability; Dhiman, S., Marques, J., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Wolf, K.L. Active living—A literature review. In Green Cities: Good Health; College of the Environment, University of Washington: Seattle, WA, USA, 2010. [Google Scholar]
- Dimoudi, A.; Nikolopoulou, M. Vegetation in the urban environment: Microclimatic analysis and benefits. Energy Build. 2003, 35, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Georgi, J.N.; Dimitriou, D. The contribution of urban green spaces to the improvement of environment in cities: Case study of Chania, Greece. Build. Environ. 2010, 45, 1401–1414. [Google Scholar] [CrossRef] [Green Version]
- Cohen, P.; Potchter, O.; Matzarakis, A. Human thermal perception of coastal Mediterranean outdoor urban environments. Appl. Geogr. 2013, 37, 1–10. [Google Scholar] [CrossRef]
- Santiago, J.L.; Rivas, E.; Sanchez, B.; Buccolieri, R.; Martin, F. The Impact of Planting Trees on NOx Concentrations: The Case of the Plaza de la Cruz Neighbourhood in Pamplona (Spain). Atmosphere 2017, 8, 131. [Google Scholar] [CrossRef] [Green Version]
- Worsley, W. The Right Tree in the Right Place for a Resilient Future. Urban Tree Manual 2019. Available online: https://www.forestresearch.gov.uk/documents/5318/7111_FC_Urban_Tree_Manual_V15.pdf (accessed on 3 June 2021).
- Mattheck, C. Field Guide for Visual Tree Assessment; Forschungzentrum Karlsruhe GmbH: Eggenstein-Leopoldshafen, Germany, 2007; p. 170. [Google Scholar]
- Linhares, C.; Gonçalves, R.; Yojo, T. Simplified Methodology for the Inference of Drag Coefficient Applied in Species of Tropical Zone. In Proceedings of the 21st International Nondestructive Testing and Evaluation of Wood: Forest Products Society, Freiburg, Germany, 24–27 September 2019; Forest Research Institute Baden-Württemberg: Freiburg, Germany; p. 657. [Google Scholar]
- Rinn, F.; Schweingruber, F.H.; Schar, E. Resistograph and X-ray density charts of wood comparative evaluation of drill resistance profiles and X-ray density charts of different wood species. Holzforschung 1996, 50, 303–311. [Google Scholar] [CrossRef]
- Costello, L.R.; Quarles, S.L. Detection of wood decay in blue gum and elm: An evaluation of the RESISTOGRAPH® and the portable drill. J. Arboric. 1999, 25, 311–318. [Google Scholar]
- Johnstone, D.; Ades, P.K.; Moore, G.M.; Smith, I.W. Predicting wood decay in eucalypts using an expert system and the IMLRESISTOGRAPH® drill. Arboric. Urban For. 2007, 33, 76–82. [Google Scholar]
- Wang, X.; Allison, R.B. Decay detection in red oak trees using a combination of visual inspection, acoustic testing, and resistance micro drilling. J. Arboric. Urban For. 2008, 34, 1–4. [Google Scholar]
- Johnstone, D.; Moore, G.; Tausz, T.; Nicolas, M. The measurement of wood decay in landscape trees. Arboric. Urban For. 2010, 36, 121–127. [Google Scholar] [CrossRef]
- Johnstone, D.; Moore, G.; Tausz, T.; Nicolas, M. Quantifying wood decay in Sydney bluegum (Eucalyptus saligna) trees. Arboric. Urban For. 2010, 36, 243–253. [Google Scholar] [CrossRef]
- Arciniegas, A.; Prieto, F.; Brancheriau, L.; Lasaygues, P. Literature review of acoustic and ultrasonic tomography in standing trees. Trees 2014, 28, 1559–1567. [Google Scholar] [CrossRef]
- Balázs, M.; Divos, F. Glue laminated timber structure evaluation by acoustic tomography. General Technical Report FPL-GTR-239. In Proceedings of the 19th International Nondestructive Testing and Evaluation of Wood Symposium, Rio de Janeiro, Brazil, 22–25 September 2015; pp. 462–466. [Google Scholar]
- Trinca, A.J.; Guerra, M.R.; Gonçalves, R. Velocity variation in wood as a function of defects. General Technical Report FPL-GTR-239. In Proceedings of the 19th International Nondestructive Testing and Evaluation of Wood Symposium, Rio de Janeiro, Brazil, 22–25 September 2015; pp. 593–599. [Google Scholar]
- Linhares, C.; Trinca, A.; Gonçalves, R. Ultrasonic Tomography in Knots Detection. In Proceedings of the 18th International Nondestructive Testing and Evaluation of Wood, Madison, WI, USA, 24–27 September 2013; Forest Products Society: Madison, MI, USA, 2013; p. 664. [Google Scholar]
- Sanabria, S.J.; Furrer, R.; Neuenschwander, J.; Niemz, P.; Sennhauser, U. Air-coupled ultrasound inspection of glued laminated timber. Holzforschung 2011, 65, 377–387. [Google Scholar] [CrossRef]
- Batista, F.A.F.; Gonçalves, R.; Cerri, D.G.P.; Secco, C.B. Reprodução da condição interna de peças de madeira através de imagens representativas da propagação de ondas. Madeira Arquitetura Eng. 2009, 10, 23–32. (In Portuguese) [Google Scholar]
- Brashaw, B.K.; Bucur, V.; Divos, F.; Gonçalves, R.; Lu, J.; Meder, R.; Pellerin, R.F.; Potter, S.; Ross, R.J.; Wang, X.; et al. Nondestructive testing and evaluation of wood: A worldwide research update. For. Prod. J. 2009, 59, 7–14. [Google Scholar]
- Socco, L.V.; Sambuelli, L.; Martinis, R.; Comino, E.; NicolottI, G. Feasibility of ultrasonic tomography for nondestructive testing of decay on living trees. Res. Nondestruct. Eval. 2004, 15, 31–54. [Google Scholar] [CrossRef]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Manion, P.D. Tree Disease Concepts; Prentice-Hall: Engelwood Cliffs, NJ, USA, 1991. [Google Scholar]
- Martins, L.M. As múltiplas causas para o declínio da Floresta Urbana. In Proceedings of the 7° Congresso Florestal Nacional, Vila Real/Bragança, Portugal, 5–8 June 2013; pp. 292–308. [Google Scholar]
- Martins, L.M. New challenges in urban forest. In Proceedings of the Conference in ERASMUS Program, Firenze, Italy, 23–30 May 2015; Università degli Studi di Firenze: Firenze, Italy, 2015. [Google Scholar]
- Rinn, F. Shell-wall thickness and breaking safety of mature trees. West. Arborist 2013, 39, 40–44. [Google Scholar]
- Gonçalves, R.; Linhares, C.; Yojo, T. Drag coefficient in urban trees. Trees 2020, 1–13. [Google Scholar] [CrossRef]
- Koeser, A.K.; Smiley, E.T. Impact of assessor on tree risk assessment ratings and prescribed mitigation measures. Urban For. Urban Green. 2017, 24, 109–115. [Google Scholar] [CrossRef]
- Zhang, B.; Brack, C.L. Urban Forest responses to climate change: A case study in Canberra. Urban For. Urban Green. 2021, 57, 126910. [Google Scholar] [CrossRef]
- Prebble, S.; McLean, J.; Houston, D. Smart urban forests: An overview of more-than-human and more-than-real urban forest management in Australian cities. Digit. Geogr. Soc. 2021, 2, 100013. [Google Scholar] [CrossRef]
- National Tree Safety Group (NTSG). Common Sense Risk Management of Trees; The Forestry Commission: Edinburgh, UK, 2011; p. 102. [Google Scholar]
- Dahle, G.; Grabosky, J.; Kane, B.; Miesbauer, J.; Peterson, W.; Telewski, F.W.; Koeser, A.K.; Watson, G.W. Tree biomechanics: A white paper from the 2012 international meeting and research summit at the Morton Arboretum (Lisle, Illinois, US). Arbor. Urban For. 2014, 40, 309–318. [Google Scholar] [CrossRef]
- Koeser, A.K.; Hauer, R.J.; Miesbauer, J.W.; Peterson, W. Municipal tree risk assessment in the United States: Findings from a comprehensive survey of urban forest management. Arbor. J. 2016, 38, 218–229. [Google Scholar] [CrossRef]
- Nowak, D.; Noble, M.; Sisinni, S.; Dwyer, J. People and trees: Assessing the US urban forest resource. J. For. 2001, 99, 37–42. [Google Scholar] [CrossRef]
- Myeong, S.; Nowak, D.; Duggin, M. A temporal analysis of urban forest carbon storage using remote sensing. Remote Sens. Environ. 2006, 101, 277–282. [Google Scholar] [CrossRef]
- Walton, J.; Nowak, D.; Greenfield, E. Assessing urban forest canopy cover using airborne or satellite imagery. Arbor. Urban For. 2008, 34, 334–340. [Google Scholar]
- McPherson, E.G.; Simpson, J.R.; Xiao, Q.; Wu, C. Million trees Los Angeles canopy cover and benefit assessment. Landsc. Urban Plan. 2011, 99, 40–50. [Google Scholar] [CrossRef]
- Sinn, G.; Wessoly, L. A contribution to the proper assessment of the strength and stability of trees. Arbor. J. 1989, 13, 45–64. [Google Scholar] [CrossRef]
- Detter, A.; Brudi, E.; Bischoff, F. Statics Integrated Methods: Results from pulling tests in the past decades. In La Visión del Árbol: Actas del 9º Congreso de Arboricultura; ISA Spain: Barcelona, Spain, 2005; pp. 103–112. [Google Scholar]
- Sani, L.; Lisci, R.; Moschi, M.; Sarri, D.; Rimediotti, M.; Vieri, M.; Tofanelli, S. Preliminary experiments and verification of controlled pulling tests for tree stability assessments in Mediterranean urban areas. Biosyst. Eng. 2012, 112, 218–226. [Google Scholar] [CrossRef]
- Koizumi, A.; Shimizu, M.; Sasaki, Y.; Hirai, T. In situ drag coefficient measurements for rooftop trees. J Wood Sci. 2016, 62, 363–369. [Google Scholar] [CrossRef] [Green Version]
- Beezleyet, K.E.; Dahle, G.A.; Miesbauer, J.; DeVallance, D. Strain Patterns Across the Root-Stem Transition Zone in Urban Trees. Arbor. Urban For. 2020, 46, 321–332. [Google Scholar] [CrossRef]
- Linhares, C.; Yojo, T.; Gonçalves, R. Proposta Metodológica para o Cálculo do Coeficiente de Arrasto para Folhosas utilizadas na Arborização Urbana. Encontro Brasileiro em Madeiras e em Estruturas de Madeira, Brasil. 2020. Available online: http://soac.eesc.usp.br/index.php/ebramem/xviiebramem/paper/view/2218 (accessed on 15 May 2021).
- Vojácková, B.; Tippner, J.; Horácek, P.; Sebera, V.; Praus, L.; Marík, R.; Brabec, M. The effect of stem and root-plate defects on the tree response during static loading—Numerical analysis. Urban For. Urban Green. 2021, 59, 127002. [Google Scholar] [CrossRef]
- Alani, A.M.; Lantini, L. Recent advances in tree root mapping and assessment using nondestructive testing methods: A focus on ground penetrating radar. Surv. Geophys. 2019, 41, 605–646. [Google Scholar] [CrossRef]
- Li, F.X.; Li, M.; Feng, X.G. High-Precision Method for Estimating the Three-Dimensional Green Quantity of an Urban Forest. J. Indian Soc. Remote 2021, 49, 1407–1417. [Google Scholar] [CrossRef]
- Salsabila, R.; Hariyadi, H.; Santoso, N. Tree Health Management Strategy in Cianjur Urban Forest. J. Sylva Lestari 2021, 9, 86–103. [Google Scholar] [CrossRef]
- Vidal, D.; Pitarma, R. Infrared thermography applied to tree health assessment: A review. Agriculture 2019, 9, 156. [Google Scholar] [CrossRef] [Green Version]
- Matheny, N.; Clark, J. A Photographic Guide to the Evaluation of Hazard Trees in Urban Areas; International Society of Arboriculture: Champaign, IL, USA, 1994; p. 85. [Google Scholar]
- Mattheck, C.; Breloer, H. Field guide for visual tree assessment (VTA). Arbor. J. 1994, 18, 1–23. [Google Scholar] [CrossRef]
- Ostrovský, R.; Kobza, M.; Gažo, J. Extensively damaged trees tested with acoustic tomography considering tree stability in urban greenery. Trees 2017, 31, 1015–1023. [Google Scholar] [CrossRef]
- Dunster, J.A.; Smiley, E.T.; Matheny, N.; Lilly, S. Tree risk Assessment Manual; International Society of Arboriculture: Champaign, IL, USA, 2013; p. 194. [Google Scholar]
- Pokorny, J.D. Urban Tree Risk Management, a Community Guide to Program Design and Implementation; USDA Forest Service North-eastern Area State and Private Forest: Washington, DC, USA, 2003. [Google Scholar]
- Ellison, M.J. Quantified tree risk assessment used in the management of amenity trees. J. Arbor. 2005, 31, 57–65. [Google Scholar]
- Smiley, E.T.; Matheny, N.; Lilly, S. Best Management Practices: Tree Risk Assessment; International Society of Arboriculture: Champaign, IL, USA, 2011; p. 86. [Google Scholar]
- Lin, C.J.; Huang, Y.H.; Huang, G.S.; Wu, M.L.; Yang, T.H. Detection of termite damage in Hoop pine (Araucaria cunninghamii) trees using nondestructive evaluation techniques. J. Trop. For. Sci. 2016, 28, 79–87. [Google Scholar]
- Wessolly, L.; Erb, M. Manual of Tree Statics and Tree Inspection; Patzer Verlag: Berlin/Hannover, Germany, 2016; p. 288. ISBN 978-87617-143-2. [Google Scholar]
- Habermehl, A.; Ridder, H.W. Methodik der Computer-Tomographie zur zerstörungsfreien Untersuchung des Holzkörpers von stehenden Bäumen. Holz Als Roh-Und Werkst. 1992, 50, 465–474. [Google Scholar] [CrossRef]
- Swanson, J.S.; Hailey, J.R.T. Scanning and imaging thechniques for assessing decay and wood quality in logs and standing trees. In Proceedings of the Nondestructive Testing and Evaluation of Wood Symposium, Pullman, WA, USA, 28–30 August 1978. [Google Scholar]
- Habermehl, A.; Ridder, H.W.; Naumann, A. Nondestructive Testing of tapped Pines by computerized tomography. In Proceedings of the International Symposium on Nondestructive Testing of Wood, Lausanne, Switzerland, 26–28 August 1996. [Google Scholar]
- Kölbel, M. Application of computerized tomography to old Beeches in forest reserves of Bavaria. In Proceedings of the International Symposium on Nondestructive Testing of Wood, Lausanne, Switzerland, 26–28 August 1996. [Google Scholar]
- Henderson, R.P.; Webster, J.G. An impedance camera for spatially specific measurements of the thorax. IEEE Trans. Biomed. Eng. 1978, 25, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Zhou, J.; Ruijuan, G.; Yang, L.; Gang, Z. Freezing resistance evaluation of rose stems during frost dehardening using electrical impedance tomography. BMC Plant Biol. 2021, 21, 199. [Google Scholar] [CrossRef]
- Weigand, M.; Kemna, A. Multi-frequency electrical impedance tomography as a non- invasive tool to characterize and monitor crop root systems. Biogeosciences 2017, 14, 921–939. [Google Scholar] [CrossRef] [Green Version]
- Corona-Lopez, D.D.; Sommer, J.; Rolfe, S.A.; Podd, F.; Grieve, B.D. Electrical impedance tomography as a tool for phenotyping plant roots. Plant. Methods 2019, 15, 49. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Cui, M.; Yang, J.; Han, W. Tomographic image reconstruction of plant single root by electrical impedance tomography. Transact. Chin. Soc. Agric. Eng. 2014, 30, 173–180. [Google Scholar]
- Dolwin, J.A.; Lawday, G.; Lonsdale, D.; Barnett, J.R.; Hodges, P. Development and Use of Stress Wave Meter, to Detect the Presence of Decay in Wood Blocks. In Proceedings of the International Symposium on Nondestructive Testing of Wood, Sopron, Hungary, 13–15 September 2000. [Google Scholar]
- Bucur, V. High Resolution Imaging of Wood. In Proceedings of the International Symposium on Nondestructive Testing of Wood, Berkeley, CA, USA, 19–21 August 2002. [Google Scholar]
- McCracken, F. Using sound to detect decay in standing hardwood trees. In Proceedings, 5th Symposium on Nondestuctive Testing of Wood; Pullman, Washington State University: Washington, DC, USA, 1985. [Google Scholar]
- Divos, F.; Meszaros, K. Root decay detection by stress wave technique. In Proceedings of the 1st European Symposium on Nondestructive Testing, Sopron, Hungary, 21–23 September 1994; p. 524. [Google Scholar]
- Mattheck, C.G.; Bethge, K.A. Detection of decay in trees with the Metriguard Stresswave timer. J. Arbor. 1993, 16, 374–378. [Google Scholar]
- Stefan, H.; Gottfried, S. Detection of Butt Rot. In Proceedings of the International Symposium on Nondestructive Testing of Wood, Sopron, Hungary, 13–15 September 2000. [Google Scholar]
- Divos, F.; Szalai, L. Tree Evaluation by Acoustic Tomography. In Proceedings of the International Symposium on Nondestructive Testing of Wood, Berkeley, CA, USA, 19–21 August 2002. [Google Scholar]
- Schubert, S. Acousto-Ultrasound Assessment of Inner Wood-Decay in Standing Trees: Possibilities and Limitations. Ph.D. Thesis, Swiss Federal Institute of Technology Zurich, Züric, Switzerland, 2007. [Google Scholar]
- Maurer, H.; Schubert, S.I.; Bachle, F.; Clauss, S.; Gsell, D.; Dual, J.; Niemz, P. A simple anisotropy correction procedure for acoustic wood tomography. Holzforschung 2006, 60, 567–573. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Li, S.; Li, G.; Feng, H.; Chen, S. Stress wave tomography of wood internal defects using ellipse-based spatial interpolation and velocity compensation. BioResources 2015, 10, 3948–3962. [Google Scholar] [CrossRef]
- Bucur, V. Ultrasonic techniques for nondestructive testing of standing trees. Ultrasonics 2005, 43, 237–239. [Google Scholar] [CrossRef] [PubMed]
- Bucur, V. Acoustics of Wood (Second Edition). J. Acoust. Soc. Am. 2006, 119, 3506. [Google Scholar] [CrossRef]
- Wang, X.; Divos, F.; Pilon, C.; Brashaw, B.K.; Ross, R.J.; Pellerin, R.F. Assessment of Decay in Standing Timber Using Stress Wave Timing Non-Destructive Evaluation Tools: A Guide for Use and Interpretation; General Technical Report (GTR), FPL-GTR-147; Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2004; 12p. [Google Scholar]
- Zhu, J.; Tadooka, N.; Takata, K.; Koizumi, A. Growth and wood quality of sugi (Cryptomeria japonica) planted in Akita prefecture (II). Juvenile/mature wood determination of aged trees. J. Wood Sci. 2005, 51, 95–101. [Google Scholar] [CrossRef]
- Kijidani, Y.; Kitahara, R. Variation of wood properties with height position in the stems of Obi-sugi [Cryptomeria japonica] cultivars. J. Jpn. Wood Res. Soc. 2009, 55, 198–206. [Google Scholar] [CrossRef]
- Booker, R.E.; Harrington, J.J.; Shiokura, T. Variation of Young´s modulus with microfibril angle, density and spiral grain. In Microfibril Angle in Wood; Butterfield, B.G., Ed.; University of Canterbury: Christchurch, New Zealand, 1998; pp. 296–311. [Google Scholar]
- Trinca, A.J.; Gonçalves, R. Effect of the transversal section dimensions and transducer frequency on ultrasound wave propagation velocity in wood. Rev. Árvore 2009, 33, 177–184. (In Portuguese) [Google Scholar] [CrossRef] [Green Version]
- Bond, L.; Saffari, M. Mode-conversion ultrasonic testing. In Nondestructive Testing; Sharpe, R.S., Ed.; Academic Press: London, UK, 1984; Volume 7, pp. 145–189. [Google Scholar]
- Wedgwood, F. Data processing in ultrasonic ndt. Proc. Ultrason. Int. 1987, 87, 381–386. [Google Scholar]
- Secco, C.B. Detention of Hollow in Logs Using Methods of Propagation of Ultrasonic Waves. Master’s Thesis, University of Campinas, Campinas, Brazil, 2011. [Google Scholar]
- Palma, S.S.A.; Gonçalves, R.; Trinca, A.J.; Costa, C.P.; Guerra, M.N.R.; Martins, G.A. Interference from knots, wave propagation direction and effect of juvenile and reaction wood on velocities in ultrasound tomography. BioResources 2018, 13, 2834–2845. [Google Scholar] [CrossRef]
- Brancheriau, L.; Ghodrati, A.; Gallet, P.; Thaunay, P.; Lasaygues, P. Application of ultrasonic tomography to characterize the mechanical state of standing trees (Picea abies). J. Phys. Conf. Ser. 2012, 353, 012007. [Google Scholar] [CrossRef] [Green Version]
- Feng, H.; Li, G.; Fu, S.; Wang, X. Tomographic image reconstruction using an interpolation method for tree decay detection. BioResources 2014, 9, 3248–3263. [Google Scholar] [CrossRef]
- Zeng, L.; Lin, J.; Hua, J.; Shi, W. Interference resisting design for guided wave tomography. Smart Mater. Struct. 2013, 22, 055017. [Google Scholar] [CrossRef]
- Lin, C.J.; Kao, Y.C.; Lin, T.T.; Tsai, M.J.; Wang, S.Y.; Lin, L.D.; Chan, M.H. Application of an ultrasonic tomographic technique for detecting defects in standing trees. Int. Biodeterior. Biodegrad. 2008, 62, 434–441. [Google Scholar] [CrossRef]
- Strobel, J.R.A.; de Carvalho, M.A.G.; Gonçalves, R.; Pedroso, C.B.; dos Reis, M.N.; Martins, P.S. Quantitative image analysis of acoustic tomography in woods. Eur. J. Wood Wood Prod. 2018, 76, 1379–1389. [Google Scholar] [CrossRef]
- Pádua, F.A. Amostragem Para Avaliação da Densidade Básica da Madeira de um Híbrido de Eucalyptus grandis W. Hill ex Maiden x Eucalyptus urophylla S.T. Blake. Ph.D. Thesis, Universidade Federal de Lavras, Lavras, Brasil, 2009. (In Portuguese). [Google Scholar]
- Sprague, J.R.; Talbert, J.T.; Jett, J.B.; Bryant, R.L. Utility of the Pilodyn in selection for mature wood specific gravity in loblolly pine. For. Sci. 1983, 29, 696–701. [Google Scholar] [CrossRef]
- Gao, S.; Wang, X.; Wiemann, M.C.; Brashaw, B.K.; Ross, R.J.; Wang, L. A critical analysis of methods for rapid and non-destructive determination of wood density in standing trees. Ann. Sci. 2017, 74, 27. [Google Scholar] [CrossRef] [Green Version]
- Martínez, D.L. Métodos no Destructivos de Estimación de la Densidad de la Madera. Ph.D. Thesis, Universidade de Santiago de Compostela, Madrid, Spain, 2018. (In Spanish). [Google Scholar]
- Downes, G.M.; Hudson, I.L.; Raymond, C.A.; Dean, G.H.; Michell, A.J.; Schimleck, L.R.; Evans, R.; Muneri, A. Sampling Plantation Eucalypts for Wood and Fibre Properties; CSIRO Publishing: Clayton, Australia, 1997; 126p. [Google Scholar]
- Oliveira, J.T.; Wang, X.; Vidaurre, G.B. Assessing specific gravity of young eucalyptus plantation trees using a resistance drilling technique. Holzforschung 2017, 71, 137–145. [Google Scholar] [CrossRef]
- Dos Reis, M.N.; Gonçalves, R.; Lopes Garcia, G.H.; Manes, L. Profiles of a Non-Calibrated Resistance Drill Compared with Deteriorated Stem Cross Sections. Arbor. Urban For. 2019, 45, 1–9. [Google Scholar] [CrossRef]
- Tannert, T.; Anthony, R.W.; Kasal, B.; Kloiber, M.; Piazza, M.; Riggio, M.; Rinn, F.; Widman, N.R.; Yamaguchi, N. In situ assessment of structural timber using semi-destructive techniques. Mater Struct 2014, 47, 767–785. [Google Scholar] [CrossRef]
- Rinn, F. A new method for direct measuring of wood density of broadleaf trees and conifers. Dendrochronologia 1989, 7, 159–168. [Google Scholar]
- Brashaw, B.K.; Vatalaro, R.; Ross, R.J.; Wang, X.; Schmieding, S.; Okstad, W. Historic Log Cabin structural condition assessment and rehabilitation—A case study. In Proceedings of the 17th International Non-destructive Testing and Evaluation of Wood Symposium, Sopron, Hungary, 14–16 September 2011; pp. 505–512. [Google Scholar]
- Rinn, F. Basics of micro Resistance-Drilling for Timber Inspection. Holztechnologie 2012, 53, 24–29. [Google Scholar]
- Kubus, M. The Evaluation of Using Resistograph when Specifying the Health Condition of a Monumental Tree. Not. Bot. Horti Agrobot. Cluj-Napoca 2009, 37, 157–164. [Google Scholar] [CrossRef]
- Wang, X.; Wiedenbeck, J.; Liang, S. Acoustic tomography for decay detection in black cherry trees. Wood Fiber Sci. 2009, 41, 127–137. [Google Scholar]
- Isik, F.; Li, B. Rapid assessment of wood density of live trees using the Resistograph for selection in tree improvement programs. Can. J. For. Res. 2003, 33, 2427–2435. [Google Scholar] [CrossRef]
- Gwaze, D.; Stevenson, A. Genetic variation of wood density and its relationship with drill resistance in shortleaf pine. South. J. Appl. For. 2008, 32, 130–133. [Google Scholar] [CrossRef] [Green Version]
- Eckard, T.J.; Isik, F.; Bullock, B.; Li, B.; Gumpertz, M. Selection efficiency for solid wood traits in Pinus taeda using time-of-flight acoustic and micro-drill resistance methods. For. Sci. 2010, 56, 233–241. [Google Scholar] [CrossRef]
- Grassé, P.P. Termitologia; Masson: Paris, France, 1982; Volume 1. [Google Scholar]
- Oliveira, A.M.F.; Lelis, A.T.; Lepage, E.S. Agentes Destruidores da Madeira. In Manual de preservação de madeiras; Lepage, E.S., Ed.; IPT: São Paulo, Brazil, 1986; Volume 1, pp. 99–278. (In Portuguese) [Google Scholar]
- Brazolin, S. Biodeterioração, Anatomia do Lenho e Análise de Risco de Queda de Árvores de Tipuana, Tipuana Tipu (Benth.) O. Kuntze, Nos Passeios Públicos da Cidade de São Paulo, SP. Ph.D. Thesis, Recursos Florestais, ESALQ—Escola Superior de Agricultura Luiz de Queiroz, USP—Universidade de São Paulo, Piracicaba, São Paulo, Brazil, 2009. (In Portuguese). [Google Scholar]
- Duarte, S.; Nunes, L.; Borges, P.A.; Fossdal, C.G.; Nobre, T. Living inside termites: An overview of symbiotic interactions, with emphasis on flagellate protists. Arquipel. Life Mar. Sci. 2017, 34, 21–43. [Google Scholar]
- Passos, E.M.; Albuquerque, A.C.; Marques, E.J.; Teixeira, V.W.; Silva, C.C.M.; Oliveira, M.A.P. Efeitos de isolados do fungo Isaria (Persoon) sobre o cupim subterrâneo Coptotermes gestoi. Arq. Inst. Biol. 2014, 81, 232–237. [Google Scholar] [CrossRef] [Green Version]
- Edwards, R.; Mill, A.E. Termites in Buildings: Their Biology and Control; Rentokil: Felcourt, UK, 1986; p. 231, ISBN-10: 0906564069. [Google Scholar]
- Waller, D.A.; La Fage, J.P. Nutritional ecology of termites. In Nutritional Ecology of Insects, Mites, Spiders and Related Invertebrate; Slansky, F., Jr., Rodriguez, J.C., Eds.; John Wiley & Sons: New York, NY, USA, 1986; pp. 487–532. Available online: http://www.dowagro.com/br/sentricon/cupins/subter.htm (accessed on 15 May 2021).
- Brazolin, S. Propriedades físico-mecânicas do lenho deteriorado por fungos apodrecedores de árvores de Tipuana tipu. Cerne 2014, 20, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.J.; Chang, T.T.; Juan, M.Y.; Lin, T.T. Detecting deterioration in royal palm (Roystonea regia) using ultrasonic tomographic and resistance microdrilling techniques. J. Trop. For. Sci. 2011, 23, 260–270. [Google Scholar]
- Linhares, C.; Trinca, A.; Gonçalves, R. Avaliação de Imagens Ultrassônicas de Madeira inoculadas com Xilófagos. In Proceedings of the XXII Congresso de Iniciação Científica da Unicamp, Campinas, Brazil, 22–24 October 2014. [Google Scholar]
- Rayner, A.D.M.; Boddy, L. (Eds.) Fungal Decomposition of Wood: Its Biology and Ecology; John Willey: Chichester, UK, 1988; 587p. [Google Scholar]
- Palma, S.S.A. Reconhecimento de Padrões em Imagens Geradas por Ultrassom: Recognition of Patterns in Images Gerated by Ultrasond. 2017. 1 Recurso Online (210p.) Dissertação (mestrado)—Universidade Estadual de Campinas, Faculdade de Engenharia Agrícola, Campinas, SP. Available online: http://acervus.unicamp.br/index.asp?codigo_sophia=989570 (accessed on 10 December 2021). (In Portuguese).
- Aghajani, H.; Bari, E.; Bahmani, M.; Humar, M.; Ghanbary, M.A.T.; Nicholas, D.D.; Zahedian, E. Influence of relative humidity and temperature on cultivation of Pleurotus species. Maderas Cienc. Tecnol. 2018, 20, 571–578. [Google Scholar] [CrossRef] [Green Version]
- Bari, E.; Aghajani, H.; Ohno, K.M.; Shahi, R.; Hale, M.D.; Bahmani, M. Ecology of wood-inhabiting fungi in northern forests of Iran. For. Pathol. 2019, 49, e12501. [Google Scholar] [CrossRef]
- Nicholas, D. Wood Deterioration and Its Prevention by Preservative Treatments: Degradation and Protection of Wood; Syracuse University Press: Syracuse, NY, USA, 1982. [Google Scholar]
- Schmidt, O. Wood and Tree Fungi: Biology, Damage, Protection, and Use; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; p. 336. ISBN 978-3-540-32139-2. [Google Scholar]
- Azimi, Y.; Bahmani, M.; Jafari, A.; Riyahi Bakhtyari, H.R. Anatomical, Chemical and Mechanical Characteristics of Beech Wood Degraded by Two Pleurotus Species. Drv. Ind. Znan. Časopis Za Pitanja Drv. Tehnol. 2020, 71, 47–53. [Google Scholar] [CrossRef]
- Rowell, R.M. Wood Chemistry and Wood Composites; CRC Press: Boca Raton, FL, USA, 2005; 473p. [Google Scholar]
- Wong, D.W. Structure and action mechanism of ligninolytic enzymes. Appl. Biochem. Biotechnol. 2009, 157, 174–209. [Google Scholar] [CrossRef]
- Schmidt, O.; Bahmani, M.; Koch, G.; Potsch, T.; Brandt, K. Study of the fungal decay of oil palm wood using TEM and UV techniques. Int. Biodeterior. Biodegrad. 2016, 111, 37–44. [Google Scholar] [CrossRef]
- Deflorio, G.; Fink, S.; Schwarze, F.W. Detection of incipient decay in tree stems with sonic tomography after wounding and fungal inoculation. Wood Sci. Technol. 2008, 42, 117–132. [Google Scholar] [CrossRef]
- Kim, K.; Pard, J.; Lee, S.; Yeo, H.; Lee, J. Development of a portable ultrasonic computed tomography system for detecting decay in wood. In Proceedings of the International Non-Destructive Testing and Evaluation of Wood Symposium, Duluth, MN, USA, 10–12 September 2007; pp. 191–195. [Google Scholar]
- Allison, R.B.; Wang, X.; Ross, R.J. Visual e nondestructive evaluation of red pine supporting a ropes course in the USFS Nesbit Lake Camp, Sidnaw, Michigan. In Proceedings of the 15th International Non-Destructive Testing and Evaluation of Wood Symposium, Duluth, MN, USA, 10–12 September 2007; pp. 43–48. [Google Scholar]
- Wang, X.; Carter, O.; Ross, R.J.; Brashaw, B.K. Acoustics assessment of wood quality of ray forest materials. For. Prod. J. 2007, 57, 6–14. [Google Scholar]
- Bari, E.; Daryaei, M.G.; Karim, M.; Bahmani, M.; Schmidt, O.; Woodward, S.; Sistani, A. Decay of Carpinus betulus wood by Trametes versicolor-An anatomical and chemical study. Int. Biodeterior. Biodegrad. 2019, 137, 68–77. [Google Scholar] [CrossRef]
- Gonçalves, R.; Trinca, A.J.; Pellis, B.P. Elastic constants of wood determined by ultrasound using three geometries of specimens. Wood Sci. Technol. 2014, 48, 269–287. [Google Scholar] [CrossRef]
- Cavalcanti, N.M.O.; Goncalves, R.; Brazolin, S.; Bertoldo, C.; Ruy, M. Ultrasound test for root wood elastomechanical characterization. BioResources 2018, 13, 5818–5835. [Google Scholar]
- Gonçalves, R.; Garcia, G.H.L.; Brazolin, S.; Bertoldo Pedroso, C.; Ruy, M. Methodology for characterization of elastic constants of wood tree branches. BioResources 2019, 14, 8439–8454. [Google Scholar]
- Bucur, V. An ultrasonic method for measuring the elastic constants of wood increment cores bored from living trees. Ultrasonics 1983, 21, 116–126. [Google Scholar] [CrossRef]
- Keunecke, D.; Sonderegger, W.; Pereteanu, K.; Lüthi, T.; Niemz, P. Determination of Young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves. Wood Sci. Technol. 2007, 41, 309–327. [Google Scholar] [CrossRef] [Green Version]
- Longo, R.; Delaunay, T.; Laux, D.; El Mouridi, M.; Arnould, O.; Le Clezio, E. Wood elastic characterization from a single sample by resonant ultrasound spectroscopy. Ultrasonics 2012, 52, 971–974. [Google Scholar] [CrossRef] [Green Version]
- Ozyhar, T.; Hering, S.; Sanabria, S.J.; Niemz, P. Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves. Wood Sci. Technol. 2013, 47, 329–341. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, R.; Trinca, A.J.; Dos Ferreira, G.C.S. Effect of coupling media on velocity and attenuation of ultrasonic waves in Brazilian wood. J. Wood Sci. 2011, 57, 282–287. [Google Scholar] [CrossRef]
- Gonçalves, R.; Trinca, A.J.; Cerri, D.G.P. Comparison of Elastic Constants of Wood Determined by Ultrasonic Wave Propagation and Static Compression Testing. Wood Fiber Sci. 2011, 43, 64–75. [Google Scholar]
- Vázquez, C.; Gonçalves, R.; Bertoldo, C.; Baño, V.; Vega, A.; Crespo, J.; Guaita, M. Determination of the mechanical properties of Castanea sativa Mill. Using ultrasonic wave propagation and comparison with static compression and bending methods. Wood Sci. Technol. 2015, 49, 607–622. [Google Scholar] [CrossRef]
- Francois, M. Identification des Symétries Matérielles de Matériaux Anisotropies. Ph.D. Thesis, Université Pierre et Marie Curie-Paris VI, Paris, France, 1995. (In French). [Google Scholar]
Predisposing Factors | Inciting Factors | Contributing Factor | Dendrological Parameters |
---|---|---|---|
Urban environment | Drought | Biotic agents | Diameter of breast height—DBH |
Soil compaction | Floods | Height of the tree | |
Genetic potential | Severe pruning | Height of the canopy | |
Age | Excavation | Height of the stem | |
Lack of light | Air pollution | Diameter of canopy | |
Sea proximity | Overwatering | ||
Root cuting |
Root | Cavity; Injury; Surface |
Stem | Cavity; Injury; Codominance; Inclined; Adventitious; Spheroplast; Included bark; Protuberance |
Branch | Cavity; Wound; Codominance; Dense; Dry; Large; Slender |
Twig | Adventitious; Dry; Low; Dense |
Leaf | Dry; Necrosis; Chlorosis; Small; Large; Perforated; Epinasty |
Crown | Dead; Dieback; Transparent; Inclined; High; Low; Unbalanced; Dense |
Biotic Agents | White rot; Brown rot; Soft rot; Fumagine; Aphids; Anthracnose; Xanthogaleruca luteola; Termite; Other phytopathogenes |
Lesion | Height; Width; Depth; Height above the ground; Distance to the back wall; Thickness of the front wall; Tree diameter at lesion entrance |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linhares, C.S.F.; Gonçalves, R.; Martins, L.M.; Knapic, S. Structural Stability of Urban Trees Using Visual and Instrumental Techniques: A Review. Forests 2021, 12, 1752. https://doi.org/10.3390/f12121752
Linhares CSF, Gonçalves R, Martins LM, Knapic S. Structural Stability of Urban Trees Using Visual and Instrumental Techniques: A Review. Forests. 2021; 12(12):1752. https://doi.org/10.3390/f12121752
Chicago/Turabian StyleLinhares, Camila S. F., Raquel Gonçalves, Luis M. Martins, and Sofia Knapic. 2021. "Structural Stability of Urban Trees Using Visual and Instrumental Techniques: A Review" Forests 12, no. 12: 1752. https://doi.org/10.3390/f12121752
APA StyleLinhares, C. S. F., Gonçalves, R., Martins, L. M., & Knapic, S. (2021). Structural Stability of Urban Trees Using Visual and Instrumental Techniques: A Review. Forests, 12(12), 1752. https://doi.org/10.3390/f12121752